Modern perspectives on near-equilibrium analysis of Turing systems
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34743603
PubMed Central
PMC8580451
DOI
10.1098/rsta.2020.0268
Knihovny.cz E-zdroje
- Klíčová slova
- linear instability analysis, pattern formation, reaction–diffusion systems,
- MeSH
- biologické modely * MeSH
- difuze MeSH
- matematika MeSH
- morfogeneze MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the nearly seven decades since the publication of Alan Turing's work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turing's paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here, we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of 'trivial' base states. We emphasize important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Zobrazit více v PubMed
Turing AM. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37-72. (10.1098/rstb.1952.0012) PubMed DOI PMC
Ball P. 2015. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) ‘the chemical basis of morphogenesis’. Phil. Trans. R. Soc. B 370, 20140218. (10.1098/rstb.2014.0218) PubMed DOI PMC
Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851. (10.1103/RevModPhys.65.851) DOI
Murray JD 2004. Mathematical Biology. II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics. New York, NY: Springer.
Al Saadi F, Champneys A. 2021. Unified framework for localized patterns in reaction–diffusion systems; the Gray–Scott and Gierer–Meinhardt cases. Phil. Trans. R. Soc. A 379, 20200277. (10.1098/rsta.2020.0277) PubMed DOI
Avitabile D, Desroches M, Knobloch E, Krupa M. 2017. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system. Proc. R. Soc. A 473, 20170018. (10.1098/rspa.2017.0018) PubMed DOI PMC
Champneys AR, Al Saadi F, Breña-Medina VF, Grieneisen VA, Marée AF, Verschueren N, Wuyts B. 2021. Bistability, wave pinning and localisation in natural reaction–diffusion systems. Physica D 416, 132735. (10.1016/j.physd.2020.132735) DOI
Yochelis A, Sheintuch M. 2009. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach. Phys. Chem. Chem. Phys. 11, 9210-9223. (10.1039/b903266e) PubMed DOI
Hale JK, Sakamoto K. 1989. Shadow systems and attractors in reaction-diffusion equations. Appl. Anal. 32, 287-303. (10.1080/00036818908839855) DOI
Iron D, Ward MJ, Wei J. 2001. The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D 150, 25-62. (10.1016/S0167-2789(00)00206-2) DOI
Wei J, Winter M. 2013. Mathematical aspects of pattern formation in biological systems, vol. 189. London, UK: Springer Science & Business Media.
Gomez D, Iyaniwura S, Paquin-Lefebvre F, Ward MJ. 2021. Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells. Phil. Trans. R. Soc. A 379, 20200276. (10.1098/rsta.2020.0276) PubMed DOI
Chafee N. 1975. Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous neumann boundary conditions. J. Differ. Equ. 18, 111-134. (10.1016/0022-0396(75)90084-4) DOI
Hess P. 1987. Spatial homogeneity of stable solutions of some periodic-parabolic problems with neumann boundary conditions. J. Differ. Equ. 68, 320-331. (10.1016/0022-0396(87)90173-2) DOI
Matano H. 1979. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Pub. Res. Inst. Math. Sci. 15, 401-454. (10.2977/prims/1195188180) DOI
Kishimoto K, Weinberger H. 1985. The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Differ. Equ. 58, 15-21. (10.1016/0022-0396(85)90020-8) DOI
Hale JK, Vegas J. 1984. A nonlinear parabolic equation with varying domain. Arch. Ration. Mech. Anal. 86, 99-123. (10.1007/BF00275730) DOI
Murray JD, Sperb RP. 1983. Minimum domains for spatial patterns in a class of reaction diffusion equations. J. Math. Biol. 18, 169-184. (10.1007/BF00280665) PubMed DOI
Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. 2012. Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336, 721-724. (10.1126/science.1221920) PubMed DOI PMC
Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616-1620. (10.1126/science.1179047) PubMed DOI
Klika V, Kozák M, Gaffney EA. 2018. Domain size driven instability: self-organization in systems with advection. SIAM J. Appl. Math. 78, 2298-2322. (10.1137/17M1138571) DOI
Meinhardt H, Gierer A. 2000. Pattern formation by local self-activation and lateral inhibition. Bioessays 22, 753-760. (10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z) PubMed DOI
Evans LC. 1998. Partial differential equations. Rhode Island.
Engel K-J, Nagel R. 2001. One-parameter semigroups for linear evolution equations, vol. 63.
Pazy A. 2012. Semigroups of linear operators and applications to partial differential equations. New York, NY: Springer Science & Business Media.
Klika V. 2017. Significance of non-normality-induced patterns: transient growth versus asymptotic stability. Chaos 27, 073120. (10.1063/1.4985256) PubMed DOI
Wollkind DJ, Manoranjan VS, Zhang L. 1994. Weakly nonlinear stability analyses of prototype reaction-diffusion model equations. Siam Rev. 36, 176-214. (10.1137/1036052) DOI
Breña-Medina V, Champneys A. 2014. Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys. Rev. E 90, 032923. (10.1103/PhysRevE.90.032923) PubMed DOI
Ermentrout B. 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413-417. (10.1098/rspa.1991.0100) DOI
Wheeler B and Zumbrun K: Convective Turing bifurcation. (http://arxiv.org/abs/2101.07239). 2021.
