Modern perspectives on near-equilibrium analysis of Turing systems

. 2021 Dec 27 ; 379 (2213) : 20200268. [epub] 20211108

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34743603

In the nearly seven decades since the publication of Alan Turing's work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turing's paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here, we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of 'trivial' base states. We emphasize important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.

Zobrazit více v PubMed

Turing AM. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37-72. (10.1098/rstb.1952.0012) PubMed DOI PMC

Ball P. 2015. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) ‘the chemical basis of morphogenesis’. Phil. Trans. R. Soc. B 370, 20140218. (10.1098/rstb.2014.0218) PubMed DOI PMC

Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851. (10.1103/RevModPhys.65.851) DOI

Murray JD 2004. Mathematical Biology. II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics. New York, NY: Springer.

Al Saadi F, Champneys A. 2021. Unified framework for localized patterns in reaction–diffusion systems; the Gray–Scott and Gierer–Meinhardt cases. Phil. Trans. R. Soc. A 379, 20200277. (10.1098/rsta.2020.0277) PubMed DOI

Avitabile D, Desroches M, Knobloch E, Krupa M. 2017. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system. Proc. R. Soc. A 473, 20170018. (10.1098/rspa.2017.0018) PubMed DOI PMC

Champneys AR, Al Saadi F, Breña-Medina VF, Grieneisen VA, Marée AF, Verschueren N, Wuyts B. 2021. Bistability, wave pinning and localisation in natural reaction–diffusion systems. Physica D 416, 132735. (10.1016/j.physd.2020.132735) DOI

Yochelis A, Sheintuch M. 2009. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach. Phys. Chem. Chem. Phys. 11, 9210-9223. (10.1039/b903266e) PubMed DOI

Hale JK, Sakamoto K. 1989. Shadow systems and attractors in reaction-diffusion equations. Appl. Anal. 32, 287-303. (10.1080/00036818908839855) DOI

Iron D, Ward MJ, Wei J. 2001. The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D 150, 25-62. (10.1016/S0167-2789(00)00206-2) DOI

Wei J, Winter M. 2013. Mathematical aspects of pattern formation in biological systems, vol. 189. London, UK: Springer Science & Business Media.

Gomez D, Iyaniwura S, Paquin-Lefebvre F, Ward MJ. 2021. Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells. Phil. Trans. R. Soc. A 379, 20200276. (10.1098/rsta.2020.0276) PubMed DOI

Chafee N. 1975. Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous neumann boundary conditions. J. Differ. Equ. 18, 111-134. (10.1016/0022-0396(75)90084-4) DOI

Hess P. 1987. Spatial homogeneity of stable solutions of some periodic-parabolic problems with neumann boundary conditions. J. Differ. Equ. 68, 320-331. (10.1016/0022-0396(87)90173-2) DOI

Matano H. 1979. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Pub. Res. Inst. Math. Sci. 15, 401-454. (10.2977/prims/1195188180) DOI

Kishimoto K, Weinberger H. 1985. The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Differ. Equ. 58, 15-21. (10.1016/0022-0396(85)90020-8) DOI

Hale JK, Vegas J. 1984. A nonlinear parabolic equation with varying domain. Arch. Ration. Mech. Anal. 86, 99-123. (10.1007/BF00275730) DOI

Murray JD, Sperb RP. 1983. Minimum domains for spatial patterns in a class of reaction diffusion equations. J. Math. Biol. 18, 169-184. (10.1007/BF00280665) PubMed DOI

Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. 2012. Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336, 721-724. (10.1126/science.1221920) PubMed DOI PMC

Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616-1620. (10.1126/science.1179047) PubMed DOI

Klika V, Kozák M, Gaffney EA. 2018. Domain size driven instability: self-organization in systems with advection. SIAM J. Appl. Math. 78, 2298-2322. (10.1137/17M1138571) DOI

Meinhardt H, Gierer A. 2000. Pattern formation by local self-activation and lateral inhibition. Bioessays 22, 753-760. (10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z) PubMed DOI

Evans LC. 1998. Partial differential equations. Rhode Island.

Engel K-J, Nagel R. 2001. One-parameter semigroups for linear evolution equations, vol. 63.

Pazy A. 2012. Semigroups of linear operators and applications to partial differential equations. New York, NY: Springer Science & Business Media.

Klika V. 2017. Significance of non-normality-induced patterns: transient growth versus asymptotic stability. Chaos 27, 073120. (10.1063/1.4985256) PubMed DOI

Wollkind DJ, Manoranjan VS, Zhang L. 1994. Weakly nonlinear stability analyses of prototype reaction-diffusion model equations. Siam Rev. 36, 176-214. (10.1137/1036052) DOI

Breña-Medina V, Champneys A. 2014. Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys. Rev. E 90, 032923. (10.1103/PhysRevE.90.032923) PubMed DOI

Ermentrout B. 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413-417. (10.1098/rspa.1991.0100) DOI

Wheeler B and Zumbrun K: Convective Turing bifurcation. (http://arxiv.org/abs/2101.07239). 2021.

