Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803

. 2024 Sep ; 20 (9) : e1012445. [epub] 20240912

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39264951

Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.

Zobrazit více v PubMed

Allaf MM, Peerhossaini H. Cyanobacteria: Model Microorganisms and Beyond; 2022. PubMed PMC

De Vries S, De Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants; 2022. PubMed PMC

Stirbet A, Lazár D, Papageorgiou GC, Govindjee. Chapter 5—Chlorophyll a Fluorescence in Cyanobacteria: Relation to Photosynthesis. In: Mishra AK, Tiwari DN, Rai AN, editors. Cyanobacteria. Academic Press; 2019. p. 79–130. Available from: https://www.sciencedirect.com/science/article/pii/B9780128146675000052.

Kumar J, Singh D, Tyagi MB, Kumar A. Cyanobacteria: Applications in Biotechnology. In: Cyanobacteria. Elsevier; 2019. p. 327–346. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128146675000167.

Möllers KB, Cannella D, Jørgensen H, Frigaard NU. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels. 2014;7(1):64. doi: 10.1186/1754-6834-7-64 PubMed DOI PMC

Hays SG, Ducat DC. Engineering cyanobacteria as photosynthetic feedstock factories. Photosynthesis Research. 2015;123(3):285–295. doi: 10.1007/s11120-014-9980-0 PubMed DOI PMC

Sarma MK, Kaushik S, Goswami P. Cyanobacteria: A metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass and Bioenergy. 2016;90:187–201. doi: 10.1016/j.biombioe.2016.03.043 DOI

Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms. 2022;10(12). doi: 10.3390/microorganisms10122318 PubMed DOI PMC

Klaus O, Hilgers F, Nakielski A, Hasenklever D, Jaeger KE, Axmann IM, et al.. Engineering phototrophic bacteria for the production of terpenoids. Current Opinion in Biotechnology. 2022;77:102764. doi: 10.1016/j.copbio.2022.102764 PubMed DOI

Appel J, Hueren V, Boehm M, Gutekunst K. Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. Nature Energy. 2020;5(6):458–467. doi: 10.1038/s41560-020-0609-6 DOI

Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2016;1857(3):247–255. doi: 10.1016/j.bbabio.2015.10.007 PubMed DOI

Lewis CM, Flory JD, Moore TA, Moore AL, Rittmann BE, Vermaas WFJ, et al.. Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II. Journal of the American Chemical Society. 2022;144(7):2933–2942. doi: 10.1021/jacs.1c09291 PubMed DOI

Kramer DM, Evans JR. The importance of energy balance in improving photosynthetic productivity. Plant Physiology. 2011;155(1):70–78. doi: 10.1104/pp.110.166652 PubMed DOI PMC

Gombert AK, Nielsen J. Mathematical modelling of metabolism. Current Opinion in Biotechnology. 2000;11(2):180–186. doi: 10.1016/S0958-1669(00)00079-3 PubMed DOI

Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: Basics, history and modelling. Annals of Botany. 2020;126(4):511–537. doi: 10.1093/aob/mcz171 PubMed DOI PMC

Fourcaud T, Zhang X, Stokes A, Lambers H, Körner C. Plant growth modelling and applications: The increasing importance of plant architecture in growth models; 2008. PubMed PMC

Lea‐Smith DJ, Hanke GT. Electron Transport in Cyanobacteria and Its Potential in Bioproduction. In: Cyanobacteria Biotechnology. Wiley; 2021. p. 33–63. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527824908.ch2. DOI

Li M, Svoboda V, Davis G, Kramer D, Kunz HH, Kirchhoff H. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nature Plants. 2021;7(7):979–988. doi: 10.1038/s41477-021-00947-5 PubMed DOI

Burnap RL, Hagemann M, Kaplan A. Regulation of CO2concentrating mechanism in cyanobacteria; 2015. PubMed PMC

Gao J, Wang H, Yuan Q, Feng Y. Structure and Function of the Photosystem Supercomplexes. Frontiers in Plant Science. 2018;9:357. doi: 10.3389/fpls.2018.00357 PubMed DOI PMC