Hunding A. 1980. Dissipative structures in reaction–diffusion systems: numerical determination of bifurcations in the sphere. J. Chem. Phys. 72, 5241-5248. (10.1063/1.439761) DOI
Hunding A. 1983. Bifurcations of nonlinear reaction-diffusion systems in prolate spheroids. J. Math. Biol. 17, 223-239. (10.1007/BF00305761) PubMed DOI
Varea C, Aragon J, Barrio R. 1999. Turing patterns on a sphere. Phys. Rev. E 60, 4588. (10.1103/PhysRevE.60.4588) PubMed DOI
Chaplain MA, Ganesh M, Graham IG. 2001. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387-423. (10.1007/s002850000067) PubMed DOI
Frankel T. 2011. The geometry of physics: an introduction. Cambridge, UK: Cambridge University Press.
Plaza RG, Sanchez-Garduno F, Padilla P, Barrio RA, Maini PK. 2004. The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16, 1093-1121. (10.1007/s10884-004-7834-8) DOI
Krause AL, Burton AM, Fadai NT, Van Gorder RA. 2018. Emergent structures in reaction-advection-diffusion systems on a sphere. Phys. Rev. E 97, 042215. (10.1103/PhysRevE.97.042215) PubMed DOI
Gandhi P, Werner L, Iams S, Gowda K, Silber M. 2018. A topographic mechanism for arcing of dryland vegetation bands. J. R. Soc. Interface 15, 20180508. (10.1098/rsif.2018.0508) PubMed DOI PMC
Tzou J, Tzou L. 2020. Analysis of spot patterns on a coordinate-invariant model for vegetation on a curved terrain. SIAM J. Appl. Dyn. Syst. 19, 2500-2529. (10.1137/20M1326271) DOI
Callahan T. 2004. Turing patterns with o (3) symmetry. Physica D 188, 65-91. (10.1016/S0167-2789(03)00286-0) DOI
Trinh PH, Ward MJ. 2016. The dynamics of localized spot patterns for reaction-diffusion systems on the sphere. Nonlinearity 29, 766. (10.1088/0951-7715/29/3/766) DOI
Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout GB, Epstein IR, Fraden S. 2014. Testing turing’s theory of morphogenesis in chemical cells. Proc. Natl Acad. Sci. USA 111, 4397-4402. (10.1073/pnas.1322005111) PubMed DOI PMC
Othmer HG, Scriven L. 1971. Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32, 507-537. (10.1016/0022-5193(71)90154-8) PubMed DOI
Rauch EM, Millonas MM. 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401-407. (10.1016/j.jtbi.2003.09.018) PubMed DOI
Ide Y, Izuhara H, Machida T. 2016. Turing instability in reaction–diffusion models on complex networks. Physica A: Stat. Mech. Appl. 457, 331-347. (10.1016/j.physa.2016.03.055) DOI
McCullen N, Wagenknecht T. 2016. Pattern formation on networks: from localised activity to Turing patterns. Sci. Rep. 6, 1-8. (10.1038/srep27397) PubMed DOI PMC
Nakao H, Mikhailov AS. 2010. Turing patterns in network-organized activator–inhibitor systems. Nat. Phys. 6, 544. (10.1038/nphys1651) DOI
Wolfrum M. 2012. The Turing bifurcation in network systems: collective patterns and single differentiated nodes. Physica D 241, 1351-1357. (10.1016/j.physd.2012.05.002) DOI
Asllani M, Busiello DM, Carletti T, Fanelli D, Planchon G. 2014. Turing patterns in multiplex networks. Phys. Rev. E 90, 042814. (10.1103/PhysRevE.90.042814) PubMed DOI
Asllani M, Carletti T, Fanelli D. 2016. Tune the topology to create or destroy patterns. Eur. Phys. J. B 89, 1-10. (10.1140/epjb/e2016-70248-6) DOI
Kouvaris NE, Hata S, Díaz-Guilera A. 2015. Pattern formation in multiplex networks. Sci. Rep. 5, 1-9. (10.1038/srep10840) PubMed DOI PMC
Kouvaris NE, Sebek M, Mikhailov AS, Kiss IZ. 2016. Self-organized stationary patterns in networks of bistable chemical reactions. Angewandte Chemie 128, 13 461-13 464. (10.1002/ange.201607030) PubMed DOI
Hata S, Nakao H, Mikhailov AS. 2014. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks. Sci. Rep. 4, 1-9. PubMed PMC
Muolo R, Asllani M, Fanelli D, Maini PK, Carletti T. 2019. Patterns of non-normality in networked systems. J. Theor. Biol. 480, 81-91. (10.1016/j.jtbi.2019.07.004) PubMed DOI
