Isolating Patterns in Open Reaction-Diffusion Systems

. 2021 Jun 04 ; 83 (7) : 82. [epub] 20210604

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34089093
Odkazy

PubMed 34089093
PubMed Central PMC8178156
DOI 10.1007/s11538-021-00913-4
PII: 10.1007/s11538-021-00913-4
Knihovny.cz E-zdroje

Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of 'open' reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.

Zobrazit více v PubMed

Arcuri P, Murray J. Pattern sensitivity to boundary and initial conditions in reaction–diffusion models. J Math Biol. 1986;24(2):141–165. PubMed

Avitabile D, Breña MV, Ward MJ. Spot dynamics in a reaction–diffusion model of plant root hair initiation. SIAM J Appl Math. 2018;78(1):291–319.

Ball P. The self-made tapestry: pattern formation in nature. Oxford: Oxford University Press; 2001.

Benson DL, Sherratt JA, Maini PK. Diffusion driven instability in an inhomogeneous domain. Bull Math Biol. 1993;55(2):365–384.

Borckmans P, Dewel G, De Wit A, Walgraef D (1995) Turing bifurcations and pattern selection. In: Chemical waves and patterns, Springer, pp 323–363

Bozzini B, Gambino G, Lacitignola D, Lupo S, Sammartino M, Sgura I. Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput Math Appl. 2015;70(8):1948–1969.

Bradshaw RA, Dennis EA. Handbook of cell signaling. New York: Academic press; 2009.

Briscoe J, Small S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development. 2015;142(23):3996–4009. PubMed PMC

Chen W, Ward MJ. The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J Appl Dyn Syst. 2011;10(2):582–666.

Claxton J. The determination of patterns with special reference to that of the central primary skin follicles in sheep. J Theor Biol. 1964;7(2):302–317. PubMed

Clayton R, Bernus O, Cherry E, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol. 2011;104(1–3):22–48. PubMed

Crampin EJ, Hackborn WW, Maini PK. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull Math Biol. 2002;64(4):747–769. PubMed

Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Rev Mod Phys. 1993;65(3):851.

De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the chlorite–iodide–malonic acid reaction. Physica D. 1991;49(1–2):161–169.

De Wit A, Borckmans P, Dewel G. Twist grain boundaries in three-dimensional lamellar turing structures. Proc Nat Acad Sci. 1997;94(24):12765–12768. PubMed PMC

De Wit A, Dewel G, Borckmans P, Walgraef D. Three-dimensional dissipative structures in reaction–diffusion systems. Physica D. 1992;61(1–4):289–296.

Diego X, Marcon L, Müller P, Sharpe J. Key features of Turing systems are determined purely by network topology. Phys Rev X. 2018;8(2):021071.

Dillon R, Maini P, Othmer H. Pattern formation in generalized Turing systems. J Math Biol. 1994;32(4):345–393.

Duckett C, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K. Clonal relationships and cell patterning in the root epidermis of arabidopsis. Development. 1994;120(9):2465–2474.

Ei S-I, Ishimoto T. Dynamics and interactions of spikes on smoothly curved boundaries for reaction–diffusion systems in 2d. Jpn J Ind Appl Math. 2013;30(1):69–90.

Ermentrout B. Stripes or spots? Nonlinear effects in bifurcation of reaction–diffusion equations on the square. Proc Math Phys Sci. 1991;434(1891):413–417.

Esposito M. Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun Chem. 2020;3(1):1–3. PubMed PMC

Falasco G, Rao R, Esposito M. Information thermodynamics of Turing patterns. Phys Rev Lett. 2018;121(10):108301. PubMed

Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M. Vectorial information for arabidopsis planar polarity is mediated by combined aux1, ein2, and gnom activity. Curr Biol. 2006;16(21):2143–2149. PubMed

FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys. 1955;17(4):257–278.

FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J . 1961;1(6):445. PubMed PMC

Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972;12(1):30–39. PubMed

Glover JD, Wells KL, Matthäus F, Painter KJ, Ho W, Riddell J, Johansson JA, Ford MJ, Jahoda CA, Klika V, et al. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol. 2017;15(7):e200211. PubMed PMC

Green JBA, Sharpe J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development. 2015;142(7):1203–1211. PubMed

Ho WK, Freem L, Zhao D, Painter KJ, Woolley TE, Gaffney EA, McGrew MJ, Tzika A, Milinkovitch MC, Schneider P, et al. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol. 2019;17(2):e3000132. PubMed PMC

Iron D, Ward MJ. The dynamics of boundary spikes for a nonlocal reaction–diffusion model. Eur J Appl Math. 2000;11(5):491–514.