Hunding A. 1980. Dissipative structures in reaction–diffusion systems: numerical determination of bifurcations in the sphere. J. Chem. Phys. 72, 5241-5248. (10.1063/1.439761) DOI

Hunding A. 1983. Bifurcations of nonlinear reaction-diffusion systems in prolate spheroids. J. Math. Biol. 17, 223-239. (10.1007/BF00305761) PubMed DOI

Varea C, Aragon J, Barrio R. 1999. Turing patterns on a sphere. Phys. Rev. E 60, 4588. (10.1103/PhysRevE.60.4588) PubMed DOI

Chaplain MA, Ganesh M, Graham IG. 2001. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387-423. (10.1007/s002850000067) PubMed DOI

Frankel T. 2011. The geometry of physics: an introduction. Cambridge, UK: Cambridge University Press.

Plaza RG, Sanchez-Garduno F, Padilla P, Barrio RA, Maini PK. 2004. The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16, 1093-1121. (10.1007/s10884-004-7834-8) DOI

Krause AL, Burton AM, Fadai NT, Van Gorder RA. 2018. Emergent structures in reaction-advection-diffusion systems on a sphere. Phys. Rev. E 97, 042215. (10.1103/PhysRevE.97.042215) PubMed DOI

Gandhi P, Werner L, Iams S, Gowda K, Silber M. 2018. A topographic mechanism for arcing of dryland vegetation bands. J. R. Soc. Interface 15, 20180508. (10.1098/rsif.2018.0508) PubMed DOI PMC

Tzou J, Tzou L. 2020. Analysis of spot patterns on a coordinate-invariant model for vegetation on a curved terrain. SIAM J. Appl. Dyn. Syst. 19, 2500-2529. (10.1137/20M1326271) DOI

Callahan T. 2004. Turing patterns with o (3) symmetry. Physica D 188, 65-91. (10.1016/S0167-2789(03)00286-0) DOI

Trinh PH, Ward MJ. 2016. The dynamics of localized spot patterns for reaction-diffusion systems on the sphere. Nonlinearity 29, 766. (10.1088/0951-7715/29/3/766) DOI

Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout GB, Epstein IR, Fraden S. 2014. Testing turing’s theory of morphogenesis in chemical cells. Proc. Natl Acad. Sci. USA 111, 4397-4402. (10.1073/pnas.1322005111) PubMed DOI PMC

Othmer HG, Scriven L. 1971. Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32, 507-537. (10.1016/0022-5193(71)90154-8) PubMed DOI

Rauch EM, Millonas MM. 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401-407. (10.1016/j.jtbi.2003.09.018) PubMed DOI

Ide Y, Izuhara H, Machida T. 2016. Turing instability in reaction–diffusion models on complex networks. Physica A: Stat. Mech. Appl. 457, 331-347. (10.1016/j.physa.2016.03.055) DOI

McCullen N, Wagenknecht T. 2016. Pattern formation on networks: from localised activity to Turing patterns. Sci. Rep. 6, 1-8. (10.1038/srep27397) PubMed DOI PMC

Nakao H, Mikhailov AS. 2010. Turing patterns in network-organized activator–inhibitor systems. Nat. Phys. 6, 544. (10.1038/nphys1651) DOI

Wolfrum M. 2012. The Turing bifurcation in network systems: collective patterns and single differentiated nodes. Physica D 241, 1351-1357. (10.1016/j.physd.2012.05.002) DOI

Asllani M, Busiello DM, Carletti T, Fanelli D, Planchon G. 2014. Turing patterns in multiplex networks. Phys. Rev. E 90, 042814. (10.1103/PhysRevE.90.042814) PubMed DOI

Asllani M, Carletti T, Fanelli D. 2016. Tune the topology to create or destroy patterns. Eur. Phys. J. B 89, 1-10. (10.1140/epjb/e2016-70248-6) DOI

Kouvaris NE, Hata S, Díaz-Guilera A. 2015. Pattern formation in multiplex networks. Sci. Rep. 5, 1-9. (10.1038/srep10840) PubMed DOI PMC

Kouvaris NE, Sebek M, Mikhailov AS, Kiss IZ. 2016. Self-organized stationary patterns in networks of bistable chemical reactions. Angewandte Chemie 128, 13 461-13 464. (10.1002/ange.201607030) PubMed DOI

Hata S, Nakao H, Mikhailov AS. 2014. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks. Sci. Rep. 4, 1-9. PubMed PMC

Muolo R, Asllani M, Fanelli D, Maini PK, Carletti T. 2019. Patterns of non-normality in networked systems. J. Theor. Biol. 480, 81-91. (10.1016/j.jtbi.2019.07.004) PubMed DOI