Sukhova EM, Vodeneev VA, Sukhov VS. Mathematical Modeling of Photosynthesis and Analysis of Plant Productivity. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2021;15(1):52–72. doi: 10.1134/S1990747821010062 DOI

Schreiber U. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In: Chlorophyll a Fluorescence. January 2004. Dordrecht: Springer Netherlands; 2004. p. 279–319. Available from: http://link.springer.com/10.1007/978-1-4020-3218-9_11. DOI

Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation. Microbiology and Molecular Biology Reviews. 1998;62(3):667–683. doi: 10.1128/mmbr.62.3.667-683.1998 PubMed DOI PMC

Lazar D, Stirbet A, Björn LO, Govindjee G. Light quality, oxygenic photosynthesis and more. Photosynthetica. 2022;60(SPECIAL ISSUE 2022):25–58. doi: 10.32615/ps.2021.055 DOI

Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers. PLOS ONE. 2015;10(9):e0139061. doi: 10.1371/journal.pone.0139061 PubMed DOI PMC

Acuña AM, Snellenburg JJ, Gwizdala M, Kirilovsky D, van Grondelle R, van Stokkum IHM. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. Photosynthesis Research. 2016;127(1):91–102. doi: 10.1007/s11120-015-0141-x PubMed DOI PMC

Westermark S, Steuer R. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Frontiers in Bioengineering and Biotechnology. 2016;4:95. doi: 10.3389/fbioe.2016.00095 PubMed DOI PMC

Knoop H, Zilliges Y, Lockau W, Steuer R. The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth. Plant Physiology. 2010;154(1):410–422. doi: 10.1104/pp.110.157198 PubMed DOI PMC

Rodrigues JS, Kovács L, Lukeš M, Höper R, Steuer R, Červený J, et al.. Characterizing isoprene production in cyanobacteria—Insights into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. Bioresource Technology. 2023;380:129068. doi: 10.1016/j.biortech.2023.129068 PubMed DOI

Höper R, Komkova D, Zavřel T, Steuer R. A Quantitative Description of Light-Limited Cyanobacterial Growth Using Flux Balance Analysis; 2024. PubMed PMC

Gorbunov MY, Kuzminov FI, Fadeev VV, Kim JD, Falkowski PG. A kinetic model of non-photochemical quenching in cyanobacteria. Biochimica et Biophysica Acta—Bioenergetics. 2011;1807(12):1591–1599. doi: 10.1016/j.bbabio.2011.08.009 PubMed DOI

Vershubskii AV, Mishanin VI, Tikhonov AN. Modeling of the photosynthetic electron transport regulation in cyanobacteria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 2014;31(2):110–128.

Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, et al.. Quantitative insights into the cyanobacterial cell economy. eLife. 2019;8. doi: 10.7554/eLife.42508 PubMed DOI PMC

Andersson B, Shen C, Cantrell M, Dandy DS, Peers G. The fluctuating cell-specific light environment and its effects on cyanobacterial physiology. Plant Physiology. 2019;181(2):547–564. doi: 10.1104/pp.19.00480 PubMed DOI PMC

Dann M, Ortiz EM, Thomas M, Guljamow A, Lehmann M, Schaefer H, et al.. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants. 2021;7(5):681–695. doi: 10.1038/s41477-021-00904-2 PubMed DOI PMC

Bernát G, Zavřel T, Kotabová E, Kovács L, Steinbach G, Vörös L, et al.. Photomorphogenesis in the Picocyanobacterium Cyanobium gracile Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies. Frontiers in Plant Science. 2021;12:352. doi: 10.3389/fpls.2021.612302 PubMed DOI PMC

Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HCP. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research. 2018;138(2):177–189. doi: 10.1007/s11120-018-0561-5 PubMed DOI PMC

Luimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research. 2019;141(3):291–301. doi: 10.1007/s11120-019-00630-z PubMed DOI PMC

Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochemical & Photobiological Sciences. 2013;12(7):1135–1143. doi: 10.1039/c3pp25406b PubMed DOI