Grant PK, Dalchau N, Brown JR, Federici F, Rudge TJ, Yordanov B, Patange O, Phillips A, Haseloff J. 2016. Orthogonal intercellular signaling for programmed spatial behavior. Mol. Syst. Biol. 12, 849. (10.15252/msb.20156590) PubMed DOI PMC
Krause AL, Klika V, Halatek J, Grant PK, Woolley TE, Dalchau N, Gaffney EA. 2020. Turing patterning in stratified domains. Bull. Math. Biol. 82, 136. (10.1007/s11538-020-00809-9) PubMed DOI PMC
Cruywagen GC, Murray JD. 1992. On a tissue interaction model for skin pattern formation. J. Nonlinear Sci. 2, 217-240. (10.1007/BF02429856) PubMed DOI
Shaw LJ, Murray JD. 1990. Analysis of a model for complex skin patterns. SIAM J. Appl. Math. 50, 628-648. (10.1137/0150037) DOI
Epstein IR, Berenstein IB, Dolnik M, Vanag VK, Yang L, Zhabotinsky AM. 2007. Coupled and forced patterns in reaction–diffusion systems. Phil. Trans. R. Soc. A 366, 397-408. (10.1098/rsta.2007.2097) PubMed DOI
Fujita H, Kawaguchi M. 2013. Pattern formation by two-layer Turing system with complementary synthesis. J. Theor. Biol. 322, 33-45. (10.1016/j.jtbi.2013.01.008) PubMed DOI
Yang L, Dolnik M, Zhabotinsky AM, Epstein IR. 2002. Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303. (10.1103/PhysRevLett.88.208303) PubMed DOI
Yang L, Epstein IR. 2003. Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90, 178303. (10.1103/PhysRevLett.90.178303) PubMed DOI
Catllá AJ, McNamara A, Topaz CM. 2012. Instabilities and patterns in coupled reaction-diffusion layers. Phys. Rev. E 85, 026215. (10.1103/PhysRevE.85.026215) PubMed DOI
Cusseddu D, Edelstein-Keshet L, Mackenzie JA, Portet S, Madzvamuse A. 2018. A coupled bulk-surface model for cell polarisation. J. Theor. Biol. 481, 119-135. (10.1016/j.jtbi.2018.09.008) PubMed DOI
Frey E, Halatek J, Kretschmer S, Schwille P. 2018. Protein pattern formation. In Physics of Biological Membranes (eds P Bassereau, P Sens), pp. 229–260. Cham: Springer International Publishing.
Halatek J, Brauns F, Frey E. 2018. Self-organization principles of intracellular pattern formation. Phil. Trans. R. Soc. B 373, 20170107. (10.1098/rstb.2017.0107) PubMed DOI PMC
Madzvamuse A, Chung AH, Venkataraman C. 2015. Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems. Proc. R. Soc. A 471, 20140546. (10.1098/rspa.2014.0546) PubMed DOI PMC
Paquin-Lefebvre F, Nagata W, Ward MJ. 2019. Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst. 18, 1334-1390. (10.1137/18M1213737) DOI
Paquin-Lefebvre F, Xu B, DiPietro KL, Lindsay AE, Jilkine A. 2020. Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations. J. Theor. Biol. 497, 110242. (10.1016/j.jtbi.2020.110242) PubMed DOI
Rätz A, Röger M. 2014. Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks. Nonlinearity 27, 1805. (10.1088/0951-7715/27/8/1805) DOI
Spill F, Andasari V, Mak M, Kamm RD, Zaman MH. 2016. Effects of 3d geometries on cellular gradient sensing and polarization. Phys. Biol. 13, 036008. (10.1088/1478-3975/13/3/036008) PubMed DOI PMC
Brauns F, Pawlik G, Halatek J, Kerssemakers J, Frey E, Dekker C. 2020. Bulk-surface coupling reconciles Min-protein pattern formation in vitro and in vivo. bioRxiv, page 2020.03.01.971952.
Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C. 2016. Multistability and dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873. (10.15252/msb.20156724) PubMed DOI PMC
Levine H, Rappel W-J. 2005. Membrane-bound Turing patterns. Phys. Rev. E 72, 061912. (10.1103/PhysRevE.72.061912) PubMed DOI
Fussell EF, Krause AL, Van Gorder RA. 2019. Hybrid approach to modeling spatial dynamics of systems with generalist predators. J. Theor. Biol. 462, 26-47. (10.1016/j.jtbi.2018.10.054) PubMed DOI
Colbrook MJ, Fokas AS. 2018. Computing eigenvalues and eigenfunctions of the laplacian for convex polygons. Appl. Numer. Math. 126, 1-17. (10.1016/j.apnum.2017.12.001) DOI
Mendez V, Fedotov S, Horsthemke W. 2010. Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. London, UK: Springer Science & Business Media.