Grant PK, Dalchau N, Brown JR, Federici F, Rudge TJ, Yordanov B, Patange O, Phillips A, Haseloff J. 2016. Orthogonal intercellular signaling for programmed spatial behavior. Mol. Syst. Biol. 12, 849. (10.15252/msb.20156590) PubMed DOI PMC

Krause AL, Klika V, Halatek J, Grant PK, Woolley TE, Dalchau N, Gaffney EA. 2020. Turing patterning in stratified domains. Bull. Math. Biol. 82, 136. (10.1007/s11538-020-00809-9) PubMed DOI PMC

Cruywagen GC, Murray JD. 1992. On a tissue interaction model for skin pattern formation. J. Nonlinear Sci. 2, 217-240. (10.1007/BF02429856) PubMed DOI

Shaw LJ, Murray JD. 1990. Analysis of a model for complex skin patterns. SIAM J. Appl. Math. 50, 628-648. (10.1137/0150037) DOI

Epstein IR, Berenstein IB, Dolnik M, Vanag VK, Yang L, Zhabotinsky AM. 2007. Coupled and forced patterns in reaction–diffusion systems. Phil. Trans. R. Soc. A 366, 397-408. (10.1098/rsta.2007.2097) PubMed DOI

Fujita H, Kawaguchi M. 2013. Pattern formation by two-layer Turing system with complementary synthesis. J. Theor. Biol. 322, 33-45. (10.1016/j.jtbi.2013.01.008) PubMed DOI

Yang L, Dolnik M, Zhabotinsky AM, Epstein IR. 2002. Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303. (10.1103/PhysRevLett.88.208303) PubMed DOI

Yang L, Epstein IR. 2003. Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90, 178303. (10.1103/PhysRevLett.90.178303) PubMed DOI

Catllá AJ, McNamara A, Topaz CM. 2012. Instabilities and patterns in coupled reaction-diffusion layers. Phys. Rev. E 85, 026215. (10.1103/PhysRevE.85.026215) PubMed DOI

Cusseddu D, Edelstein-Keshet L, Mackenzie JA, Portet S, Madzvamuse A. 2018. A coupled bulk-surface model for cell polarisation. J. Theor. Biol. 481, 119-135. (10.1016/j.jtbi.2018.09.008) PubMed DOI

Frey E, Halatek J, Kretschmer S, Schwille P. 2018. Protein pattern formation. In Physics of Biological Membranes (eds P Bassereau, P Sens), pp. 229–260. Cham: Springer International Publishing.

Halatek J, Brauns F, Frey E. 2018. Self-organization principles of intracellular pattern formation. Phil. Trans. R. Soc. B 373, 20170107. (10.1098/rstb.2017.0107) PubMed DOI PMC

Madzvamuse A, Chung AH, Venkataraman C. 2015. Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems. Proc. R. Soc. A 471, 20140546. (10.1098/rspa.2014.0546) PubMed DOI PMC

Paquin-Lefebvre F, Nagata W, Ward MJ. 2019. Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst. 18, 1334-1390. (10.1137/18M1213737) DOI

Paquin-Lefebvre F, Xu B, DiPietro KL, Lindsay AE, Jilkine A. 2020. Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations. J. Theor. Biol. 497, 110242. (10.1016/j.jtbi.2020.110242) PubMed DOI

Rätz A, Röger M. 2014. Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks. Nonlinearity 27, 1805. (10.1088/0951-7715/27/8/1805) DOI

Spill F, Andasari V, Mak M, Kamm RD, Zaman MH. 2016. Effects of 3d geometries on cellular gradient sensing and polarization. Phys. Biol. 13, 036008. (10.1088/1478-3975/13/3/036008) PubMed DOI PMC

Brauns F, Pawlik G, Halatek J, Kerssemakers J, Frey E, Dekker C. 2020. Bulk-surface coupling reconciles Min-protein pattern formation in vitro and in vivo. bioRxiv, page 2020.03.01.971952.

Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C. 2016. Multistability and dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873. (10.15252/msb.20156724) PubMed DOI PMC

Levine H, Rappel W-J. 2005. Membrane-bound Turing patterns. Phys. Rev. E 72, 061912. (10.1103/PhysRevE.72.061912) PubMed DOI

Fussell EF, Krause AL, Van Gorder RA. 2019. Hybrid approach to modeling spatial dynamics of systems with generalist predators. J. Theor. Biol. 462, 26-47. (10.1016/j.jtbi.2018.10.054) PubMed DOI

Colbrook MJ, Fokas AS. 2018. Computing eigenvalues and eigenfunctions of the laplacian for convex polygons. Appl. Numer. Math. 126, 1-17. (10.1016/j.apnum.2017.12.001) DOI

Mendez V, Fedotov S, Horsthemke W. 2010. Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. London, UK: Springer Science & Business Media.

