Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland

. 2024 Jul 30 ; 28 (3) : 37. [epub] 20240730

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39080013

Grantová podpora
Center for Geosphere Dynamics UNCE
UNCE/SCI/006 UNCE
21-03322S Grantová Agentura České Republiky

Odkazy

PubMed 39080013
DOI 10.1007/s00792-024-01352-4
PII: 10.1007/s00792-024-01352-4
Knihovny.cz E-zdroje

Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.

Zobrazit více v PubMed

Ascaso C, Wierzchos J (2003) The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol J 20:439–450. https://doi.org/10.1080/713851127 DOI

Bąbel M (2002) Brine paleocurrent analysis based on oriented selenite crystals in the Nida Gypsum deposits (Badenian, southern Poland). Geol Q 46:435–448

Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FK, McKay CP (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. https://doi.org/10.1038/ncomms1167 PubMed DOI

Benison KC, Karmanocky FJ III (2014) Could microorganisms be preserved in Mars gypsum? insights from terrestrial examples. Geology 42:615–618. https://doi.org/10.1130/G35542.1 DOI

Billi D, Staibano C, Verseux C, Fagliarone C, Mosca C, Baqué M, Rabbow E, Rettberg P (2019) Dried biofilms of desert strains of chroococcidiopsis survived prolonged exposure to space and Mars-like conditions in low Earth orbit. Astrobiology 19:1008–1017. https://doi.org/10.1089/ast.2018.1900 PubMed DOI

Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077. https://doi.org/10.1128/AEM.70.12.7070-7077.2004 PubMed DOI PMC

Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. European J Phycol 34:361–370. https://doi.org/10.1080/09670269910001736422 DOI

Caiola MG, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31:97–105. https://doi.org/10.1080/09670269600651251a DOI

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869 PubMed DOI PMC

Casanova Municchia A, Caneva G, Ricci MA, Sodo A (2014) Identification of endolithic traces on stone monuments and natural outcrops: preliminary evidences. J Raman Spectrosc 45:1180–1185. https://doi.org/10.1002/jrs.4517 DOI

Casero MC, Meslier V, DiRuggiero J, Quesada A, Ascaso C, Artieda O, Kowaluk T, Wierzchos J (2021) The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences 18:993–1007. https://doi.org/10.5194/bg-18-993-2021 DOI

Crits-Christoph A, Robinson CK, Ma B, Ravel J, Wierzchos J, Ascaso C, Artieda O, Souza-Egipsy V, Casero MC, DiRuggiero J (2016) Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front Microbiol 7:301. https://doi.org/10.3389/fmicb.2016.00301 PubMed DOI PMC

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604 PubMed DOI

Edwards HG, De Oliveira LF, Cockell CS, Ellis-Evans JC, Wynn-Williams DD (2004) Raman spectroscopy of senescing snow algae: pigmentation changes in an Antarctic cold desert extremophile. Int J Astrobiol 3:125–129. https://doi.org/10.1017/S1473550404002034 DOI

Edwards HG, Jehlička J, Němečková K, Culka A (2023) Scytonin in gypsum endolithic colonisation: First Raman spectroscopic detection of a new spectral biosignature for terrestrial astrobiological analogues and for exobiological mission database extension. Spectrochim Acta A Mol Biomol Spectrosc 292:122406. https://doi.org/10.1016/j.saa.2023.122406 DOI

Ertekin E, Meslier V, Browning A, Treadgold J, DiRuggiero J (2020) Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ Microbiol 23:3937–3956. https://doi.org/10.1111/1462-2920.15287 PubMed DOI

Ferris F, Lowson E (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43:211–219 DOI

Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring JP (2007) On the origin of gypsum in the Mars north polar region. J Geophys Res Planets. https://doi.org/10.1029/2006JE002862 DOI

Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the negev (Israel). Phycologia 6:185–200. https://doi.org/10.2216/i0031-8884-6-4-185.1 DOI

Gao X (2017) Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb Ecol 73:255–258. https://doi.org/10.1007/s00248-016-0851-4 PubMed DOI

Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631. https://doi.org/10.1111/j.1462-2920.2007.01301.x PubMed DOI

Hauer T, Bohunicka M, Muehlsteinova R (2013) Calochaete gen. nov. (Cyanobacteria, Nostocales), a new cyanobacterial type from the “páramo” zone in Costa Rica. Phytotaxa 109:36–44. https://doi.org/10.11646/phytotaxa.109.1.4 DOI