Dillon R, Maini P, Othmer H. 1994. Pattern formation in generalized Turing systems. J. Math. Biol. 32, 345-393. (10.1007/BF00160165) DOI
Krause AL, Klika V, Maini PK, Headon D, Gaffney EA. 2021. Isolating patterns in open reaction-diffusion systems. Bull. Math. Biol. 83, 1-35. (10.1007/s11538-021-00913-4) PubMed DOI PMC
Maini P, Myerscough M. 1997. Boundary-driven instability. Appl. Math. Lett. 10, 1-4. (10.1016/S0893-9659(96)00101-2) DOI
Tzou J, Bayliss A, Matkowsky B, Volpert V. 2011. Stationary and slowly moving localised pulses in a singularly perturbed brusselator model. Eur. J. Appl. Math. 22, 423. (10.1017/S0956792511000179) DOI
Swinton J. 2004. Watching the daisies grow: Turing and Fibonacci phyllotaxis. In Alan Turing: life and legacy of a great thinker, pp. 477–498. New York, NY: Springer.
Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12, 30-39. (10.1007/BF00289234) PubMed DOI
Irvine KD, Rauskolb C. 2001. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189-214. (10.1146/annurev.cellbio.17.1.189) PubMed DOI
Meinhardt H. 1983. A boundary model for pattern formation in vertebrate limbs. Development 76, 115-137. (10.1242/dev.76.1.115) PubMed DOI
Meinhardt H. 1983. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375-385. (10.1016/0012-1606(83)90175-6) PubMed DOI
Green JBA, Sharpe J. 2015. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203-1211. (10.1242/dev.114991) PubMed DOI
Krause AL, Klika V, Woolley TE, Gaffney EA. 2020. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. J. R. Soc. Interface 17, 20190621. (10.1098/rsif.2019.0621) PubMed DOI PMC
Wolpert L. 1971. Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183-224. (10.1016/S0070-2153(08)60641-9) PubMed DOI
Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338, 1476-1480. (10.1126/science.1226804) PubMed DOI PMC
Bassett A, Krause AL, Van Gorder RA. 2017. Continuous dispersal in a model of predator–prey-subsidy population dynamics. Ecol. Modell 354, 115-122. (10.1016/j.ecolmodel.2017.02.017) DOI
Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197-209. (10.1111/j.1461-0248.2008.01267.x) PubMed DOI
Cobbold CA, Lutscher F, Sherratt JA. 2015. Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes. Ecol. Complex. 24, 69-81. (10.1016/j.ecocom.2015.10.001) DOI
Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA. 2017. Two-species migration and clustering in two-dimensional domains. Bull. Math. Biol. 79, 2302-2333. (10.1007/s11538-017-0331-0) PubMed DOI PMC
Pickett STA, Cadenasso ML. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269, 331-334. (10.1126/science.269.5222.331) PubMed DOI
Crampin EJ, Hackborn WW, Maini PK. 2002. Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747-769. (10.1006/bulm.2002.0295) PubMed DOI
Krause AL, Ellis MA, Van Gorder RA. 2019. Influence of curvature, growth, and anisotropy on the evolution of Turing patterns on growing manifolds. Bull. Math. Biol. 81, 759-799. (10.1007/s11538-018-0535-y) PubMed DOI PMC
Belmonte-Beitia J, Woolley TE, Scott JG, Maini PK, Gaffney EA. 2013. Modelling biological invasions: individual to population scales at interfaces. J. Theor. Biol. 334, 1-12. (10.1016/j.jtbi.2013.05.033) PubMed DOI
Sun G-Q, Jusup M, Jin Z, Wang Y, Wang Z. 2016. Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43-73. (10.1016/j.plrev.2016.08.002) PubMed DOI PMC
Avitabile D, Breña Medina VF, Ward MJ. 2018. Spot dynamics in a reaction-diffusion model of plant root hair initiation. SIAM J. Appl. Math. 78, 291-319. (10.1137/17M1120932) DOI
Breña Medina VF, Avitabile D, Champneys AR, Ward MJ. 2015. Stripe to spot transition in a plant root hair initiation model. SIAM J. Appl. Math. 75, 1090-1119. (10.1137/140964527) DOI
Auchmuty JFG, Nicolis G. 1975. Bifurcation analysis of nonlinear reaction-diffusion equations–I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37, 323-365. (10.1016/S0092-8240(75)80036-X) DOI
Benson DL, Sherratt JA, Maini PK. 1993. Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365-384. (10.1007/BF02460888) DOI
Page KM, Maini PK, Monk NAM. 2003. Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D 181, 80-101. (10.1016/S0167-2789(03)00068-X) DOI