Dillon R, Maini P, Othmer H. 1994. Pattern formation in generalized Turing systems. J. Math. Biol. 32, 345-393. (10.1007/BF00160165) DOI

Krause AL, Klika V, Maini PK, Headon D, Gaffney EA. 2021. Isolating patterns in open reaction-diffusion systems. Bull. Math. Biol. 83, 1-35. (10.1007/s11538-021-00913-4) PubMed DOI PMC

Maini P, Myerscough M. 1997. Boundary-driven instability. Appl. Math. Lett. 10, 1-4. (10.1016/S0893-9659(96)00101-2) DOI

Tzou J, Bayliss A, Matkowsky B, Volpert V. 2011. Stationary and slowly moving localised pulses in a singularly perturbed brusselator model. Eur. J. Appl. Math. 22, 423. (10.1017/S0956792511000179) DOI

Swinton J. 2004. Watching the daisies grow: Turing and Fibonacci phyllotaxis. In Alan Turing: life and legacy of a great thinker, pp. 477–498. New York, NY: Springer.

Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12, 30-39. (10.1007/BF00289234) PubMed DOI

Irvine KD, Rauskolb C. 2001. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189-214. (10.1146/annurev.cellbio.17.1.189) PubMed DOI

Meinhardt H. 1983. A boundary model for pattern formation in vertebrate limbs. Development 76, 115-137. (10.1242/dev.76.1.115) PubMed DOI

Meinhardt H. 1983. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375-385. (10.1016/0012-1606(83)90175-6) PubMed DOI

Green JBA, Sharpe J. 2015. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203-1211. (10.1242/dev.114991) PubMed DOI

Krause AL, Klika V, Woolley TE, Gaffney EA. 2020. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. J. R. Soc. Interface 17, 20190621. (10.1098/rsif.2019.0621) PubMed DOI PMC

Wolpert L. 1971. Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183-224. (10.1016/S0070-2153(08)60641-9) PubMed DOI

Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338, 1476-1480. (10.1126/science.1226804) PubMed DOI PMC

Bassett A, Krause AL, Van Gorder RA. 2017. Continuous dispersal in a model of predator–prey-subsidy population dynamics. Ecol. Modell 354, 115-122. (10.1016/j.ecolmodel.2017.02.017) DOI

Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197-209. (10.1111/j.1461-0248.2008.01267.x) PubMed DOI

Cobbold CA, Lutscher F, Sherratt JA. 2015. Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes. Ecol. Complex. 24, 69-81. (10.1016/j.ecocom.2015.10.001) DOI

Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA. 2017. Two-species migration and clustering in two-dimensional domains. Bull. Math. Biol. 79, 2302-2333. (10.1007/s11538-017-0331-0) PubMed DOI PMC

Pickett STA, Cadenasso ML. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269, 331-334. (10.1126/science.269.5222.331) PubMed DOI

Crampin EJ, Hackborn WW, Maini PK. 2002. Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747-769. (10.1006/bulm.2002.0295) PubMed DOI

Krause AL, Ellis MA, Van Gorder RA. 2019. Influence of curvature, growth, and anisotropy on the evolution of Turing patterns on growing manifolds. Bull. Math. Biol. 81, 759-799. (10.1007/s11538-018-0535-y) PubMed DOI PMC

Belmonte-Beitia J, Woolley TE, Scott JG, Maini PK, Gaffney EA. 2013. Modelling biological invasions: individual to population scales at interfaces. J. Theor. Biol. 334, 1-12. (10.1016/j.jtbi.2013.05.033) PubMed DOI

Sun G-Q, Jusup M, Jin Z, Wang Y, Wang Z. 2016. Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43-73. (10.1016/j.plrev.2016.08.002) PubMed DOI PMC

Avitabile D, Breña Medina VF, Ward MJ. 2018. Spot dynamics in a reaction-diffusion model of plant root hair initiation. SIAM J. Appl. Math. 78, 291-319. (10.1137/17M1120932) DOI

Breña Medina VF, Avitabile D, Champneys AR, Ward MJ. 2015. Stripe to spot transition in a plant root hair initiation model. SIAM J. Appl. Math. 75, 1090-1119. (10.1137/140964527) DOI

Auchmuty JFG, Nicolis G. 1975. Bifurcation analysis of nonlinear reaction-diffusion equations–I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37, 323-365. (10.1016/S0092-8240(75)80036-X) DOI

Benson DL, Sherratt JA, Maini PK. 1993. Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365-384. (10.1007/BF02460888) DOI

Page KM, Maini PK, Monk NAM. 2003. Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D 181, 80-101. (10.1016/S0167-2789(03)00068-X) DOI

Page KM, Maini PK, Monk NAM. 2005. Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D 202, 95-115. (10.1016/j.physd.2005.01.022) DOI

Iron D, Ward MJ. 2001. Spike pinning for the Gierer–Meinhardt model. Math. Comput. Simul. 55, 419-431. (10.1016/S0378-4754(00)00303-7) DOI

Ward MJ, McInerney D, Houston P, Gavaghan D, Maini P. 2002. The dynamics and pinning of a spike for a reaction-diffusion system. SIAM J. Appl. Math. 62, 1297-1328. (10.1137/S0036139900375112) DOI