Iron D, Ward MJ. A metastable spike solution for a nonlocal reaction–diffusion model. SIAM J Appl Math. 2000;60(3):778–802.

Jensen O, Pannbacker VO, Dewel G, Borckmans P. Subcritical transitions to Turing structures. Phys Lett A. 1993;179(2):91–96.

Johansson JA, Headon DJ (2014) Regionalisation of the skin. In: Seminars in cell and developmental biology, vol 25, Elsevier, pp 3–10 PubMed

Keener JP, Sneyd J. Mathematical physiology. Berlin: Springer; 1998.

Kernevez J, Joly G, Duban M, Bunow B, Thomas D. Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems. J Math Biol. 1979;7(1):41–56. PubMed

Kishimoto K, Weinberger HF. The spatial homogeneity of stable equilibria of some reaction–diffusion systems on convex domains. J Differ Equ. 1985;58(1):15–21.

Klika V, Baker RE, Headon D, Gaffney EA. The influence of receptor–mediated interactions on reaction–diffusion mechanisms of cellular self-organisation. Bull Math Biol. 2012;74(4):935–957. PubMed

Klika V, Kozák M, Gaffney EA. Domain size driven instability: self-organization in systems with advection. SIAM J Appl Math. 2018;78(5):2298–2322.

Kolokolnikov T, Ward MJ. Bifurcation of spike equilibria in the near-shadow Gierer–Meinhardt model. Discrete Contin Dyn Syst B. 2004;4(4):1033.

Kolokolnikov T, Ward MJ, Wei J. Spot self-replication and dynamics for the schnakenburg model in a two-dimensional domain. J Nonlinear Sci. 2009;19(1):1–56.

Kondo S, Miura T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science. 2010;329(5999):1616–1620. PubMed

Kozák M, Gaffney EA, Klika V. Pattern formation in reaction-diffusion systems with piecewise kinetic modulation: an example study of heterogeneous kinetics. Phys Rev E. 2019;100(4):042220. PubMed

Krause AL, Ellis MA, Van Gorder RA. Influence of curvature, growth, and anisotropy on the evolution of Turing patterns on growing manifolds. Bull Math Biol. 2019;81(3):759–799. PubMed PMC

Krause AL, Klika V, Halatek J, Grant PK, Woolley TE, Dalchau N, Gaffney EA. Turing patterning in stratified domains. Bull Math Biol. 2020;82:136. PubMed PMC

Krause AL, Klika V, Woolley TE, Gaffney EA. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. J R Soc Interface. 2020;17:20190621. PubMed PMC

Kuramoto Y. Chemical oscillations, waves, and turbulence. New York: Dover Publications; 2003.

Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA. Two-species migration and clustering in two-dimensional domains. Bull Math Biol. 2017;79(10):2302–2333. PubMed PMC

Leda M, Vanag VK, Epstein IR. Instabilities of a three-dimensional localized spot. Phys Rev E. 2009;80(6):066204. PubMed

Li X, Udager AM, Hu C, Qiao XT, Richards N, Gumucio DL. Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life. Dev Dyn. 2009;238(12):3205–3217. PubMed PMC

Maini P, Myerscough M. Boundary-driven instability. Appl Math Lett. 1997;10(1):1–4.

Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. Turing’s model for biological pattern formation and the robustness problem. Interface Focus. 2012;2(4):487–496. PubMed PMC

Meinhardt H. A boundary model for pattern formation in vertebrate limbs. Development. 1983;76(1):115–137. PubMed

Miyamoto Y. Stability of a boundary spike layer for the Gierer–Meinhardt system. Eur J Appl Math. 2005;16(4):467–491.

Murray JD. A pre-pattern formation mechanism for animal coat markings. J Theor Biol. 1981;88(1):161–199.

Murray JD. Mathematical biology. II. Spatial models and biomedical applications. Interdisciplinary applied mathematics. New York: Springer; 2004.

Murray SM, Sourjik V. Self-organization and positioning of bacterial protein clusters. Nat Phys. 2017;13(10):1006–1013.

Nagorcka B, Mooney J. The role of a reaction–diffusion system in the initiation of primary hair follicles. J Theor Biol. 1985;114(2):243–272. PubMed

Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE. 1962;50(10):2061–2070.

Nicolis G, Prigogine I. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. New York: Wiley; 1977.