Kerfeld CA, Melnicki MR, Sutter M, Dominguez‐Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytologist. 2017;215(3):937–951. doi: 10.1111/nph.14670 PubMed DOI

Kirilovsky D, Kaňa R, Prášil O. Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. In: Demmig-Adams B, Garab G, Adams W III, Govindjee, editors. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer Netherlands; 2014. p. 471–501. Available from: https://link.springer.com/10.1007/978-94-017-9032-1_22. DOI

Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochemical & Photobiological Sciences. 2020;19(5):585–603. doi: 10.1039/c9pp00451c PubMed DOI

Heinrich R, Rapoport SM, Rapoport TA. Metabolic regulation and mathematical models. Progress in Biophysics and Molecular Biology. 1978;32(C):1–82. doi: 10.1016/0079-6107(78)90017-2 PubMed DOI

Hofmeyr JHS. Metabolic control analysis in a nutshell. Proceedings of the 2nd International Conference on Systems Biology. 2001;(ii):291–300.

Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V. Metabolic Control Analysis: A tool for designing strategies to manipulate metabolic pathways. Journal of Biomedicine and Biotechnology. 2008;2008(1). doi: 10.1155/2008/597913 PubMed DOI PMC

Theune ML, Hildebrandt S, Steffen-Heins A, Bilger W, Gutekunst K, Appel J. In-vivo quantification of electron flow through photosystem I—Cyclic electron transport makes up about 35% in a cyanobacterium. Biochimica et Biophysica Acta—Bioenergetics. 2021;1862(3):148353. doi: 10.1016/j.bbabio.2020.148353 PubMed DOI

Milou Schuurmans R, Merijn Schuurmans J, Bekker M, Kromkamp JC, Matthijs HCP, Hellingwerf KJ. The redox potential of the plastoquinone pool of the cyanobacterium synechocystis species strain PCC 6803 is under strict homeostatic control. Plant Physiology. 2014;165(1):463–475. doi: 10.1104/pp.114.237313 PubMed DOI PMC

Zavřel T, Očenášová P, Červený J. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS ONE. 2017;12(12). doi: 10.1371/journal.pone.0189130 PubMed DOI PMC

Benschop JJ, Badger MR, Dean Price G. Characterisation of CO2 and HCO3- uptake in the cyanobacterium Synechocystis sp. PCC6803. Photosynthesis Research. 2003;77(2):117–126. doi: 10.1023/A:1025850230977 PubMed DOI

Ebenhöh O, Fucile G, Finazzi G, Rochaix JD, Goldschmidt-Clermont M. Short-term acclimation of the photosynthetic electron transfer chain to changing light: A mathematical model. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1640):20130223. doi: 10.1098/rstb.2013.0223 PubMed DOI PMC

Matuszyńska A, Saadat NP, Ebenhöh O. Balancing energy supply during photosynthesis—a theoretical perspective. Physiologia Plantarum. 2019;166(1):392–402. doi: 10.1111/ppl.12962 PubMed DOI PMC

Badger MR, Price GD. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany. 2003;54(383):609–622. doi: 10.1093/jxb/erg076 PubMed DOI

Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

van Aalst M, Ebenhöh O, Matuszyńska A. Constructing and analysing dynamic models with modelbase v1.2.3: a software update. BMC Bioinformatics. 2021;22(1):203. doi: 10.1186/s12859-021-04122-7 PubMed DOI PMC

Belkin S, Mehlhorn RJ, Packer L. Proton Gradients in Intact Cyanobacteria. Plant Physiology. 1987;84(1):25–30. doi: 10.1104/pp.84.1.25 PubMed DOI PMC

Cooley JW, Vermaas WFJ. Succinate Dehydrogenase and Other Respiratory Pathways in Thylakoid Membranes of Synechocystis sp. Strain PCC 6803: Capacity Comparisons and Physiological Function. Journal of Bacteriology. 2001;183(14):4251–4258. doi: 10.1128/JB.183.14.4251-4258.2001 PubMed DOI PMC