Wei J, Winter M, Yang W. 2017. Stable spike clusters for the precursor Gierer–Meinhardt system in PubMed DOI PMC

Doelman A, van Heijster P, Shen J. 2018. Pulse dynamics in reaction–diffusion equations with strong spatially localized impurities. Phil. Trans. R. Soc. A 376, 20170183. (10.1098/rsta.2017.0183) PubMed DOI PMC

Yuan X, Teramoto T, Nishiura Y. 2007. Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system. Phys. Rev. E 75, 036220. (10.1103/PhysRevE.75.036220) PubMed DOI

Epstein IR, Showalter K. 1996. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13 132-13 147. (10.1021/jp953547m) DOI

Haim L, Hagberg A, Meron E. 2015. Non-monotonic resonance in a spatially forced Lengyel-Epstein model. Chaos 25, 064307. (10.1063/1.4921768) PubMed DOI

Lengyel I, Epstein IR. 1991. Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251, 650-652. (10.1126/science.251.4994.650) PubMed DOI

Míguez DG, Pérez-Villar V, Muñuzuri AP. 2005. Turing instability controlled by spatiotemporal imposed dynamics. Phys. Rev. E 71, 066217. (10.1103/PhysRevE.71.066217) PubMed DOI

Peter R et al. 2005. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry. Phys. Rev. E 71, 046212. (10.1103/PhysRevE.71.046212) PubMed DOI

Rüdiger S, Míguez DG, Munuzuri AP, Sagués F, Casademunt J. 2003. Dynamics of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301. (10.1103/PhysRevLett.90.128301) PubMed DOI

Rüdiger S, Nicola EM, Casademunt J, Kramer L. 2007. Theory of pattern forming systems under traveling-wave forcing. Phys. Rep. 447, 73-111. (10.1016/j.physrep.2007.02.017) DOI

Konow C, Dolnik M, Epstein IR. 2021. Insights from chemical systems into Turing-type morphogenesis. Phil. Trans. R. Soc. A 379, 20200269. (10.1098/rsta.2020.0269) PubMed DOI

Dewel G, Borckmans P. 1989. Effects of slow spatial variations on dissipative structures. Phys. Lett. A 138, 189-192. (10.1016/0375-9601(89)90025-X) DOI

Kuske R, Eckhaus W. 1997. Pattern formation in systems with slowly varying geometry. SIAM J. Appl. Math. 57, 112-152. (10.1137/S0036139994277531) DOI

Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. 2007. A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108. (10.1371/journal.pcbi.0030108) PubMed DOI PMC

Kozák M, Gaffney EA, Klika V. 2019. Pattern formation in reaction-diffusion systems with piecewise kinetic modulation: an example study of heterogeneous kinetics. Phys. Rev. E 100, 042220. (10.1103/PhysRevE.100.042220) PubMed DOI

Van Gorder RA. 2021. Pattern formation from spatially heterogeneous reaction–diffusion systems. Phil. Trans. R. Soc. A 379, 20210001. (10.1098/rsta.2021.0001) PubMed DOI

Woolley TE, Krause AL, Gaffney EA. 2021. Bespoke Turing systems. Bull. Math. Biol. 83, 1-32. (10.1007/s11538-021-00870-y) PubMed DOI PMC

Kolokolnikov T, Wei J. 2018. Pattern formation in a reaction-diffusion system with space-dependent feed rate. SIAM Rev. 60, 626-645. (10.1137/17M1116027) DOI

Krause AL, Klika V, Woolley TE, Gaffney EA. 2018. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. Phys. Rev. E 97, 052206. (10.1103/PhysRevE.97.052206) PubMed DOI

Veerman F, Mercker M, Marciniak-Czochra A. 2021. Beyond Turing: far-from-equilibrium patterns and mechano-chemical feedback. Phil. Trans. R. Soc. A 379, 20200278. (10.1098/rsta.2020.0278) PubMed DOI

Taylor NP, Kim H, Krause AL, Van Gorder RA. 2020. A non-local cross-diffusion model of population dynamics I: emergent spatial and spatiotemporal patterns. Bull. Math. Biol. 82, 1-40. (10.1007/s11538-020-00786-z) PubMed DOI

Lee SS, Gaffney E, Baker R. 2011. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull. Math. Biol. 73, 2527-2551. (10.1007/s11538-011-9634-8) PubMed DOI

Varea C, Aragón J, Barrio R. 1997. Confined Turing patterns in growing systems. Phys. Rev. E 56, 1250. (10.1103/PhysRevE.56.1250) DOI

Crampin EJ, Gaffney EA, Maini PK. 1999. Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093-1120. (10.1006/bulm.1999.0131) PubMed DOI

Baker RE, Gaffney E, Maini P. 2008. Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21, R251. (10.1088/0951-7715/21/11/R05) DOI

