• This record comes from PubMed

From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ

. 2020 Jan ; 17 (162) : 20190621. [epub] 20200115

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/N006097/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Pattern formation from homogeneity is well studied, but less is known concerning symmetry-breaking instabilities in heterogeneous media. It is non-trivial to separate observed spatial patterning due to inherent spatial heterogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability which are local versions of the classical Turing conditions. We find that the structure of unstable modes differs substantially from the typical trigonometric functions seen in the spatially homogeneous setting. Modes of different growth rates are localized to different spatial regions. This localization helps explain common amplitude modulations observed in simulations of Turing systems in heterogeneous settings. We numerically demonstrate this theory, giving an illustrative example of the emergent instabilities and the striking complexity arising from spatially heterogeneous reaction-diffusion systems. Our results give insight both into systems driven by exogenous heterogeneity, as well as successive pattern forming processes, noting that most scenarios in biology do not involve symmetry breaking from homogeneity, but instead consist of sequential evolutions of heterogeneous states. The instability mechanism reported here precisely captures such evolution, and extends Turing's original thesis to a far wider and more realistic class of systems.

See more in PubMed

Turing AM. 1952. The chemical basis of morphogenesis. Phil. Trans. R Soc. Lond. B 237, 37–72. (10.1098/rstb.1952.0012) PubMed DOI PMC

De Kepper P, Castets V, Dulos E, Boissonade J. 1991. Turing-type chemical patterns in the chlorite–iodide–malonic acid reaction. Physica D 49, 161–169. (10.1016/0167-2789(91)90204-M) DOI

Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112. (10.1103/RevModPhys.65.851) DOI

Kondo S, Miura T. 2010. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620. (10.1126/science.1179047) PubMed DOI

Murray JD. 2004. Mathematical biology, interdisciplinary applied mathematics. New York, NY: Springer.

Green JBA, Sharpe J. 2015. Positional information and reaction–diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211. (10.1242/dev.114991) PubMed DOI

Woolley T. 2014. Mighty morphogenesis. In 50 Visions of mathematics (ed. Parc S.), pp. 180–183. Oxford, UK: Oxford University Press.

Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338, 1476–1480. (10.1126/science.1226804) PubMed DOI PMC

Wolpert L. 2016. Positional information and pattern formation. In Current topics in developmental biology, vol. 117, pp. 597–608. London, UK: Academic Press. PubMed

Holloway DM. 1995. Reaction-diffusion theory of vertebrate organogenesis. PhD thesis, University of British Columbia.

Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854. (10.1038/nmeth.3016) PubMed DOI PMC

Weber EL, Woolley TE, Yeh C-Y, Ou K-L, Maini PK, Chuong C-M. 2019. Self-organizing hair peg-like structures from dissociated skin progenitor cells: new insights for human hair follicle organoid engineering and Turing patterning in an asymmetric morphogenetic field. Exp. Dermatol. 28, 355–366. (10.1111/exd.13891) PubMed DOI PMC

Meinhardt H. 1983. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375–385. (10.1016/0012-1606(83)90175-6) PubMed DOI

Irvine KD, Rauskolb C. 2001. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214. (10.1146/annurev.cellbio.17.1.189) PubMed DOI

Pickett STA, Cadenasso ML. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269, 331–334. (10.1126/science.269.5222.331) PubMed DOI

Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. (10.1111/j.1461-0248.2008.01267.x) PubMed DOI

Cobbold CA, Lutscher F, Sherratt JA. 2015. Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes. Ecol. Complex. 24, 69–81. (10.1016/j.ecocom.2015.10.001) DOI

Bassett A, Krause AL, Van Gorder RA. 2017. Continuous dispersal in a model of predator–prey–subsidy population dynamics. Ecol. Modell. 354, 115–122. (10.1016/j.ecolmodel.2017.02.017) DOI

Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA. 2017. Two-species migration and clustering in two-dimensional domains. Bull. Math. Biol. 79, 2302–2333. (10.1007/s11538-017-0331-0) PubMed DOI PMC

Crampin EJ, Hackborn WW, Maini PK. 2002. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–769. (10.1006/bulm.2002.0295) PubMed DOI