Page KM, Maini PK, Monk NAM. 2005. Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D 202, 95-115. (10.1016/j.physd.2005.01.022) DOI
Iron D, Ward MJ. 2001. Spike pinning for the Gierer–Meinhardt model. Math. Comput. Simul. 55, 419-431. (10.1016/S0378-4754(00)00303-7) DOI
Ward MJ, McInerney D, Houston P, Gavaghan D, Maini P. 2002. The dynamics and pinning of a spike for a reaction-diffusion system. SIAM J. Appl. Math. 62, 1297-1328. (10.1137/S0036139900375112) DOI
Wei J, Winter M, Yang W. 2017. Stable spike clusters for the precursor Gierer–Meinhardt system in PubMed DOI PMC
Doelman A, van Heijster P, Shen J. 2018. Pulse dynamics in reaction–diffusion equations with strong spatially localized impurities. Phil. Trans. R. Soc. A 376, 20170183. (10.1098/rsta.2017.0183) PubMed DOI PMC
Yuan X, Teramoto T, Nishiura Y. 2007. Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system. Phys. Rev. E 75, 036220. (10.1103/PhysRevE.75.036220) PubMed DOI
Epstein IR, Showalter K. 1996. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13 132-13 147. (10.1021/jp953547m) DOI
Haim L, Hagberg A, Meron E. 2015. Non-monotonic resonance in a spatially forced Lengyel-Epstein model. Chaos 25, 064307. (10.1063/1.4921768) PubMed DOI
Lengyel I, Epstein IR. 1991. Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251, 650-652. (10.1126/science.251.4994.650) PubMed DOI
Míguez DG, Pérez-Villar V, Muñuzuri AP. 2005. Turing instability controlled by spatiotemporal imposed dynamics. Phys. Rev. E 71, 066217. (10.1103/PhysRevE.71.066217) PubMed DOI
Peter R et al. 2005. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry. Phys. Rev. E 71, 046212. (10.1103/PhysRevE.71.046212) PubMed DOI
Rüdiger S, Míguez DG, Munuzuri AP, Sagués F, Casademunt J. 2003. Dynamics of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301. (10.1103/PhysRevLett.90.128301) PubMed DOI
Rüdiger S, Nicola EM, Casademunt J, Kramer L. 2007. Theory of pattern forming systems under traveling-wave forcing. Phys. Rep. 447, 73-111. (10.1016/j.physrep.2007.02.017) DOI
Konow C, Dolnik M, Epstein IR. 2021. Insights from chemical systems into Turing-type morphogenesis. Phil. Trans. R. Soc. A 379, 20200269. (10.1098/rsta.2020.0269) PubMed DOI
Dewel G, Borckmans P. 1989. Effects of slow spatial variations on dissipative structures. Phys. Lett. A 138, 189-192. (10.1016/0375-9601(89)90025-X) DOI
Kuske R, Eckhaus W. 1997. Pattern formation in systems with slowly varying geometry. SIAM J. Appl. Math. 57, 112-152. (10.1137/S0036139994277531) DOI
Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. 2007. A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108. (10.1371/journal.pcbi.0030108) PubMed DOI PMC
Kozák M, Gaffney EA, Klika V. 2019. Pattern formation in reaction-diffusion systems with piecewise kinetic modulation: an example study of heterogeneous kinetics. Phys. Rev. E 100, 042220. (10.1103/PhysRevE.100.042220) PubMed DOI
Van Gorder RA. 2021. Pattern formation from spatially heterogeneous reaction–diffusion systems. Phil. Trans. R. Soc. A 379, 20210001. (10.1098/rsta.2021.0001) PubMed DOI
Woolley TE, Krause AL, Gaffney EA. 2021. Bespoke Turing systems. Bull. Math. Biol. 83, 1-32. (10.1007/s11538-021-00870-y) PubMed DOI PMC
Kolokolnikov T, Wei J. 2018. Pattern formation in a reaction-diffusion system with space-dependent feed rate. SIAM Rev. 60, 626-645. (10.1137/17M1116027) DOI
Krause AL, Klika V, Woolley TE, Gaffney EA. 2018. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. Phys. Rev. E 97, 052206. (10.1103/PhysRevE.97.052206) PubMed DOI
Veerman F, Mercker M, Marciniak-Czochra A. 2021. Beyond Turing: far-from-equilibrium patterns and mechano-chemical feedback. Phil. Trans. R. Soc. A 379, 20200278. (10.1098/rsta.2020.0278) PubMed DOI
Taylor NP, Kim H, Krause AL, Van Gorder RA. 2020. A non-local cross-diffusion model of population dynamics I: emergent spatial and spatiotemporal patterns. Bull. Math. Biol. 82, 1-40. (10.1007/s11538-020-00786-z) PubMed DOI
Lee SS, Gaffney E, Baker R. 2011. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull. Math. Biol. 73, 2527-2551. (10.1007/s11538-011-9634-8) PubMed DOI
Varea C, Aragón J, Barrio R. 1997. Confined Turing patterns in growing systems. Phys. Rev. E 56, 1250. (10.1103/PhysRevE.56.1250) DOI