Khorobrykh S, Tsurumaki T, Tanaka K, Tyystjärvi T, Tyystjärvi E. Measurement of the redox state of the plastoquinone pool in cyanobacteria. FEBS Letters. 2020;594(2):367–375. doi: 10.1002/1873-3468.13605 PubMed DOI

Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803. The Plant Journal. 2020;103(4):1460–1476. doi: 10.1111/tpj.14812 PubMed DOI

Zavřel T, Segečová A, Kovács L, Lukeš M, Novák Z, Pohland AC, et al.. A comprehensive study of light quality acclimation in Synechocystis sp. PCC 6803; 2024. Available from: https://www.biorxiv.org/content/10.1101/2023.06.08.544187v2. PubMed DOI PMC

Liebermeister W, Uhlendorf J, Klipp E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics. 2010;26(12):1528–1534. doi: 10.1093/bioinformatics/btq141 PubMed DOI

Noor E, Flamholz A, Liebermeister W, Bar-Even A, Milo R. A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects. FEBS Letters. 2013;587(17):2772–2777. doi: 10.1016/j.febslet.2013.07.028 PubMed DOI

Fuente D, Lazar D, Oliver-Villanueva JV, Urchueguía JF. Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. Photosynthesis Research. 2021;147(1):75–90. doi: 10.1007/s11120-020-00799-8 PubMed DOI

Harbinson J, Rosenqvist E. An Introduction to Chlorophyll Fluorescence. In: Practical Applications of Chlorophyll Fluorescence in Plant Biology. Boston, MA: Springer US; 2003. p. 1–29. Available from: http://link.springer.com/10.1007/978-1-4615-0415-3_1. DOI

Lazár D. A word or two about chlorophyll fluorescence and its relation to photosynthesis research; a text for Ph.D. students; 2016.

Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D. Model-Based Optimization of Microalgae Areal Productivity in Flat-Plate Gas-Lift Photobioreactors. Algal Research. 2016;20:153–163. doi: 10.1016/j.algal.2016.10.002 DOI

Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. PubMed

Miller NT, Vaughn MD, Burnap RL. Electron flow through NDH-1 complexes is the major driver of cyclic electron flow-dependent proton pumping in cyanobacteria. Biochimica et Biophysica Acta—Bioenergetics. 2021;1862(3). PubMed

Santana-Sanchez A, Solymosi D, Mustila H, Bersanini L, Aro EM, Allahverdiyeva Y. Flavodiiron proteins 1–to-4 function in versatile combinations in O2 photoreduction in cyanobacteria. eLife. 2019;8. doi: 10.7554/eLife.45766 PubMed DOI PMC

Ranjbar Choubeh R, Wientjes E, Struik PC, Kirilovsky D, van Amerongen H. State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2018;1859(10):1059–1066. doi: 10.1016/j.bbabio.2018.06.008 PubMed DOI

Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, et al.. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2012;1817(8):1237–1247. doi: 10.1016/j.bbabio.2012.02.024 PubMed DOI

Tüllinghoff A, Djaya-Mbissam H, Toepel J, Bühler B. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade. Plant Biotechnology Journal. 2023;21(10):2074–2083. doi: 10.1111/pbi.14113 PubMed DOI PMC

Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiologia Plantarum. 2020;170(1):10–26. doi: 10.1111/ppl.13086 PubMed DOI PMC

Yamamoto C, Toyoshima M, Kitamura S, Ueno Y, Akimoto S, Toya Y, et al.. Estimation of linear and cyclic electron flows in photosynthesis based on 13C-metabolic flux analysis. Journal of Bioscience and Bioengineering. 2021;131(3):277–282. doi: 10.1016/j.jbiosc.2020.11.002 PubMed DOI

McFarlane CR, Shah NR, Kabasakal BV, Echeverria B, Cotton CAR, Bubeck D, et al.. Structural basis of light-induced redox regulation in the Calvin–Benson cycle in cyanobacteria. Proceedings of the National Academy of Sciences. 2019;116(42):20984–20990. doi: 10.1073/pnas.1906722116 PubMed DOI PMC