Barrass I, Crampin EJ, Maini PK. 2006. Mode transitions in a model reaction–diffusion system driven by domain growth and noise. Bull. Math. Biol. 68, 981-995. (10.1007/s11538-006-9106-8) PubMed DOI

Ueda K-I, Nishiura Y. 2012. A mathematical mechanism for instabilities in stripe formation on growing domains. Physica D 241, 37-59. (10.1016/j.physd.2011.09.016) DOI

Madzvamuse A, Gaffney EA, Maini PK. 2010. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133-164. (10.1007/s00285-009-0293-4) PubMed DOI

Hetzer G, Madzvamuse A, Shen W. 2012. Characterization of Turing diffusion-driven instability on evolving domains. Discrete Continu. Dyn. Syst.-A 32, 3975. (10.3934/dcds.2012.32.3975) DOI

Klika V, Gaffney EA. 2017. History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability. Proc. R. Soc. A 473, 20160744. (10.1098/rspa.2016.0744) PubMed DOI PMC

Van Gorder RA, Klika V, Krause AL. 2021. Turing conditions for pattern forming systems on evolving manifolds. J. Math. Biol. 82, 1-61. (10.1007/s00285-021-01552-y) PubMed DOI

Comanici A, Golubitsky M. 2008. Patterns on growing square domains via mode interactions. Dyn. Syst. 23, 167-206. (10.1080/14689360801945327) DOI

Knobloch E, Krechetnikov R. 2014. Stability on time-dependent domains. J. Nonlinear Sci. 24, 493-523. (10.1007/s00332-014-9197-6) DOI

Krechetnikov R, Knobloch E. 2017. Stability on time-dependent domains: convective and dilution effects. Physica D 342, 16-23. (10.1016/j.physd.2016.10.003) DOI

Knobloch E, Krechetnikov R. 2015. Problems on time-varying domains: formulation, dynamics, and challenges. Acta Applicandae Mathematicae 137, 123-157. (10.1007/s10440-014-9993-x) DOI

Timm U, Okubo A. 1992. Diffusion-driven instability in a predator-prey system with time-varying diffusivities. J. Math. Biol. 30, 307-320. (10.1007/BF00176153) DOI

Gourley S, Britton N, Chaplain M, Byrne H. 1996. Mechanisms for stabilisation and destabilisation of systems of reaction-diffusion equations. J. Math. Biol. 34, 857-877. (10.1007/BF01834823) DOI

Challenger JD, Burioni R, Fanelli D. 2015. Turing-like instabilities from a limit cycle. Phys. Rev. E 92, 022818. (10.1103/PhysRevE.92.022818) PubMed DOI

Kuwamura M, Izuhara H. 2017. Diffusion-driven destabilization of spatially homogeneous limit cycles in reaction-diffusion systems. Chaos 27, 033112. (10.1063/1.4978924) PubMed DOI

Aranson IS, Kramer L. 2002. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99. (10.1103/RevModPhys.74.99) DOI

Benjamin TB, Feir JE. 1967. The disintegration of wave trains on deep water part 1. Theory. J. Fluid Mech. 27, 417-430. (10.1017/S002211206700045X) DOI

Van Gorder RA. 2020. Turing and Benjamin–Feir instability mechanisms in non-autonomous systems. Proc. R. Soc. A 476, 20200003. (10.1098/rspa.2020.0003) DOI

Van Gorder RA. 2021. A theory of pattern formation for reaction–diffusion systems on temporal networks. Proc. R. Soc. A 477, 20200753. (10.1098/rspa.2020.0753) DOI

Buttenschön A, Liu Y, Edelstein-Keshet L. 2020. Cell size, mechanical tension, and GTpase signaling in the single cell. Bull. Math. Biol. 82, 1-33. (10.1007/s11538-019-00680-3) PubMed DOI

Liu Y, Rens EG, Edelstein-Keshet L. 2021. Spots, stripes, and spiral waves in models for static and motile cells. J. Math. Biol. 82, 1-38. (10.1007/s00285-021-01560-y) PubMed DOI PMC

Rens EG, Edelstein-Keshet L. 2021. Cellular tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. (http://arxiv.org/abs/2104.09182).

Vanderlei B, Feng JJ, Edelstein-Keshet L. 2011. A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model. Simul. 9, 1420-1443. (10.1137/100815335) PubMed DOI PMC

Schwank G, Basler K. 2010. Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspect. Biol. 2, a001669. (10.1101/cshperspect.a001669) PubMed DOI PMC

Goriely A. 2017. The mathematics and mechanics of biological growth. New York, NY: Springer.