Crampin EJ, Gaffney EA, Maini PK. 1999. Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093-1120. (10.1006/bulm.1999.0131) PubMed DOI
Baker RE, Gaffney E, Maini P. 2008. Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21, R251. (10.1088/0951-7715/21/11/R05) DOI
Barrass I, Crampin EJ, Maini PK. 2006. Mode transitions in a model reaction–diffusion system driven by domain growth and noise. Bull. Math. Biol. 68, 981-995. (10.1007/s11538-006-9106-8) PubMed DOI
Ueda K-I, Nishiura Y. 2012. A mathematical mechanism for instabilities in stripe formation on growing domains. Physica D 241, 37-59. (10.1016/j.physd.2011.09.016) DOI
Madzvamuse A, Gaffney EA, Maini PK. 2010. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133-164. (10.1007/s00285-009-0293-4) PubMed DOI
Hetzer G, Madzvamuse A, Shen W. 2012. Characterization of Turing diffusion-driven instability on evolving domains. Discrete Continu. Dyn. Syst.-A 32, 3975. (10.3934/dcds.2012.32.3975) DOI
Klika V, Gaffney EA. 2017. History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability. Proc. R. Soc. A 473, 20160744. (10.1098/rspa.2016.0744) PubMed DOI PMC
Van Gorder RA, Klika V, Krause AL. 2021. Turing conditions for pattern forming systems on evolving manifolds. J. Math. Biol. 82, 1-61. (10.1007/s00285-021-01552-y) PubMed DOI
Comanici A, Golubitsky M. 2008. Patterns on growing square domains via mode interactions. Dyn. Syst. 23, 167-206. (10.1080/14689360801945327) DOI
Knobloch E, Krechetnikov R. 2014. Stability on time-dependent domains. J. Nonlinear Sci. 24, 493-523. (10.1007/s00332-014-9197-6) DOI
Krechetnikov R, Knobloch E. 2017. Stability on time-dependent domains: convective and dilution effects. Physica D 342, 16-23. (10.1016/j.physd.2016.10.003) DOI
Knobloch E, Krechetnikov R. 2015. Problems on time-varying domains: formulation, dynamics, and challenges. Acta Applicandae Mathematicae 137, 123-157. (10.1007/s10440-014-9993-x) DOI
Timm U, Okubo A. 1992. Diffusion-driven instability in a predator-prey system with time-varying diffusivities. J. Math. Biol. 30, 307-320. (10.1007/BF00176153) DOI
Gourley S, Britton N, Chaplain M, Byrne H. 1996. Mechanisms for stabilisation and destabilisation of systems of reaction-diffusion equations. J. Math. Biol. 34, 857-877. (10.1007/BF01834823) DOI
Challenger JD, Burioni R, Fanelli D. 2015. Turing-like instabilities from a limit cycle. Phys. Rev. E 92, 022818. (10.1103/PhysRevE.92.022818) PubMed DOI
Kuwamura M, Izuhara H. 2017. Diffusion-driven destabilization of spatially homogeneous limit cycles in reaction-diffusion systems. Chaos 27, 033112. (10.1063/1.4978924) PubMed DOI
Aranson IS, Kramer L. 2002. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99. (10.1103/RevModPhys.74.99) DOI
Benjamin TB, Feir JE. 1967. The disintegration of wave trains on deep water part 1. Theory. J. Fluid Mech. 27, 417-430. (10.1017/S002211206700045X) DOI
Van Gorder RA. 2020. Turing and Benjamin–Feir instability mechanisms in non-autonomous systems. Proc. R. Soc. A 476, 20200003. (10.1098/rspa.2020.0003) DOI
Van Gorder RA. 2021. A theory of pattern formation for reaction–diffusion systems on temporal networks. Proc. R. Soc. A 477, 20200753. (10.1098/rspa.2020.0753) DOI
Buttenschön A, Liu Y, Edelstein-Keshet L. 2020. Cell size, mechanical tension, and GTpase signaling in the single cell. Bull. Math. Biol. 82, 1-33. (10.1007/s11538-019-00680-3) PubMed DOI
Liu Y, Rens EG, Edelstein-Keshet L. 2021. Spots, stripes, and spiral waves in models for static and motile cells. J. Math. Biol. 82, 1-38. (10.1007/s00285-021-01560-y) PubMed DOI PMC
Rens EG, Edelstein-Keshet L. 2021. Cellular tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. (http://arxiv.org/abs/2104.09182).
Vanderlei B, Feng JJ, Edelstein-Keshet L. 2011. A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model. Simul. 9, 1420-1443. (10.1137/100815335) PubMed DOI PMC
Schwank G, Basler K. 2010. Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspect. Biol. 2, a001669. (10.1101/cshperspect.a001669) PubMed DOI PMC
Goriely A. 2017. The mathematics and mechanics of biological growth. New York, NY: Springer.