Krause AL, Ellis MA, Van Gorder RA. 2019. Influence of curvature, growth, and anisotropy on the evolution of Turing patterns on growing manifolds. Bull. Math. Biol. 81, 759–799. (10.1007/s11538-018-0535-y) PubMed DOI PMC

Sun G-Q, Jusup M, Jin Z, Wang Y, Wang Z. 2016. Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73. (10.1016/j.plrev.2016.08.002) PubMed DOI PMC

Belmonte-Beitia J, Woolley TE, Scott JG, Maini PK, Gaffney EA. 2013. Modelling biological invasions: individual to population scales at interfaces. J. Theor. Biol. 334, 1–12. (10.1016/j.jtbi.2013.05.033) PubMed DOI

Breña Medina VF, Avitabile D, Champneys AR, Ward MJ. 2015. Stripe to spot transition in a plant root hair initiation model. SIAM J. Appl. Math. 75, 1090 (111910.1137/140964527) DOI

Avitabile D, Breña Medina VF, Ward MJ. 2018. Spot dynamics in a reaction–diffusion model of plant root hair initiation. SIAM J. Appl. Math. 78, 291–319. (10.1137/17M1120932) DOI

Benson DL, Sherratt JA, Maini PK. 1993. Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365–384. (10.1016/S0092-8240(05)80270-8) DOI

Page K, Maini PK, Monk NAM. 2003. Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Physica D 181, 80–101. (10.1016/S0167-2789(03)00068-X) DOI

Page KM, Maini PK, Monk NAM. 2005. Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Physica D 202, 95–115. (10.1016/j.physd.2005.01.022) DOI

Iron D, Ward MJ. 2001. Spike pinning for the Gierer–Meinhardt model. Math. Comput. Simul. 55, 419–431. (10.1016/S0378-4754(00)00303-7) DOI

Ward MJ, McInerney D, Houston P, Gavaghan D, Maini P. 2002. The dynamics and pinning of a spike for a reaction–diffusion system. SIAM J. Appl. Math. 62, 1297–1328. (10.1137/S0036139900375112) DOI

Wei J, Winter M, Yang W. 2017. Stable spike clusters for the precursor Gierer–Meinhardt system in PubMed DOI PMC

Krause AL, Klika V, Woolley TE, Gaffney EA. 2018. Heterogeneity induces spatiotemporal oscillations in reaction–diffusion systems. Phys. Rev. E 97, 052206 (10.1103/PhysRevE.97.052206) PubMed DOI

Kolokolnikov T, Wei J. 2018. Pattern formation in a reaction–diffusion system with space-dependent feed rate. SIAM Rev. 60, 626–645. (10.1137/17M1116027) DOI

Auchmuty JFG, Nicolis G. 1975. Bifurcation analysis of nonlinear reaction–diffusion equations—I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37, 323–365. (10.1016/s0092-8240(75)80036-x) DOI

Doelman A, van Heijster P, Shen J. 2018. Pulse dynamics in reaction–diffusion equations with strong spatially localized impurities. Phil. Trans. R. Soc. A 376, 20170183 (10.1098/rsta.2017.0183) PubMed DOI PMC

Kozák M, Gaffney EA, Klika V. 2019. Pattern formation in reaction-diffusion systems with piece-wise kinetic modulation: an example study of heterogeneous kinetics. Phys. Rev. E 100, 042220 (10.1103/PhysRevE.100.042220) PubMed DOI

Lengyel I, Epstein IR. 1991. Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251, 650 (65210.1126/science.251.4994.650) PubMed DOI

Epstein IR, Showalter K. 1996. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132–13147. (10.1021/jp953547m) DOI

Rüdiger S, Míguez DG, Munuzuri AP, Sagués F, Casademunt J. 2003. Dynamics of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301 (10.1103/PhysRevLett.90.128301) PubMed DOI

Míguez DG, Pérez-Villar V, Muñuzuri AP. 2005. Turing instability controlled by spatiotemporal imposed dynamics. Phys. Rev. E 71, 066217 (10.1103/PhysRevE.71.066217) PubMed DOI

Rüdiger S, Nicola EM, Casademunt J, Kramer L. 2007. Theory of pattern forming systems under traveling-wave forcing. Phys. Rep. 447, 73–111. (10.1016/j.physrep.2007.02.017) DOI

