Turing Instabilities are Not Enough to Ensure Pattern Formation
Language English Country United States Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38253936
PubMed Central
PMC10803432
DOI
10.1007/s11538-023-01250-4
PII: 10.1007/s11538-023-01250-4
Knihovny.cz E-resources
- Keywords
- Multistability, Pattern formation, Turing instabilities,
- MeSH
- Models, Biological MeSH
- Diffusion MeSH
- Ecosystem * MeSH
- Gene Regulatory Networks MeSH
- Mathematical Concepts * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Symmetry-breaking instabilities play an important role in understanding the mechanisms underlying the diversity of patterns observed in nature, such as in Turing's reaction-diffusion theory, which connects cellular signalling and transport with the development of growth and form. Extensive literature focuses on the linear stability analysis of homogeneous equilibria in these systems, culminating in a set of conditions for transport-driven instabilities that are commonly presumed to initiate self-organisation. We demonstrate that a selection of simple, canonical transport models with only mild multistable non-linearities can satisfy the Turing instability conditions while also robustly exhibiting only transient patterns. Hence, a Turing-like instability is insufficient for the existence of a patterned state. While it is known that linear theory can fail to predict the formation of patterns, we demonstrate that such failures can appear robustly in systems with multiple stable homogeneous equilibria. Given that biological systems such as gene regulatory networks and spatially distributed ecosystems often exhibit a high degree of multistability and nonlinearity, this raises important questions of how to analyse prospective mechanisms for self-organisation.
Department of Mathematical Sciences University of Bath Bath BA2 7AY UK
Department of Mathematics University College London London WC1E 6BT UK
See more in PubMed
Al-Karkhi TA, Kusdiantara R, Susanto H, Codling EA. Bloom formation and turing patterns in an infochemical mediated multitrophic Plankton model. Int J Bifurc Chaos. 2020;30(10):2030028. doi: 10.1142/S0218127420300281. DOI
Arnoldt H, Timme M, Grosskinsky S. Frequency-dependent fitness induces multistability in coevolutionary dynamics. J R Soc Interface. 2012;9(77):3387–3396. doi: 10.1098/rsif.2012.0464. PubMed DOI PMC
Bastiaansen R, Doelman A, Eppinga MB, Rietkerk M. The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecol Lett. 2020;23(3):414–429. doi: 10.1111/ele.13449. PubMed DOI PMC
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J (2023) Theoretical and computational tools to model multistable gene regulatory networks. Rep Progress Phys PubMed PMC
Breña-Medina V, Champneys A. Subcritical turing bifurcation and the morphogenesis of localized patterns. Phys Rev E. 2014;90(3):032923. doi: 10.1103/PhysRevE.90.032923. PubMed DOI
Champneys AR, Al Saadi F, Breña-Medina VF, Grieneisen VA, Marée AF, Verschueren N, Wuyts B. Bistability, wave pinning and localisation in natural reaction–diffusion systems. Physica D Nonlinear Phenom. 2021;416:132735. doi: 10.1016/j.physd.2020.132735. DOI
Doelman A, Veerman F. An explicit theory for pulses in two component, singularly perturbed, reaction–diffusion equations. J Dyn Differ Equ. 2015;27:555–595. doi: 10.1007/s10884-013-9325-2. DOI
Feng S, Sáez M, Wiuf C, Feliu E, Soyer OS. Core signalling motif displaying multistability through multi-state enzymes. J R Soc Interface. 2016;13(123):20160524. doi: 10.1098/rsif.2016.0524. PubMed DOI PMC
Gaffney EA, Krause AL, Maini PK, Wang C. Spatial heterogeneity localizes Turing patterns in reaction-cross-diffusion systems. Discrete Contin Dyn Syst-B. 2023;28(12):6092–6125. doi: 10.3934/dcdsb.2023053. DOI
Haas PA, Goldstein RE. Turing’s diffusive threshold in random reaction–diffusion systems. Phys Rev Lett. 2021;126(23):238101. doi: 10.1103/PhysRevLett.126.238101. PubMed DOI
Höfer T, Sherratt JA, Maini PK. Cellular pattern formation during dictyostelium aggregation. Physica D. 1995;85(3):425–444. doi: 10.1016/0167-2789(95)00075-F. DOI
Holmes WR. An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems. Bull Math Biol. 2014;76:157–183. doi: 10.1007/s11538-013-9914-6. PubMed DOI PMC
Holmes WR, Mata MA, Edelstein-Keshet L. Local perturbation analysis: a computational tool for biophysical reaction–diffusion models. Biophys J. 2015;108(2):230–236. doi: 10.1016/j.bpj.2014.11.3457. PubMed DOI PMC
Horstmann D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresbericht der Deutschen Mathematiker-Vereinigung. 2003;105:103–165.