Swift J, Hohenberg PC. 1977. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319. (10.1103/PhysRevA.15.319) DOI
Cahn JW, Hilliard JE. 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267. (10.1063/1.1744102) DOI
Kielhöfer H. 1997. Pattern formation of the stationary Cahn-Hilliard model. Proc. R. Soc. Edinb., Sect. A 127, 1219-1243. (10.1017/S0308210500027037) DOI
Cohen DS, Murray JD. 1981. A generalized diffusion model for growth and dispersal in a population. J. Math. Biol. 12, 237-249. (10.1007/BF00276132) DOI
Ochoa FL. 1984. A generalized reaction diffusion model for spatial structure formed by motile cells. Biosystems 17, 35-50. (10.1016/0303-2647(84)90014-5) PubMed DOI
Murray JD. 2007. Mathematical biology: I. An introduction. London, UK: Springer Science & Business Media.
Van Gorder RA, Kim H, Krause A. 2019. Diffusive instabilities and spatial patterning from the coupling of reaction-diffusion processes with Stokes flow in complex domains. J. Fluid Mech. 877, 759-823. (10.1017/jfm.2019.620) DOI
Satnoianu RA, Menzinger M. 2002. A general mechanism for ‘inexact’ phase differences in reaction–diffusion–advection systems. Phys. Lett. A 304, 149-156. (10.1016/S0375-9601(02)01387-7) DOI
Rovinsky AB, Menzinger M. 1992. Chemical instability induced by a differential flow. Phys. Rev. Lett. 69, 1193. (10.1103/PhysRevLett.69.1193) PubMed DOI
Satnoianu RA. 2003. Coexistence of stationary and traveling waves in reaction-diffusion-advection systems. Phys. Rev. E 68, 032101. (10.1103/PhysRevE.68.032101) PubMed DOI
Gambino G, Lombardo M, Sammartino M. 2014. Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Applicandae Mathematicae 132, 283-294. (10.1007/s10440-014-9903-2) DOI
Gambino G, Lombardo M, Sammartino M, Sciacca V. 2013. Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042925. (10.1103/PhysRevE.88.042925) PubMed DOI
Hillen T, Painter KJ. 2009. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183-217. (10.1007/s00285-008-0201-3) PubMed DOI
Horstmann D. 2003. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. DMV 105, 103-165.
Maini PK, Baker RE, Chuong C-M. 2006. The Turing model comes of molecular age. Science 314, 1397. (10.1126/science.1136396) PubMed DOI PMC
Fanelli D, Cianci C, Di Patti F. 2013. Turing instabilities in reaction-diffusion systems with cross diffusion. Eur. Phys. J. B 86, 1-8. (10.1140/epjb/e2013-30649-7) DOI
Gambino G, Lombardo MC, Sammartino M. 2012. Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82, 1112-1132. (10.1016/j.matcom.2011.11.004) DOI
Madzvamuse A, Ndakwo HS, Barreira R. 2015. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70, 709-743. (10.1007/s00285-014-0779-6) PubMed DOI
Shigesada N, Kawasaki K, Teramoto E. 1979. Spatial segregation of interacting species. J. Theor. Biol. 79, 83-99. (10.1016/0022-5193(79)90258-3) PubMed DOI
Zemskov EP, Horsthemke W. 2016. Diffusive instabilities in hyperbolic reaction-diffusion equations. Phys. Rev. E 93, 032211. (10.1103/PhysRevE.93.032211) PubMed DOI
De Groot SR, Mazur P. 2013. Non-equilibrium thermodynamics. Amsterdam, Netherlands: Courier Corporation.
Klika V, Grmela M. 2013. Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics. Phys. Rev. E 87, 012141. (10.1103/PhysRevE.87.012141) PubMed DOI
Klika V, Krause AL. 2018. Beyond Onsager-Casimir relations: shared dependence of phenomenological coefficients on state variables. J. Phys. Chem. Lett. 9, 7021-7025. (10.1021/acs.jpclett.8b03281) PubMed DOI
Krishna R, Wesselingh J. 1997. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861-911. (10.1016/S0009-2509(96)00458-7) DOI
Esposito M. 2020. Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun. Chem. 3, 1-3. (10.1038/s42004-020-00344-7) PubMed DOI PMC
Falasco G, Rao R, Esposito M. 2018. Information thermodynamics of Turing patterns. Phys. Rev. Lett. 121, 108301. (10.1103/PhysRevLett.121.108301) PubMed DOI
Satnoianu RA, Menzinger M, Maini PK. 2000. Turing instabilities in general systems. J. Math. Biol. 41, 493-512. (10.1007/s002850000056) PubMed DOI
Diego X, Marcon L, Müller P, Sharpe J. 2018. Key features of Turing systems are determined purely by network topology. Phys. Rev. X 8, 021071.