Hauer T, Mühlsteinová R, Bohunická M, Kaštovský J, Mareš J (2015) Diversity of cyanobacteria on rock surfaces. Biodivers Conserv 24:759–779. https://doi.org/10.1007/s10531-015-0890-z DOI

Horath T, Neu T, Bachofen R (2006) An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb Ecol 51:353–364. https://doi.org/10.1007/s00248-006-9051-y PubMed DOI

Jehlička J, Culka A, Mareš J (2019) Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—the messinian crisis sediments from Southern Sicily. J Raman Spectrosc 51:1802–1812. https://doi.org/10.1002/jrs.5671 DOI

Jroundi F, Gonzalez-Muñoz MT, Sterflinger K, Pinar G (2015) Molecular tools for monitoring the ecological sustainability of a stone bio-consolidation treatment at the royal chapel. Granada Plos One 10:e0132465. https://doi.org/10.1371/journal.pone.0132465 PubMed DOI

Jung P, Brust K, Schultz M, Büdel B, Donner A, Lakatos M (2021) Opening the gap: Rare lichens with rare cyanobionts–unexpected cyanobiont diversity in cyanobacterial lichens of the order Lichinales. Front Microbio 12:728378. https://doi.org/10.3389/fmicb.2021.728378 DOI

Kaplan-Levy RN, Hadas O, Summers ML, Rücker J, Sukenik A (2010) Akinetes: dormant cells of cyanobacteria. Dormancy and resistance in harsh environments. topics in current genetics. Springer, Berlin, Heidelberg

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 PubMed DOI PMC

Kejna M, Rudzki M (2021) Spatial diversity of air temperature changes in Poland in 1961–2018. Theor Appl Climatol 143:1361–1379. https://doi.org/10.1007/s00704-020-03487-8 DOI

Komárek J (2013) Cyanoprokaryota: Teil 3: heterocystous genera. Springer, Berlin, pp 1–1130

Komárek J., Anagnostidis K. (1999). Susswasserflora von Mitteleuropa Band 19/1 Cyanoprokaryota I. Chroococcales: Gustav Fischer Verlag. pp 1–548.

Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales, München: Elsevier, 1–759.

Kuhlman KR, Venkat P, DucMT La, Kuhlman GM, McKay CP (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. Geophys Res Biogeosci. https://doi.org/10.1029/2007JG000677 DOI

Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the atacama desert, Chile. Extremophiles 15:31–38. https://doi.org/10.1007/s00792-010-0334-3 PubMed DOI

Lamprinou V, Hernández-Mariné M, Canals T, Kormas K, Economou-A milli A, Pantazidou A, (2011) Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 61:2907–2915. https://doi.org/10.1099/ijs.0.029223-0 PubMed DOI

Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ (2022) Characterization of the halochromic gloeocapsin pigment, a cyanobacterial biosignature for paleobiology and astrobiology. Astrobiology 22:735–754. https://doi.org/10.1089/ast.2021.0061 PubMed DOI

Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x DOI

Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J (2013) The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE 8:e66323. https://doi.org/10.1371/journal.pone.0066323 PubMed DOI PMC

McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217 PubMed DOI PMC

Meslier V, Casero MC, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J (2018) Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 20:1765–1781. https://doi.org/10.1111/1462-2920.14106 PubMed DOI

Němečková K, Culka A, Němec I, Edwards HG, Mareš J, Jehlička J (2021) Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J Raman Spectrosc 52:2633–2647. https://doi.org/10.1002/jrs.6186 DOI

Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A (2023) Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1175066 PubMed DOI PMC

Northup DE, Snider JR, Spilde MN, Porter ML, van de Kamp JL, Boston PJ, Nyberg AM, Bargar JR (2010) Diversity of rock varnish bacterial communities from black canyon New Mexico. J Geophys Res Biogeosci. https://doi.org/10.1029/2009JG001107 DOI

Oksanen J (2009) Vegan: community ecology package. R package version 1. 15–4.