Jaqaman K, Danuser G. Linking data to models: data regression. Nature Reviews Molecular Cell Biology. 2006;7(11):813–819. doi: 10.1038/nrm2030 PubMed DOI

Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiologia Plantarum. 2021;173(2):514–525. doi: 10.1111/ppl.13404 PubMed DOI

Calzadilla PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, et al.. The Cytochrome b6f Complex Is Not Involved in Cyanobacterial State Transitions. The Plant Cell. 2019;31(4):911–931. doi: 10.1105/tpc.18.00916 PubMed DOI PMC

Stadnichuk IN, Lukashev EP, Elanskaya IV. Fluorescence Changes Accompanying Short-Term Light Adaptations in Photosystem I and Photosystem II of the Cyanobacterium Synechocystis Sp. PCC 6803 and Phycobiliprotein-Impaired Mutants: State 1/State 2 Transitions and Carotenoid-Induced Quenching of Phycobilisomes. Photosynthesis Research. 2009;99(3):227–241. PubMed

Chukhutsina V, Bersanini L, Aro EM, Van Amerongen H. Cyanobacterial Light-Harvesting Phycobilisomes Uncouple From Photosystem I During Dark-To-Light Transitions. Scientific Reports 2015 5:1. 2015;5(1):1–10. doi: 10.1038/srep14193 PubMed DOI PMC

Joshua S, Mullineaux CW. Phycobilisome Diffusion Is Required for Light-State Transitions in Cyanobacteria. Plant Physiology. 2004;135(4):2112–2119. doi: 10.1104/pp.104.046110 PubMed DOI PMC

Nies T, Matsubara S, Ebenhöh O. A mathematical model of photoinhibition: exploring the impact of quenching processes. Plant Biology; 2023. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.09.12.557336. DOI

Singh AK, Bhattacharyya-Pakrasi M, Elvitigala T, Ghosh B, Aurora R, Pakrasi HB. A Systems-Level Analysis of the Effects of Light Quality on the Metabolism of a Cyanobacterium. Plant Physiology. 2009;151(3):1596–1608. doi: 10.1104/pp.109.144824 PubMed DOI PMC

Kamennaya NA, Ahn S, Park H, Bartal R, Sasaki KA, Holman HY, et al.. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production. Metab Eng. 2015;29:76–85. doi: 10.1016/j.ymben.2015.03.002 PubMed DOI

Liang F, Lindblad P. Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metab Eng Commun. 2017;4:29–36. doi: 10.1016/j.meteno.2017.02.002 PubMed DOI PMC

Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science. 2016;9(4):1400–1411. doi: 10.1039/C5EE03102H DOI

Kanno M, Carroll AL, Atsumi S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun. 2017;8:14724. doi: 10.1038/ncomms14724 PubMed DOI PMC

Singh AK, Santos-Merino M, Sakkos JK, Walker BJ, Ducat DC. Multi-layer Regulation of Rubisco in Response to Altered Carbon Status in Synechococcus elongatus PCC 7942. bioRxiv. 2021. PubMed PMC

Grund M, Jakob T, Toepel J, Schmid A, Wilhelm C, Bühler B. Heterologous Lactate Synthesis in Synechocystis sp. Strain PCC 6803 Causes a Growth Condition-Dependent Carbon Sink Effect. Appl Environ Microbiol. 2022;88(8):e0006322. doi: 10.1128/aem.00063-22 PubMed DOI PMC

Santos-Merino M, Torrado A, Davis GA, Röttig A, Bibby TS, Kramer DM, et al.. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proceedings of the National Academy of Sciences. 2021;118(11):e2021523118. doi: 10.1073/pnas.2021523118 PubMed DOI PMC

Cordara A, Re A, Pagliano C, Van Alphen P, Pirone R, Saracco G, et al.. Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ. 2018;6:e5256. doi: 10.7717/peerj.5256 PubMed DOI PMC