Swift J, Hohenberg PC. 1977. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319. (10.1103/PhysRevA.15.319) DOI

Cahn JW, Hilliard JE. 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267. (10.1063/1.1744102) DOI

Kielhöfer H. 1997. Pattern formation of the stationary Cahn-Hilliard model. Proc. R. Soc. Edinb., Sect. A 127, 1219-1243. (10.1017/S0308210500027037) DOI

Cohen DS, Murray JD. 1981. A generalized diffusion model for growth and dispersal in a population. J. Math. Biol. 12, 237-249. (10.1007/BF00276132) DOI

Ochoa FL. 1984. A generalized reaction diffusion model for spatial structure formed by motile cells. Biosystems 17, 35-50. (10.1016/0303-2647(84)90014-5) PubMed DOI

Murray JD. 2007. Mathematical biology: I. An introduction. London, UK: Springer Science & Business Media.

Van Gorder RA, Kim H, Krause A. 2019. Diffusive instabilities and spatial patterning from the coupling of reaction-diffusion processes with Stokes flow in complex domains. J. Fluid Mech. 877, 759-823. (10.1017/jfm.2019.620) DOI

Satnoianu RA, Menzinger M. 2002. A general mechanism for ‘inexact’ phase differences in reaction–diffusion–advection systems. Phys. Lett. A 304, 149-156. (10.1016/S0375-9601(02)01387-7) DOI

Rovinsky AB, Menzinger M. 1992. Chemical instability induced by a differential flow. Phys. Rev. Lett. 69, 1193. (10.1103/PhysRevLett.69.1193) PubMed DOI

Satnoianu RA. 2003. Coexistence of stationary and traveling waves in reaction-diffusion-advection systems. Phys. Rev. E 68, 032101. (10.1103/PhysRevE.68.032101) PubMed DOI

Gambino G, Lombardo M, Sammartino M. 2014. Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Applicandae Mathematicae 132, 283-294. (10.1007/s10440-014-9903-2) DOI

Gambino G, Lombardo M, Sammartino M, Sciacca V. 2013. Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042925. (10.1103/PhysRevE.88.042925) PubMed DOI

Hillen T, Painter KJ. 2009. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183-217. (10.1007/s00285-008-0201-3) PubMed DOI

Horstmann D. 2003. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. DMV 105, 103-165.

Maini PK, Baker RE, Chuong C-M. 2006. The Turing model comes of molecular age. Science 314, 1397. (10.1126/science.1136396) PubMed DOI PMC

Fanelli D, Cianci C, Di Patti F. 2013. Turing instabilities in reaction-diffusion systems with cross diffusion. Eur. Phys. J. B 86, 1-8. (10.1140/epjb/e2013-30649-7) DOI

Gambino G, Lombardo MC, Sammartino M. 2012. Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82, 1112-1132. (10.1016/j.matcom.2011.11.004) DOI

Madzvamuse A, Ndakwo HS, Barreira R. 2015. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70, 709-743. (10.1007/s00285-014-0779-6) PubMed DOI

Shigesada N, Kawasaki K, Teramoto E. 1979. Spatial segregation of interacting species. J. Theor. Biol. 79, 83-99. (10.1016/0022-5193(79)90258-3) PubMed DOI

Zemskov EP, Horsthemke W. 2016. Diffusive instabilities in hyperbolic reaction-diffusion equations. Phys. Rev. E 93, 032211. (10.1103/PhysRevE.93.032211) PubMed DOI

De Groot SR, Mazur P. 2013. Non-equilibrium thermodynamics. Amsterdam, Netherlands: Courier Corporation.

Klika V, Grmela M. 2013. Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics. Phys. Rev. E 87, 012141. (10.1103/PhysRevE.87.012141) PubMed DOI

Klika V, Krause AL. 2018. Beyond Onsager-Casimir relations: shared dependence of phenomenological coefficients on state variables. J. Phys. Chem. Lett. 9, 7021-7025. (10.1021/acs.jpclett.8b03281) PubMed DOI

Krishna R, Wesselingh J. 1997. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861-911. (10.1016/S0009-2509(96)00458-7) DOI

Esposito M. 2020. Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun. Chem. 3, 1-3. (10.1038/s42004-020-00344-7) PubMed DOI PMC

Falasco G, Rao R, Esposito M. 2018. Information thermodynamics of Turing patterns. Phys. Rev. Lett. 121, 108301. (10.1103/PhysRevLett.121.108301) PubMed DOI

Satnoianu RA, Menzinger M, Maini PK. 2000. Turing instabilities in general systems. J. Math. Biol. 41, 493-512. (10.1007/s002850000056) PubMed DOI

Diego X, Marcon L, Müller P, Sharpe J. 2018. Key features of Turing systems are determined purely by network topology. Phys. Rev. X 8, 021071.