Page K, Maini PK, Monk NAM. Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D. 2003;181(1–2):80–101.

Page KM, Maini PK, Monk NAM. Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D. 2005;202(1–2):95–115.

Pearson JE, Bruno WJ. Pattern formation in an n+ q component reaction–diffusion system. Chaos Interdiscip J Nonlinear Sci. 1992;22(4):513–524. PubMed

Prigogine I, Nicolis G. Biological order, structure and instabilities. Q Rev Biophys. 1971;4(2–3):107–148. PubMed

Raspopovic J, Marcon L, Russo L, Sharpe J. Digit patterning is controlled by a bmp-sox9-wnt Turing network modulated by morphogen gradients. Science. 2014;345(6196):566–570. PubMed

Ross J. Thermodynamic and stochastic theory of reaction–diffusion systems. Berlin: Springer; 2008. pp. 41–58.

Sánchez-Garduno F, Krause AL, Castillo JA, Padilla P. Turing-hopf patterns on growing domains: the torus and the sphere. J Theor Biol. 2019;481:136–150. PubMed

Satnoianu RA, Menzinger M, Maini PK. Turing instabilities in general systems. J Math Biol. 2000;41(6):493–512. PubMed

Schnakenberg J. Simple chemical reaction systems with limit cycle behaviour. J Theor Biol. 1979;81(3):389–400. PubMed

Scholes NS, Schnoerr D, Isalan M, Stumpf MP. A comprehensive network atlas reveals that Turing patterns are common but not robust. Cell Syst. 2019;9(3):243–257. PubMed

Serna H, Muñuzuri AP, Barragán D. Thermodynamic and morphological characterization of Turing patterns in non-isothermal reaction–diffusion systems. Phys Chem Chem Phys. 2017;19(22):14401–14411. PubMed

Setayeshgar S, Cross M. Turing instability in a boundary-fed system. Phys Rev E. 1998;58(4):4485.

Shoji H, Yamada K. Most stable patterns among three-dimensional Turing patterns. Jpn J Ind Appl Math. 2007;24(1):67.

Smith DM, Nielsen C, Tabin CJ, Roberts DJ. Roles of bmp signaling and nkx2.5 in patterning at the chick midgut-foregut boundary. Development. 2000;127(17):3671–3681. PubMed

Subramanian S, Murray SM. Pattern selection in reaction diffusion systems. Phys Rev E. 2021;103(1):012215. PubMed

Taylor NP, Kim H, Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of population dynamics I: emergent spatial and spatiotemporal patterns. Bull Math Biol 82(112) PubMed

Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5(7):499–508. PubMed

Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci. 1952;237(641):37–72.

Tzou J, Bayliss A, Matkowsky B, Volpert V. Stationary and slowly moving localised pulses in a singularly perturbed brusselator model. Eur J Appl Math. 2011;22(5):423.

Tzou J, Ward M. The stability and slow dynamics of spot patterns in the 2d brusselator model: the effect of open systems and heterogeneities. Physica D. 2018;373:13–37.

Van Gorder RA. Influence of temperature on Turing pattern formation. Proc R Soc A. 2020;476:20200356.

Van Gorder RA, Klika V, Krause AL. Turing conditions for pattern forming systems on evolving manifolds. J Math Biol. 2021;82(1):1–61. PubMed

Varea C, Aragón J, Barrio R. Confined Turing patterns in growing systems. Phys Rev E. 1997;56(1):1250.

Walsh DW, Godson C, Brazil DP, Martin F. Extracellular bmp-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol. 2010;20(5):244–256. PubMed

Walton KD, Whidden M, Kolterud Å, Shoffner SK, Czerwinski MJ, Kushwaha J, Parmar N, Chandhrasekhar D, Freddo AM, Schnell S, et al. Villification in the mouse: Bmp signals control intestinal villus patterning. Development. 2016;143(3):427–436. PubMed PMC

Ward MJ, McInerney D, Houston P, Gavaghan D, Maini P (2002) The dynamics and pinning of a spike for a reaction–diffusion system. SIAM J Appl Math 62(4):1297–1328

Woolley TE, Baker RE, Gaffney EA, Maini PK. Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys Rev E. 2011;84(4):046216. PubMed

Woolley TE, Baker RE, Maini PK (2017) Turing’s theory of morphogenesis: where we started, where we are and where we want to go. In: The incomputable, Springer, pp 219–235

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modern perspectives on near-equilibrium analysis of Turing systems

. 2021 Dec 27 ; 379 (2213) : 20200268. [epub] 20211108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...