History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28413340
PubMed Central
PMC5378238
DOI
10.1098/rspa.2016.0744
PII: rspa20160744
Knihovny.cz E-zdroje
- Klíčová slova
- Turing instability, growing domains, pattern formation, stability in non-autonomous systems,
- Publikační typ
- časopisecké články MeSH
A diffusively driven instability has been hypothesized as a mechanism to drive spatial self-organization in biological systems since the seminal work of Turing. Such systems are often considered on a growing domain, but traditional theoretical studies have only treated the domain size as a bifurcation parameter, neglecting the system non-autonomy. More recently, the conditions for a diffusively driven instability on a growing domain have been determined under stringent conditions, including slow growth, a restriction on the temporal interval over which the prospect of an instability can be considered and a neglect of the impact that time evolution has on the stability properties of the homogeneous reference state from which heterogeneity emerges. Here, we firstly relax this latter assumption and observe that the conditions for the Turing instability are much more complex and depend on the history of the system in general. We proceed to relax all the above constraints, making analytical progress by focusing on specific examples. With faster growth, instabilities can grow transiently and decay, making the prediction of a prospective Turing instability much more difficult. In addition, arbitrarily high spatial frequencies can destabilize, in which case the continuum approximation is predicted to break down.
Department of Mathematics FNSPE Czech Technical University Prague Czech Republic
Wolfson Centre for Mathematical Biology Mathematical Institute University of Oxford Oxford UK
Zobrazit více v PubMed
Jung HS, Francis-West PH, Widelitz RB, Jiang TX, Ting-Berreth S, Tickle C, Wolpert L, Chuong CM. 1998. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol. 196, 11–23. (doi:10.1006/dbio.1998.8850) PubMed DOI
Miura T, Shiota K, Morriss-Kay G, Maini PK. 2006. Mixed-mode pattern in doublefoot mutant mouse limb–Turing reaction-diffusion model on a growing domain during limb development. J. Math. Biol. 240, 562–573. (doi:10.1016/j.jtbi.2005.10.016) PubMed DOI
Miura T, Shiota K. 2000. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec 258, 100–107. (doi:10.1002/(SICI)1097-0185(20000101)258:1<100::AID-AR11>3.0.CO;2-3) PubMed DOI
Turing A. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B B237, 37–72. (doi:10.1098/rstb.1952.0012) DOI
Solnica-Krezel L. 2003. Vertebrate development: taming the nodal waves. Curr. Biol. 13, R7–R9. (doi:10.1016/S0960-9822(02)01378-7) PubMed DOI
Schier AF. 2003. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621. (doi:10.1146/annurev.cellbio.19.041603.094522) PubMed DOI
Nakamasu A, Takahashi G, Kanbe A, Kondo S. 2009. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. PNAS 106, 8429–8434. (doi:10.1073/pnas.0808622106) PubMed DOI PMC
Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12, 30–39. (doi:10.1007/BF00289234) PubMed DOI
Koch AJ, Meinhardt H. 1994. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507. (doi:10.1103/RevModPhys.66.1481) DOI
Segel LA, Jackson JL. 1972. Dissipative structure. an explanation and an ecological example. J. Theor. Biol. 37, 545–559. (doi:10.1016/0022-5193(72)90090-2) PubMed DOI
Murray JD. 2002. Mathematical biology, vol. 2 Berlin, Germany: Springer.