Marcon L, Diego X, Sharpe J, Müller P. 2016. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022. (10.7554/eLife.14022) PubMed DOI PMC
Scholes NS, Schnoerr D, Isalan M, Stumpf MP. 2019. A comprehensive network atlas reveals that Turing patterns are common but not robust. Cell Syst. 9, 243-257. (10.1016/j.cels.2019.07.007) PubMed DOI
Glover JD et al. 2017. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol. 15, e2002117. (10.1371/journal.pbio.2002117) PubMed DOI PMC
Painter K, Hunt G, Wells K, Johansson J, Headon D. 2012. Towards an integrated experimental–theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis. Interface Focus 2, 433-450. (10.1098/rsfs.2011.0122) PubMed DOI PMC
Economou AD, Monk NA, Green JB. 2020. Perturbation analysis of a multi-morphogen Turing reaction-diffusion stripe patterning system reveals key regulatory interactions. Development 147, dev190553. (10.1242/dev.190553) PubMed DOI PMC
Klika V, Baker RE, Headon D, Gaffney EA. 2012. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74, 935-957. (10.1007/s11538-011-9699-4) PubMed DOI
Haas PA, Goldstein RE. 2021. Turing’s diffusive threshold in random reaction-diffusion systems. Phys. Rev. Lett. 126, 238101. (10.1103/PhysRevLett.126.238101) PubMed DOI
Marciniak-Czochra A, Karch G, Suzuki K. 2017. Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74, 583-618. (10.1007/s00285-016-1035-z) PubMed DOI PMC
Lengyel I, Epstein IR. 1992. A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977-3979. (10.1073/pnas.89.9.3977) PubMed DOI PMC
Korvasová K, Gaffney E, Maini P, Ferreira M, Klika V. 2015. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. J. Theor. Biol. 367, 286-295. (10.1016/j.jtbi.2014.11.024) PubMed DOI
Borckmans P, Dewel G, De Wit A, Walgraef D. 1995. Turing bifurcations and pattern selection. In Chemical waves and patterns, pp. 323–363. New York, NY: Springer.
Anderson DF. 2011. A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71, 1487-1508. (10.1137/11082631X) DOI
Sharpe J. 2019. Wolpert’s french flag: what’s the problem? Development 146, dev185967. (10.1242/dev.185967) PubMed DOI
Fadai NT, Ward MJ, Wei J. 2017. Delayed reaction kinetics and the stability of spikes in the Gierer–Meinhardt model. SIAM J. Appl. Math. 77, 664-696. (10.1137/16M1063460) DOI
Gaffney E, Lee SS. 2015. The sensitivity of Turing self-organization to biological feedback delays: 2d models of fish pigmentation. Math. Med. Biol. 32, 57-79. (10.1093/imammb/dqt017) PubMed DOI
Gaffney E, Monk N. 2006. Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68, 99-130. (10.1007/s11538-006-9066-z) PubMed DOI
Jiang W, Wang H, Cao X. 2019. Turing instability and Turing–Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay. J. Dyn. Differ. Equ. 31, 2223-2247. (10.1007/s10884-018-9702-y) DOI
Yi F, Gaffney EA, Seirin-Lee S. 2017. The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the schnakenberg system. Discrete Continu. Dyn. Syst. B 22, 647. (10.3934/dcdsb.2017031) DOI
Fadai NT, Ward MJ, Wei J. 2018. A time-delay in the activator kinetics enhances the stability of a spike solution to the Gierer-Meinhardt model. Discrete Continu. Dyn. Syst. B 23, 1431. (10.3934/dcdsb.2018158) DOI
Erban R, Chapman SJ. 2019. Stochastic modelling of reaction–diffusion processes, vol. 60. Cambridge, UK: Cambridge University Press.
Schumacher LJ, Woolley TE, Baker RE. 2013. Noise-induced temporal dynamics in Turing systems. Phys. Rev. E 87, 042719. (10.1103/PhysRevE.87.042719) PubMed DOI
Woolley TE, Baker RE, Gaffney EA, Maini PK. 2011. Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E 84, 046216. (10.1103/PhysRevE.84.046216) PubMed DOI
Woolley TE, Baker RE, Gaffney EA, Maini PK, Seirin-Lee S. 2012. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85, 051914. (10.1103/PhysRevE.85.051914) PubMed DOI
Adamer MF, Harrington HA, Gaffney EA, Woolley TE. 2020. Coloured noise from stochastic inflows in reaction–diffusion systems. Bull. Math. Biol. 82, 1-28. (10.1007/s11538-020-00719-w) PubMed DOI PMC
Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. 2012. Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487-496. (10.1098/rsfs.2011.0113) PubMed DOI PMC
Grindrod P. 1991. Patterns and waves: the theory and applications of reaction-diffusion equations. Oxford, UK: Oxford University Press.
Mori Y, Jilkine A, Edelstein-Keshet L. 2008. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94, 3684-3697. (10.1529/biophysj.107.120824) PubMed DOI PMC
Cantrell RS, Cosner C. 2004. Spatial ecology via reaction-diffusion equations. Chichester, UK: John Wiley & Sons.
Deutsch A, Dormann S. 2005. Cellular automaton modeling of biological pattern formation. New York, NY: Springer.
Turing AM. 1950. Computing machinery and intelligence. Mind 59, 433. (10.1093/mind/LIX.236.433) DOI
Turing Instabilities are Not Enough to Ensure Pattern Formation
Introduction to 'Recent progress and open frontiers in Turing's theory of morphogenesis'