Photomorphogenesis in the Picocyanobacterium Cyanobium gracile Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies

. 2021 ; 12 () : 612302. [epub] 20210318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33815434

Photomorphogenesis is a process by which photosynthetic organisms perceive external light parameters, including light quality (color), and adjust cellular metabolism, growth rates and other parameters, in order to survive in a changing light environment. In this study we comprehensively explored the light color acclimation of Cyanobium gracile, a common cyanobacterium in turbid freshwater shallow lakes, using nine different monochromatic growth lights covering the whole visible spectrum from 435 to 687 nm. According to incident light wavelength, C. gracile cells performed great plasticity in terms of pigment composition, antenna size, and photosystem stoichiometry, to optimize their photosynthetic performance and to redox poise their intersystem electron transport chain. In spite of such compensatory strategies, C. gracile, like other cyanobacteria, uses blue and near far-red light less efficiently than orange or red light, which involves moderate growth rates, reduced cell volumes and lower electron transport rates. Unfavorable light conditions, where neither chlorophyll nor phycobilisomes absorb light sufficiently, are compensated by an enhanced antenna size. Increasing the wavelength of the growth light is accompanied by increasing photosystem II to photosystem I ratios, which involve better light utilization in the red spectral region. This is surprisingly accompanied by a partial excitonic antenna decoupling, which was the highest in the cells grown under 687 nm light. So far, a similar phenomenon is known to be induced only by strong light; here we demonstrate that under certain physiological conditions such decoupling is also possible to be induced by weak light. This suggests that suboptimal photosynthetic performance of the near far-red light grown C. gracile cells is due to a solid redox- and/or signal-imbalance, which leads to the activation of this short-term light acclimation process. Using a variety of photo-biophysical methods, we also demonstrate that under blue wavelengths, excessive light is quenched through orange carotenoid protein mediated non-photochemical quenching, whereas under orange/red wavelengths state transitions are involved in photoprotection.

Zobrazit více v PubMed

Ackleson S. G. (2003). Light in shallow waters: a brief research review. DOI

Acuña A. M., Snellenburg J. J., Gwizdala M., Kirilovsky D., van Grondelle R., van Stokkum I. H. M. (2016). Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. PubMed DOI PMC

Bennett A., Bogorad L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. PubMed DOI PMC

Bernát G., Steinbach G., Kaňa R., Govindjee Misra A. N., Prášil O. (2018). On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. PubMed DOI

Bernstein H. C., Konopka A., Melnicki M. R., Hill E. A., Kucek L. A., Zhang S., et al. (2014). Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of PubMed DOI PMC

Chukhutsina V., Bersanini L., Aro E.-M., van Amerongen H. (2015). Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. PubMed PMC

Dietzel L., Bräutigam K., Pfannschmidt T. (2008). Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry - functional relationship between short-term and long-term light quality acclimation in plants. PubMed DOI

Engelmann T. W. (1883). Farbe und Assimilation. Assimilation finder nur in den farbstoffhaltigen Plasmatheilchen statt. II. Näherer Zusammenhang zwischen Lichtabsobtion und Assimilation. III. Weitere folgerungen.

Everroad C., Six C., Partensky F., Thomas J. C., Holtzendorff J., Wood A. M. (2006). Biochemical bases of type IV chromatic adaptation in marine PubMed DOI PMC

Felföldi T., Somogyi B., Márialigeti K., Vörös L. (2011). Notes on the biogeography of non-marine planktonic picocyanobacteria: re-evaluating novelty. DOI

Fiedler B., Broc D., Schubert H., Rediger A., Börner T., Wilde A. (2004). Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities. PubMed DOI

Fujita Y. (1997). A study on the dynamic features of photosynthetic stoichiometry: accomplishments and problems for future studies.

Fujita Y., Murakami A. (1987). Regulation of electron transport composition in cyanobacterial photosynthetic system: stoichiometry among photosystem I and II complexes and their light-harvesting antennae and cytochrome b

Fujita Y., Murakami A., Aizawa K., Ohki K. (1994). “Short-term and long-term adaptation of the photosynthetic apparatus: homeostasic properties of thylakoids,” in DOI

Fujita Y., Murakami A., Ohki K. (1987). Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems.

Fujita Y., Ohki K., Murakami A. (1985). Chromatic regulation of photosystem composition in the photosynthetic system of red and blue-green algae.