Jewell TJ, Krause AL, Maini PK, Gaffney EA (2023) Patterning of nonlocal transport models in biology: the impact of spatial dimension. arXiv:2307.03117
Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability. J Theor Biol. 1970;26(3):399–415. doi: 10.1016/0022-5193(70)90092-5. PubMed DOI
Klika V. Significance of non-normality-induced patterns: transient growth versus asymptotic stability. Chaos Interdiscip J Nonlinear Sci. 2017;27(7):073120. doi: 10.1063/1.4985256. PubMed DOI
Klika V, Gaffney EA. History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability. Proc R Soc A Math Phys Eng Sci. 2017;473(2199):20160744. PubMed PMC
Koch A-J, Meinhardt H. Biological pattern formation: from basic mechanisms to complex structures. Rev Mod Phys. 1994;66(4):1481. doi: 10.1103/RevModPhys.66.1481. DOI
Krause AL, Klika V, Woolley TE, Gaffney EA. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. J R Soc Interface. 2020;17(162):20190621. doi: 10.1098/rsif.2019.0621. PubMed DOI PMC
Krause AL, Gaffney EA, Maini PK, Klika V. Modern perspectives on near-equilibrium analysis of Turing systems. Philos Trans R Soc A. 2021;379(2213):20200268. doi: 10.1098/rsta.2020.0268. PubMed DOI PMC
Krause AL, Gaffney EA, Jewell TJ, Klika V, Walker BJ (2023) Code relating to ‘Turing instabilities are not enough’. https://github.com/AndrewLKrause/Turing-instabilities-are-not-enough-code PubMed PMC
Landge AN, Jordan BM, Diego X, Müller P. Pattern formation mechanisms of self-organizing reaction–diffusion systems. Dev Biol. 2020;460(1):2–11. doi: 10.1016/j.ydbio.2019.10.031. PubMed DOI PMC
Laurent M, Kellershohn N. Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem Sci. 1999;24(11):418–422. doi: 10.1016/S0968-0004(99)01473-5. PubMed DOI
Marcon L, Diego X, Sharpe J, Müller P. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife. 2016;5:e14022. doi: 10.7554/eLife.14022. PubMed DOI PMC
Meinhardt H, Gierer A. Pattern formation by local self-activation and lateral inhibition. BioEssays. 2000;22(8):753–760. doi: 10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z. PubMed DOI
Murray J. Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models. J Theor Biol. 1982;98(1):143–163. doi: 10.1016/0022-5193(82)90063-7. PubMed DOI
Murray JD. Mathematical biology: II: spatial models and biomedical applications. Berlin: Springer; 2023.
Painter KJ, Hillen T. Spatio-temporal chaos in a chemotaxis model. Physica D. 2011;240(4–5):363–375. doi: 10.1016/j.physd.2010.09.011. DOI
Painter KJ, Bloomfield J, Sherratt J, Gerisch A. A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol. 2015;77:1132–1165. doi: 10.1007/s11538-015-0080-x. PubMed DOI
Potts JR, Lewis MA. How memory of direct animal interactions can lead to territorial pattern formation. J R Soc Interface. 2016;13(118):20160059. doi: 10.1098/rsif.2016.0059. PubMed DOI PMC
Satnoianu RA, Menzinger M, Maini PK. Turing instabilities in general systems. J Math Biol. 2000;41:493–512. doi: 10.1007/s002850000056. PubMed DOI
Scholes NS, Schnoerr D, Isalan M, Stumpf MP. A comprehensive network atlas reveals that Turing patterns are common but not robust. Cell Syst. 2019;9(3):243–257. doi: 10.1016/j.cels.2019.07.007. PubMed DOI
Siegal-Gaskins D, Grotewold E, Smith GD. The capacity for multistability in small gene regulatory networks. BMC Syst Biol. 2009;3(1):1–14. doi: 10.1186/1752-0509-3-96. PubMed DOI PMC
Suzuki K, Nakaoka S, Fukuda S, Masuya H. Energy landscape analysis elucidates the multistability of ecological communities across environmental gradients. Ecol Monogr. 2021;91(3):e01469. doi: 10.1002/ecm.1469. DOI
Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci. 1952;237(641):37–72.
Uecker H, Wetzel D, Rademacher JD. pde2path-a Matlab package for continuation and bifurcation in 2D elliptic systems. Numer Math Theory Methods Appl. 2014;7(1):58–106. doi: 10.4208/nmtma.2014.1231nm. DOI
van de Koppel J, Rietkerk M. Spatial interactions and resilience in arid ecosystems. Am Nat. 2004;163(1):113–121. doi: 10.1086/380571. PubMed DOI
Vastano JA, Pearson JE, Horsthemke W, Swinney HL. Turing patterns in an open reactor. J Chem Phys. 1988;88(10):6175–6181. doi: 10.1063/1.454456. DOI
Veerman F, Doelman A. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J Appl Dyn Syst. 2013;12(1):28–60. doi: 10.1137/120878574. DOI
Villar-Sepúlveda E, Champneys A. Degenerate Turing bifurcation and the birth of localized patterns in activator–inhibitor systems. SIAM J Appl Dyn Syst. 2023;22(3):1673–1709. doi: 10.1137/22M1509734. DOI
Vittadello ST, Leyshon T, Schnoerr D, Stumpf MP. Turing pattern design principles and their robustness. Philos Trans R Soc A. 2021;379(2213):20200272. doi: 10.1098/rsta.2020.0272. PubMed DOI PMC
Walker BJ, Townsend AK, Chudasama AK, Krause AL. VisualPDE: rapid interactive simulations of partial differential equations. Bull Math Biol. 2023;85:113. doi: 10.1007/s11538-023-01218-4. PubMed DOI PMC
Wei J, Winter M. Mathematical aspects of pattern formation in biological systems. Berlin: Springer; 2013.
Woolley TE, Krause AL, Gaffney EA. Bespoke Turing systems. Bull Math Biol. 2021;83:1–32. doi: 10.1007/s11538-021-00870-y. PubMed DOI PMC
Wyss GD, Jorgensen KH (1998) A users guide to LHS: Sandias Latin hypercube sampling software. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Turing Instabilities are Not Enough to Ensure Pattern Formation