Carneiro RL, dos Santos MEV, Pacheco ABF, Azevedo SMFdOe. Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). Journal of Plankton Research. 2009;31(5):481–488. doi: 10.1093/plankt/fbp006 DOI

Polyzois A, Kirilovsky D, Dufat Th, Michel S. Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. Toxins. 2020;12(12):809. doi: 10.3390/toxins12120809 PubMed DOI PMC

Mishra SK, Shrivastav A, Maurya RR, Patidar SK, Haldar S, Mishra S. Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Protein Expression and Purification. 2012;81(1):5–10. doi: 10.1016/j.pep.2011.08.011 PubMed DOI

Hotos GN, Antoniadis TI. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life. 2022;12(6):837. doi: 10.3390/life12060837 PubMed DOI PMC

Pagels F, Vasconcelos V, Guedes AC. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11(5):735. doi: 10.3390/biom11050735 PubMed DOI PMC

Su M, Fang J, Jia Z, Su Y, Zhu Y, Wu B, et al.. Biosynthesis of 2-methylisoborneol is regulated by chromatic acclimation of Pseudanabaena. Environmental Research. 2023;221:115260. doi: 10.1016/j.envres.2023.115260 PubMed DOI

Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria; 2021. PubMed

Fan J, Zhang Y, Wu P, Zhang X, Bai Y. Enhancing cofactor regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. Bioorganic Chemistry. 2022;118. doi: 10.1016/j.bioorg.2021.105477 PubMed DOI

Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, et al.. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives; 2023. PubMed PMC

Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, et al.. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic Engineering. 2021;68:131–141. doi: 10.1016/j.ymben.2021.09.010 PubMed DOI

Wiltbank LB, Kehoe DM. Diverse Light Responses of Cyanobacteria Mediated by Phytochrome Superfamily Photoreceptors. Nature Reviews Microbiology. 2019;17(1):37–50. doi: 10.1038/s41579-018-0110-4 PubMed DOI

Hoshino H, Miyake K, Narikawa R. Chapter 15—Cyanobacterial Photoreceptors and Their Applications. In: Kageyama H, Waditee-Sirisattha R, editors. Cyanobacterial Physiology. Academic Press; 2022. p. 201–210.

Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, et al.. A Unique Clade of Light-Driven Proton-Pumping Rhodopsins Evolved in the Cyanobacterial Lineage. Scientific Reports. 2020;10(1):16752. doi: 10.1038/s41598-020-73606-y PubMed DOI PMC

Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, et al.. Structural Insights into Light-Driven Anion Pumping in Cyanobacteria. Nature Communications. 2022;13(1):6460. doi: 10.1038/s41467-022-34019-9 PubMed DOI PMC

Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, Morgan JA, et al.. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Reports. 2018;23(3):667–672. doi: 10.1016/j.celrep.2018.03.083 PubMed DOI

Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. Plant Physiology. 2022;190(3):1609–1627. doi: 10.1093/plphys/kiac373 PubMed DOI PMC

Latifi A, Ruiz M, Zhang CC. Oxidative stress in cyanobacteria. FEMS Microbiology Reviews. 2009;33(2):258–278. doi: 10.1111/j.1574-6976.2008.00134.x PubMed DOI

Lyu H, Lazár D. Analyzing the effect of ion binding to the membrane-surface on regulating the light-induced transthylakoid electric potential (ΔΨm). Frontiers in Plant Science. 2022;13. doi: 10.3389/fpls.2022.945675 PubMed DOI PMC

Stingaciu LR, O’Neill H, Liberton M, Urban VS, Pakrasi HB, Ohl M. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells. Scientific Reports. 2016;6. doi: 10.1038/srep19627 PubMed DOI PMC

Janasch M, Asplund-Samuelsson J, Steuer R, Hudson EP. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. Journal of Experimental Botany. 2019;70(3):973–983. doi: 10.1093/jxb/ery382 PubMed DOI PMC

Sharma S, Kumar V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Archives of Computational Methods in Engineering. 2022;29(7):5605–5633. doi: 10.1007/s11831-022-09778-9 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...