Photomorphogenesis in the Picocyanobacterium Cyanobium gracile Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33815434
PubMed Central
PMC8012758
DOI
10.3389/fpls.2021.612302
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, imbalance, light-quality acclimation, photosynthesis, pigment composition,
- Publikační typ
- časopisecké články MeSH
Photomorphogenesis is a process by which photosynthetic organisms perceive external light parameters, including light quality (color), and adjust cellular metabolism, growth rates and other parameters, in order to survive in a changing light environment. In this study we comprehensively explored the light color acclimation of Cyanobium gracile, a common cyanobacterium in turbid freshwater shallow lakes, using nine different monochromatic growth lights covering the whole visible spectrum from 435 to 687 nm. According to incident light wavelength, C. gracile cells performed great plasticity in terms of pigment composition, antenna size, and photosystem stoichiometry, to optimize their photosynthetic performance and to redox poise their intersystem electron transport chain. In spite of such compensatory strategies, C. gracile, like other cyanobacteria, uses blue and near far-red light less efficiently than orange or red light, which involves moderate growth rates, reduced cell volumes and lower electron transport rates. Unfavorable light conditions, where neither chlorophyll nor phycobilisomes absorb light sufficiently, are compensated by an enhanced antenna size. Increasing the wavelength of the growth light is accompanied by increasing photosystem II to photosystem I ratios, which involve better light utilization in the red spectral region. This is surprisingly accompanied by a partial excitonic antenna decoupling, which was the highest in the cells grown under 687 nm light. So far, a similar phenomenon is known to be induced only by strong light; here we demonstrate that under certain physiological conditions such decoupling is also possible to be induced by weak light. This suggests that suboptimal photosynthetic performance of the near far-red light grown C. gracile cells is due to a solid redox- and/or signal-imbalance, which leads to the activation of this short-term light acclimation process. Using a variety of photo-biophysical methods, we also demonstrate that under blue wavelengths, excessive light is quenched through orange carotenoid protein mediated non-photochemical quenching, whereas under orange/red wavelengths state transitions are involved in photoprotection.
Balaton Limnological Institute Centre for Ecological Research Tihany Hungary
Cellular Imaging Laboratory Biological Research Center Eötvös Loránd Research Network Szeged Hungary
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czechia
Global Change Research Institute Academy of Sciences of the Czech Republic Brno Czechia
Institute of Biophysics Biological Research Centre Eötvös Loránd Research Network Szeged Hungary
Institute of Plant Biology Biological Research Centre Eötvös Loránd Research Network Szeged Hungary
Zobrazit více v PubMed
Ackleson S. G. (2003). Light in shallow waters: a brief research review. Limnol. Oceanogr. 48 323–328. 10.4319/lo.2003.48.1_part_2.0323 DOI
Acuña A. M., Snellenburg J. J., Gwizdala M., Kirilovsky D., van Grondelle R., van Stokkum I. H. M. (2016). Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. Photosynth. Res. 127 91–102. 10.1007/s11120-015-0141-x PubMed DOI PMC
Bennett A., Bogorad L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58 419–435. 10.1083/jcb.58.2.419 PubMed DOI PMC
Bernát G., Steinbach G., Kaňa R., Govindjee Misra A. N., Prášil O. (2018). On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth. Res. 136 183–198. 10.1007/s11120-017-0458-8 PubMed DOI
Bernstein H. C., Konopka A., Melnicki M. R., Hill E. A., Kucek L. A., Zhang S., et al. (2014). Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front. Microbiol. 5:488. 10.3389/fmicb.2014.00488 PubMed DOI PMC
Chukhutsina V., Bersanini L., Aro E.-M., van Amerongen H. (2015). Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci. Rep. 5:14193. PubMed PMC
Dietzel L., Bräutigam K., Pfannschmidt T. (2008). Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry - functional relationship between short-term and long-term light quality acclimation in plants. FEBS J. 275 1080–1088. 10.1111/j.1742-4658.2008.06264.x PubMed DOI
Engelmann T. W. (1883). Farbe und Assimilation. Assimilation finder nur in den farbstoffhaltigen Plasmatheilchen statt. II. Näherer Zusammenhang zwischen Lichtabsobtion und Assimilation. III. Weitere folgerungen. Bot. Z. 41 1–19.