Marcon L, Diego X, Sharpe J, Müller P. 2016. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022. (10.7554/eLife.14022) PubMed DOI PMC

Scholes NS, Schnoerr D, Isalan M, Stumpf MP. 2019. A comprehensive network atlas reveals that Turing patterns are common but not robust. Cell Syst. 9, 243-257. (10.1016/j.cels.2019.07.007) PubMed DOI

Glover JD et al. 2017. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol. 15, e2002117. (10.1371/journal.pbio.2002117) PubMed DOI PMC

Painter K, Hunt G, Wells K, Johansson J, Headon D. 2012. Towards an integrated experimental–theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis. Interface Focus 2, 433-450. (10.1098/rsfs.2011.0122) PubMed DOI PMC

Economou AD, Monk NA, Green JB. 2020. Perturbation analysis of a multi-morphogen Turing reaction-diffusion stripe patterning system reveals key regulatory interactions. Development 147, dev190553. (10.1242/dev.190553) PubMed DOI PMC

Klika V, Baker RE, Headon D, Gaffney EA. 2012. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74, 935-957. (10.1007/s11538-011-9699-4) PubMed DOI

Haas PA, Goldstein RE. 2021. Turing’s diffusive threshold in random reaction-diffusion systems. Phys. Rev. Lett. 126, 238101. (10.1103/PhysRevLett.126.238101) PubMed DOI

Marciniak-Czochra A, Karch G, Suzuki K. 2017. Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74, 583-618. (10.1007/s00285-016-1035-z) PubMed DOI PMC

Lengyel I, Epstein IR. 1992. A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977-3979. (10.1073/pnas.89.9.3977) PubMed DOI PMC

Korvasová K, Gaffney E, Maini P, Ferreira M, Klika V. 2015. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. J. Theor. Biol. 367, 286-295. (10.1016/j.jtbi.2014.11.024) PubMed DOI

Borckmans P, Dewel G, De Wit A, Walgraef D. 1995. Turing bifurcations and pattern selection. In Chemical waves and patterns, pp. 323–363. New York, NY: Springer.

Anderson DF. 2011. A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71, 1487-1508. (10.1137/11082631X) DOI

Sharpe J. 2019. Wolpert’s french flag: what’s the problem? Development 146, dev185967. (10.1242/dev.185967) PubMed DOI

Fadai NT, Ward MJ, Wei J. 2017. Delayed reaction kinetics and the stability of spikes in the Gierer–Meinhardt model. SIAM J. Appl. Math. 77, 664-696. (10.1137/16M1063460) DOI

Gaffney E, Lee SS. 2015. The sensitivity of Turing self-organization to biological feedback delays: 2d models of fish pigmentation. Math. Med. Biol. 32, 57-79. (10.1093/imammb/dqt017) PubMed DOI

Gaffney E, Monk N. 2006. Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68, 99-130. (10.1007/s11538-006-9066-z) PubMed DOI

Jiang W, Wang H, Cao X. 2019. Turing instability and Turing–Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay. J. Dyn. Differ. Equ. 31, 2223-2247. (10.1007/s10884-018-9702-y) DOI

Yi F, Gaffney EA, Seirin-Lee S. 2017. The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the schnakenberg system. Discrete Continu. Dyn. Syst. B 22, 647. (10.3934/dcdsb.2017031) DOI

Fadai NT, Ward MJ, Wei J. 2018. A time-delay in the activator kinetics enhances the stability of a spike solution to the Gierer-Meinhardt model. Discrete Continu. Dyn. Syst. B 23, 1431. (10.3934/dcdsb.2018158) DOI

Erban R, Chapman SJ. 2019. Stochastic modelling of reaction–diffusion processes, vol. 60. Cambridge, UK: Cambridge University Press.

Schumacher LJ, Woolley TE, Baker RE. 2013. Noise-induced temporal dynamics in Turing systems. Phys. Rev. E 87, 042719. (10.1103/PhysRevE.87.042719) PubMed DOI

Woolley TE, Baker RE, Gaffney EA, Maini PK. 2011. Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E 84, 046216. (10.1103/PhysRevE.84.046216) PubMed DOI

Woolley TE, Baker RE, Gaffney EA, Maini PK, Seirin-Lee S. 2012. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85, 051914. (10.1103/PhysRevE.85.051914) PubMed DOI

Adamer MF, Harrington HA, Gaffney EA, Woolley TE. 2020. Coloured noise from stochastic inflows in reaction–diffusion systems. Bull. Math. Biol. 82, 1-28. (10.1007/s11538-020-00719-w) PubMed DOI PMC

Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. 2012. Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487-496. (10.1098/rsfs.2011.0113) PubMed DOI PMC

Grindrod P. 1991. Patterns and waves: the theory and applications of reaction-diffusion equations. Oxford, UK: Oxford University Press.

Mori Y, Jilkine A, Edelstein-Keshet L. 2008. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94, 3684-3697. (10.1529/biophysj.107.120824) PubMed DOI PMC

Cantrell RS, Cosner C. 2004. Spatial ecology via reaction-diffusion equations. Chichester, UK: John Wiley & Sons.

Deutsch A, Dormann S. 2005. Cellular automaton modeling of biological pattern formation. New York, NY: Springer.

Turing AM. 1950. Computing machinery and intelligence. Mind 59, 433. (10.1093/mind/LIX.236.433) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...