Klika V, Baker RE, Headon D, Gaffney EA. 2012. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74, 935–957. (doi:10.1007/s11538-011-9699-4) PubMed DOI
Korvasová K, Gaffney EA, Maini PK, Ferreira MA, Klika V. 2015. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. J. Theoret. Biol. 367, 286–295. (doi:10.1016/j.jtbi.2014.11.024) PubMed DOI
Marcon L, Diego X, Sharpe J, Müller P. 2016. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022 (doi:10.7554/eLife.14022) PubMed DOI PMC
Castets V, Dulos E, Boissonade J, De Kepper P. 1990. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956. (doi:10.1103/PhysRevLett.64.2953) PubMed DOI
Lengyel I, Epstein I. 1991. Modeling of Turing structures in the chlorite iodide malonic acid starch reaction system. Science 251, 650–652. (doi:10.1126/science.251.4994.650) PubMed DOI
Bard J, Lauder I. 1974. How well does Turing’s theory of morphogenesis work? J. Theor. Biol. 45, 501–531. (doi:10.1016/0022-5193(74)90128-3) PubMed DOI
Bunow B, Kernevez JP, Joly G, Thomas D. 1980. Pattern formation by reaction-diffusion instabilities: applications to morphogenesis in Drosophila. J. Theor. Biol 84, 629–649. (doi:10.1016/S0022-5193(80)80024-5) PubMed DOI
Gaffney EA, Monk NAM. 2006. Gene expression time delays and Turing pattern formation system. Bull. Math. Biol. 68, 99–130. (doi:10.1007/s11538-006-9066-z) PubMed DOI
Seirin-Lee S, Gaffney EA, Monk NAM. 2010. The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems. Bull. Math. Biol. 72, 2139–2160. (doi:10.1007/s11538-010-9532-5) PubMed DOI
Hamada H. 2012. In search of Turing in vivo: understanding nodal and lefty behavior. Dev. Cell 22, 911–912. (doi:10.1016/j.devcel.2012.05.003) PubMed DOI
Chen Y, Schier AF. 2002. Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr. Biol. 12, 2124–2128. (doi:10.1016/S0960-9822(02)01362-3) PubMed DOI
Arcuri P, Murray JD. 1986. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol. 24, 141–165. (doi:10.1007/BF00275996) PubMed DOI
Kondo S, Asai R. 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768. (doi:10.1038/376765a0) PubMed DOI
Crampin EJ, Gaffney EA, Maini PK. 1999. Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120. (doi:10.1006/bulm.1999.0131) PubMed DOI
Painter KJ, Maini PK, Othmer HG. 1999. Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl Acad. Sci. USA 96, 5549–5554. (doi:10.1073/pnas.96.10.5549) PubMed DOI PMC
Kulesa PM, Cruywagen GC, Lubkin SR, Maini PK, Sneyd J, Ferguson MWJ, Murray JD. 1996. On a model mechanism for the spatial patterning of teeth primordia in the Alligator. J. Theor. Biol. 180, 287–296. (doi:10.1006/jtbi.1996.0103) DOI
Madzvamuse A, Gaffney EA, Maini PK. 2010. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133–164. (doi:10.1007/s00285-009-0293-4) PubMed DOI
Hetzer G, Madzvamuse A, Shen W. 2012. Characterization of Turing diffusion-driven instability on evolving domains. Discrete Contin. Dyn. Syst. 32, 3975–4000. (doi:10.3934/dcds.2012.32.3975) DOI
Glendinning P. 1994. Stability, instability and chaos. Cambridge, UK: Cambridge University Press.
CJ Tabin. 2006. The key to left-right asymmetry. Cell 127, 27–32. (doi:10.1016/j.cell.2006.09.018) PubMed DOI
Hamada H. 2016. Roles of motile and immotile cilia in left-right symmetry breaking. In Etiology and morphogenesis of congenital heart disease (eds T Nakanishi, RR Markwald, HS Baldwin, BB Keller, D Srivastava, H Yamagishi), pp. 49–56. Japan: Springer.
Richardson L. et al. 2014. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 42, D835–D844. (doi:10.1093/nar/gkt1155) PubMed DOI PMC
Schnakenberg J. 1979. Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400. (doi:10.1016/0022-5193(79)90042-0) PubMed DOI
Cooper GM. 2000. The cell. Sunderland, MA: Sinauer Associates.
Sakuma R. et al. 2002. Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401–412. (doi:10.1046/j.1365-2443.2002.00528.x) PubMed DOI
Lewis J. 2003. Autoinhibition with transcriptional delay: a simple mechanism for the Zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408. (doi:10.1016/S0960-9822(03)00534-7) PubMed DOI
Kobitski AY. et al. 2015. An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Sci. Rep. 5, 8601 (doi:10.1038/srep08601) PubMed DOI PMC
Turing Instabilities are Not Enough to Ensure Pattern Formation
Modern perspectives on near-equilibrium analysis of Turing systems