Everroad C., Six C., Partensky F., Thomas J. C., Holtzendorff J., Wood A. M. (2006). Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J. Bacteriol. 188 3345–3356. 10.1128/jb.188.9.3345-3356.2006 PubMed DOI PMC
Felföldi T., Somogyi B., Márialigeti K., Vörös L. (2011). Notes on the biogeography of non-marine planktonic picocyanobacteria: re-evaluating novelty. J. Plankton Res. 33 1622–1626. 10.1093/plankt/fbr051 PubMed DOI
Fiedler B., Broc D., Schubert H., Rediger A., Börner T., Wilde A. (2004). Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities. Photochem. Photobiol. 79 551–555. 10.1562/rn-013r.1 PubMed DOI
Fujita Y. (1997). A study on the dynamic features of photosynthetic stoichiometry: accomplishments and problems for future studies. Photosynth. Res. 53 83–93.
Fujita Y., Murakami A. (1987). Regulation of electron transport composition in cyanobacterial photosynthetic system: stoichiometry among photosystem I and II complexes and their light-harvesting antennae and cytochrome b6f complex. Plant Cell Physiol. 28 1547–1553.
Fujita Y., Murakami A., Aizawa K., Ohki K. (1994). “Short-term and long-term adaptation of the photosynthetic apparatus: homeostasic properties of thylakoids,” in The Molecular Biology of Cyanobacteria, ed. Bryant D. A. (Dordrecht: Kluwer Academic Publishers; ), 677–692. 10.1007/978-94-011-0227-8_22 DOI
Fujita Y., Murakami A., Ohki K. (1987). Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol. 28 283–292.
Fujita Y., Ohki K., Murakami A. (1985). Chromatic regulation of photosystem composition in the photosynthetic system of red and blue-green algae. Plant Cell Physiol. 26 1541–1548.
Gutu A., Kehoe D. (2012). Emerging perspectives on the mechanisms, regulation and distribution of light color acclimation in cyanobacteria. Mol. Plant 5 1–13. 10.1093/mp/ssr054 PubMed DOI
Ikeuchi M., Ishizuka T. (2008). Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci. 7 1159–1167. 10.1039/b802660m PubMed DOI
Jallet D., Gwizdala M., Kirilovsky D. (2012). ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim. Biophys. Acta 1817 1418–1427. 10.1016/j.bbabio.2011.11.020 PubMed DOI
Kaňa R., Kotabová E., Komárek O., Šedivá B., Papageorgiou G. C., Govindjee, et al. (2012). The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim. Biophys. Acta 1817 1237–1247. 10.1016/j.bbabio.2012.02.024 PubMed DOI
Kerfeld C. A., Melnicki M. R., Sutter M., Dominguez-Martin M. A. (2017). Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New. Phytol. 215 937–951. 10.1111/nph.14670 PubMed DOI
Kirilovsky D., Kerfeld C. (2016). Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2:16180. PubMed
Komárek J., Kopecký J., Cepák V. (1999). Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogam. Algol. 20 209–222. 10.1016/s0181-1568(99)80015-4 DOI
Kopečna J., Komenda J., Bučinska L., Sobotka R. (2012). Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 160 2239–2250. 10.1104/pp.112.207274 PubMed DOI PMC
Luimstra V. M., Schuurmans J. M., Verschoor A. M., Hellingwerf K. J., Huisman J., Matthijs H. C. P. (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138 177–189. 10.1007/s11120-018-0561-5 PubMed DOI PMC
Maritorena S., Morel A., Gentili B. (1994). Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnol. Oceanogr. 39 1689–1703. 10.4319/lo.1994.39.7.1689 DOI
Montgomery B. L. (2017). Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr. Opin. Plant Biol. 37 8–23. PubMed
Mullineaux C. W., Allen J. F. (1986). The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett. 205 155–160. 10.1016/0014-5793(86)80885-7 DOI
Mullineaux C. W., Emlyn-Jones D. (2005). State transition: an example of acclimation to low-light stress. J. Exp. Bot. 56 389–393. 10.1093/jxb/eri064 PubMed DOI
Palenik B. (2001). Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67 991–994. 10.1128/aem.67.2.991-994.2001 PubMed DOI PMC