Oren A, Garrity GM (2021) Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71:005056. https://doi.org/10.1099/ijsem.0.005056 DOI

Parnell J, Lee P, Cockell C, Osinski G (2004) Microbial colonization in impact-generated hydrothermal sulphate deposits, haughton impact structure, and implications for sulphates on Mars. Int J Astrobiology 3:247–256. https://doi.org/10.1017/S1473550404001995 DOI

Perez-Fernandez CA, Wilburn P, Davila A, DiRuggiero J (2022) Adaptations of endolithic communities to abrupt environmental changes in a hyper-arid desert. Sci Rep 12:20022. https://doi.org/10.1038/s41598-022-23437-w PubMed DOI PMC

R Core Team (2021) R: a language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org/

Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldán M, Gómez-Silva B (2015) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ Microbiol 17:299–315. https://doi.org/10.1111/1462-2920.12364 PubMed DOI

Rostkier-Edelstein D, Kunin P, Hopson TM, Liu Y, Givati A (2016) Statistical downscaling of seasonal precipitation in Israel. Int J Climatol 36:590–606. https://doi.org/10.1002/joc.4368 DOI

Rozenbaum AG, Sandler A, Stein M, Zilberman E (2019) The sedimentary and environmental history of Tortonian-Messinian lakes at the east mediterranean margins (northern Israel). Sediment Geol 383:268–292. https://doi.org/10.1016/j.sedgeo.2018.12.005 DOI

Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol. 58:813–26. https://doi.org/10.1002/jobm.201800216 PubMed DOI

Smith HD, Baqué M, Duncan AG, Lloyd CR, McKay CP, Billi D (2014) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the mojave desert: a Mars terrestrial analogue. Int J Astrobiology 13:271–277. https://doi.org/10.1017/S1473550414000056 DOI

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033 PubMed DOI PMC

Storme JY, Golubic S, Wilmotte A, Kleinteich J, Velázquez D, Javaux EJ (2015) Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15:843–857. https://doi.org/10.1089/ast.2015.1292 PubMed DOI

Strunecký O, Ivanova AP, Mareš J (2023) An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol 59:12–51. https://doi.org/10.1111/jpy.13304 PubMed DOI

Tamre E, Fournier GP (2022) Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. Geobiology 20:764–775. https://doi.org/10.1111/gbi.12514 PubMed DOI PMC

Urrejola C, Alcorta J, Salas L, Vásquez M, Polz MF, Vicuña R, Díez B (2019) Genomic features for desiccation tolerance and sugar biosynthesis in the extremophile Gloeocapsopsis sp. UTEX B3054. Front Microbiol 10:950. https://doi.org/10.3389/fmicb.2019.00950 PubMed DOI PMC

Vítek P, Edwards HG, Jehlička J, Ascaso C, De los Ríos A, Valea S, Jorge-Villar SE, Davila AF, Wierzchos J, (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by raman spectroscopy. Philos Trans Royal Soc A 368:3205–3221. https://doi.org/10.1098/rsta.2010.0059 DOI

Walker JJ, Pace NR (2007a) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347. https://doi.org/10.1146/annurev.micro.61.080706.093302 PubMed DOI

Walker JJ, Pace NR (2007b) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504. https://doi.org/10.1128/AEM.02656-06 PubMed DOI PMC

Wang YI, Cai F, Jia NA, Li R (2019) Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov.Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 409:146–160. https://doi.org/10.11646/phytotaxa.409.3.3 DOI

Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422. https://doi.org/10.1089/ast.2006.6.415 PubMed DOI

Wierzchos J, Cámara B, de Los RA, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, McKay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9:44–60. https://doi.org/10.1111/j.1472-4669.2010.00254.x PubMed DOI

Wierzchos J, Davila AF, Artieda O, Cámara-Gallego B, de los Ríos A, Nealson KH, Valea S, García-González MT, Ascaso C. (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars. Icarus 224:334–346. https://doi.org/10.1016/j.icarus.2012.06.009 DOI

Wierzchos J, Cámara B, de Los Ríos A, Davila AF, Sánchez Almazo IM, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila AF, Vílchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6:934. https://doi.org/10.3389/fmicb.2015.00934 PubMed DOI PMC

Wierzchos J, Casero MC, Artieda O, Ascaso C (2018) Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 43:124–131. https://doi.org/10.1016/j.mib.2018.01.003 PubMed DOI

Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol 81:10–128. https://doi.org/10.1128/mmbr.00002-00017 DOI

Ziolkowski LA, Mykytczuk NC, Omelon CR, Johnson H, Whyte LG, Slater GF (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10:7661–7675. https://doi.org/10.5194/bg-10-7661-2013 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...