Yang L, Dolnik M, Zhabotinsky AM, Epstein IR. 2002. Spatial resonances and superposition patterns in a reaction–diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303 (10.1103/PhysRevLett.88.208303) PubMed DOI

Peter R, Hilt M, Ziebert F, Bammert J, Erlenkämper C, Lorscheid N, Weitenberg C, Winter A, Hammele M, Zimmermann W. 2005. Stripe–hexagon competition in forced pattern-forming systems with broken up-down symmetry. Phys. Rev. E 71, 046212 (10.1103/PhysRevE.71.046212) PubMed DOI

Haim L, Hagberg A, Meron E. 2015. Non-monotonic resonance in a spatially forced Lengyel-Epstein model. Chaos 25, 064307 (10.1063/1.4921768) PubMed DOI

Dewel G, Borckmans P. 1989. Effects of slow spatial variations on dissipative structures. Phys. Lett. A 138, 189–192. (10.1016/0375-9601(89)90025-X) DOI

Kuske R, Eckhaus W. 1997. Pattern formation in systems with slowly varying geometry. SIAM J. Appl. Math. 57, 112–152. (10.1137/S0036139994277531) DOI

Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. 2007. A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108 (10.1371/journal.pcbi.0030108) PubMed DOI PMC

Mendez V, Fedotov S, Horsthemke W. 2010. Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. New York, NY: Springer-Verlag.

Klika V, Kozák M, Gaffney EA. 2018. Domain size driven instability: self-organization in systems with advection. SIAM J. Appl. Math. 78, 2298–2322. (10.1137/17M1138571) DOI

Klika V. 2017. Significance of non-normality-induced patterns: Transient growth versus asymptotic stability. Chaos 27, 073120 (10.1063/1.4985256) PubMed DOI

Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. 2012. Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487–496. (10.1098/rsfs.2011.0113) PubMed DOI PMC

Woolley TE, Baker RE, Maini PK. 2017. In The incomputable, pp. 219–235. Berlin, Germany: Springer.

Dwyer HI, Zettl A. 1995. Electronic Journal of Differential Equations (EJDE)[electronic only] 1995.

Malamud MM. 2005. In Sturm-Liouville Theory, pp. 237–270. Berlin, Germany: Springer.

Bremmer H. 1951. The W.K.B. approximation as the first term of a geometric-optical series. Commun. Pure Appl. Math. 4, 105–115. (10.1002/cpa.3160040111) DOI

Alder K, Pauli HKA. 1969. Quantal corrections and the WKB approximation of multiple Coulomb excitation. Nucl. Phys. A 128, 193–208. (10.1016/0375-9474(69)90985-3) DOI

Griffiths DJ, Schroeter DF. 2018. Introduction to quantum mechanics. Cambridge, UK: Cambridge University Press.

Bender CM, Orszag SA. 2013. Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer Science & Business Media.

Tennyson CN, Klamut HJ, Worton RG. 1995. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9, 184–190. (10.1038/ng0295-184) PubMed DOI

Singh J, Padgett RA. 2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133. (10.1038/nsmb.1666) PubMed DOI PMC

Sekine R, Shibata T, Ebisuya M. 2018. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty. Nat. Commun. 9, 5456 (10.1038/s41467-018-07847-x) PubMed DOI PMC

Crawford JD. 1991. Introduction to bifurcation theory. Rev. Mod. Phys. 63, 991 (103710.1103/RevModPhys.63.991) DOI

Wollkind DJ, Manoranjan VS, Zhang L. 1994. Weakly nonlinear stability analyses of prototype reaction–diffusion model equations. SIAM Rev. 36, 176–214. (10.1137/1036052) DOI

Stephenson LE, Wollkind DJ. 1995. Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator–inhibitor/immobilizer model systems. J. Math. Biol. 33, 771–815. (10.1007/BF00187282) DOI

Chen Y, Buceta J. 2019. A non-linear analysis of Turing pattern formation. PLoS ONE 14, e0220994 (10.1371/journal.pone.0220994) PubMed DOI PMC

Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12, 30–39. (10.1007/BF00289234) PubMed DOI

Turing AM. 1950. I.–Computing machinery and intelligence. Mind 59, 433–460. (10.1093/mind/LIX.236.433) DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...