Plohnke N., Seidel T., Kahmann U., Rögner M., Schneider D., Rexroth S. (2015). The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophyc growth. Mol. Cell. Proteomics 14 572–584. 10.1074/mcp.m114.042382 PubMed DOI PMC
Prášil O., Bína D., Medová H., Řeháková K., Zapomělova E., Veselá J., et al. (2009). Emission spectroscopy and kinetic fluorometry studies of phototrophic microbial communities along a salinity gradient in solar saltern evaporation ponds of Eilat, Israel. Aquat. Microb. Ecol. 56 285–296. 10.3354/ame01311 DOI
Rakhimberdieva M. G., Stadnichuk I. N., Elanskaya I. V., Karapetyan N. V. (2004). Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 574 85–88. PubMed
Remelli W., Santabarbara S. (2018). Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: influence on the estimation of Photosystem II maximal quantum efficiency. Biochim. Biophys. Acta 1859 1207–1222. 10.1016/j.bbabio.2018.09.366 PubMed DOI
Rippka R., Cohen-Bazire G. (1983). The cyanobacteriales: a legitimate order based on the type strain Cyanobacterium staniery? Ann. Microbiol. 134B 21–36. 10.1016/s0769-2609(83)80094-5 PubMed DOI
Rockwell N. C., Duanmu D., Martin S. S., Bachy C., Price D. C., Bhattacharya D., et al. (2014). Eukaryotic algal phytochromes span the visible spectrum. Proc. Natl. Acad. Sci. U.S.A. 111 3871–3876. 10.1073/pnas.1401871111 PubMed DOI PMC
Rockwell N. C., Lagarias J. C. (2010). A brief history of phytochromes. Chem. Phys. Chem. 11 1172–1180. 10.1002/cphc.200900894 PubMed DOI PMC
Sanfilippo J. E., Garczarek L., Partensky F., Kehoe D. M. (2019). Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73 407–433. 10.1146/annurev-micro-020518-115738 PubMed DOI
Santabarbara S., Monteleone F. V., Remelli W., Rizzo F., Menin B., Casazza A. P. (2019). Comparative excitation-emission dependence of the FV/Fm ratio in model green algae and cyanobacterial strains. Physiol. Plant. 166 351–364. 10.1111/ppl.12931 PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Schreiber U., Klughammer C., Kolbowski J. (2012). Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113 127–144. 10.1007/s11120-012-9758-1 PubMed DOI PMC
Sedoud A., López-Igual R., Rehman A. U., Wilson A., Perreau F., Boulay C., et al. (2014). The cyanobacterial photoactive Orange Carotenoid Protein is an excellent singlet oxygen quencher. Plant Cell 26 1781–1791. 10.1105/tpc.114.123802 PubMed DOI PMC
Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35 171–205. 10.1128/br.35.2.171-205.1971 PubMed DOI PMC
Stirbet A., Lazár D., Kromdijk J. Govindjee. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56 86–104. 10.1007/s11099-018-0770-3 DOI
Stoitchkova K., Zsiros O., Jávorfi T., Páli T., Andreeva A., Gombos Z., et al. (2007). Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. Biochim. Biophys. Acta 1767 750–756. 10.1016/j.bbabio.2007.03.002 PubMed DOI
Tamary E., Kiss V., Nevo R., Adam Z., Bernát G., Rexroth S., et al. (2012). Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim. Biophys. Acta 1847 319–327. 10.1016/j.bbabio.2011.11.008 PubMed DOI
Tandeau de Marsac N. (1977). Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130 82–91. PubMed PMC
Tian L., van Stokkum I. H. M., Koehorst R. B. M., Jongerius A., Kirilovsky D., van Amerongen H. (2011). Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J. Am. Chem. Soc. 133 18304–18311. 10.1021/ja206414m PubMed DOI
Wilson A., Punginelli C., Gall A., Bonetti C., Alexandre M., Routaboul J. M., et al. (2008). A photoactive carotenoid protein acting as light sensor. Proc. Natl. Acad. Sci. U.S.A. 105 12075–12080. 10.1073/pnas.0804636105 PubMed DOI PMC
Wiltbank L. B., Kehoe D. M. (2016). Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. mBio 7:e020130-15. PubMed PMC
Wyman M., Fay P. (1986). Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) II. The influence of light quality. Proc. R. Soc. Lond. B 227 381–393. 10.1098/rspb.1986.0028 DOI
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803