Gutu A., Kehoe D. (2012). Emerging perspectives on the mechanisms, regulation and distribution of light color acclimation in cyanobacteria. PubMed DOI

Ikeuchi M., Ishizuka T. (2008). Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. PubMed DOI

Jallet D., Gwizdala M., Kirilovsky D. (2012). ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium PubMed DOI

Kaňa R., Kotabová E., Komárek O., Šedivá B., Papageorgiou G. C., Govindjee, et al. (2012). The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. PubMed DOI

Kerfeld C. A., Melnicki M. R., Sutter M., Dominguez-Martin M. A. (2017). Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. PubMed DOI

Kirilovsky D., Kerfeld C. (2016). Cyanobacterial photoprotection by the orange carotenoid protein. PubMed

Komárek J., Kopecký J., Cepák V. (1999). Generic characters of the simplest cyanoprokaryotes DOI

Kopečna J., Komenda J., Bučinska L., Sobotka R. (2012). Long-term acclimation of the cyanobacterium PubMed DOI PMC

Luimstra V. M., Schuurmans J. M., Verschoor A. M., Hellingwerf K. J., Huisman J., Matthijs H. C. P. (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. PubMed DOI PMC

Maritorena S., Morel A., Gentili B. (1994). Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. DOI

Montgomery B. L. (2017). Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. PubMed

Mullineaux C. W., Allen J. F. (1986). The state 2 transition in the cyanobacterium DOI

Mullineaux C. W., Emlyn-Jones D. (2005). State transition: an example of acclimation to low-light stress. PubMed DOI

Palenik B. (2001). Chromatic adaptation in marine PubMed DOI PMC

Plohnke N., Seidel T., Kahmann U., Rögner M., Schneider D., Rexroth S. (2015). The proteome and lipidome of PubMed DOI PMC

Prášil O., Bína D., Medová H., Řeháková K., Zapomělova E., Veselá J., et al. (2009). Emission spectroscopy and kinetic fluorometry studies of phototrophic microbial communities along a salinity gradient in solar saltern evaporation ponds of Eilat, Israel. DOI

Rakhimberdieva M. G., Stadnichuk I. N., Elanskaya I. V., Karapetyan N. V. (2004). Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of PubMed

Remelli W., Santabarbara S. (2018). Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium PubMed DOI

Rippka R., Cohen-Bazire G. (1983). The cyanobacteriales: a legitimate order based on the type strain PubMed DOI

Rockwell N. C., Duanmu D., Martin S. S., Bachy C., Price D. C., Bhattacharya D., et al. (2014). Eukaryotic algal phytochromes span the visible spectrum. PubMed DOI PMC

Rockwell N. C., Lagarias J. C. (2010). A brief history of phytochromes. PubMed DOI PMC

Sanfilippo J. E., Garczarek L., Partensky F., Kehoe D. M. (2019). Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. PubMed DOI

Santabarbara S., Monteleone F. V., Remelli W., Rizzo F., Menin B., Casazza A. P. (2019). Comparative excitation-emission dependence of the F PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. PubMed DOI PMC

Schreiber U., Klughammer C., Kolbowski J. (2012). Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. PubMed DOI PMC

Sedoud A., López-Igual R., Rehman A. U., Wilson A., Perreau F., Boulay C., et al. (2014). The cyanobacterial photoactive Orange Carotenoid Protein is an excellent singlet oxygen quencher. PubMed DOI PMC

Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). PubMed DOI PMC

Stirbet A., Lazár D., Kromdijk J. Govindjee. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? DOI

Stoitchkova K., Zsiros O., Jávorfi T., Páli T., Andreeva A., Gombos Z., et al. (2007). Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. PubMed DOI

Tamary E., Kiss V., Nevo R., Adam Z., Bernát G., Rexroth S., et al. (2012). Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. PubMed DOI

Tandeau de Marsac N. (1977). Occurrence and nature of chromatic adaptation in cyanobacteria. PubMed PMC

Tian L., van Stokkum I. H. M., Koehorst R. B. M., Jongerius A., Kirilovsky D., van Amerongen H. (2011). Site, rate, and mechanism of photoprotective quenching in cyanobacteria. PubMed DOI

Wilson A., Punginelli C., Gall A., Bonetti C., Alexandre M., Routaboul J. M., et al. (2008). A photoactive carotenoid protein acting as light sensor. PubMed DOI PMC

Wiltbank L. B., Kehoe D. M. (2016). Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. PubMed PMC

Wyman M., Fay P. (1986). Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) II. The influence of light quality. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...