Occurrence of aetokthonotoxin producer in natural samples - A PCR protocol for easy detection
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EPA999999
Intramural EPA - United States
PubMed
37220978
PubMed Central
PMC10206276
DOI
10.1016/j.hal.2023.102425
PII: S1568-9883(23)00051-3
Knihovny.cz E-zdroje
- Klíčová slova
- Aetokthonos, Cyanotoxin, Hydrilla, Justicia, Vacuolar myelinopathy, rRNA ITS,
- MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie MeSH
- jezera * MeSH
- polymerázová řetězová reakce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aetokthonotoxin MeSH Prohlížeč
Cyanobacteria are well known producers of bioactive metabolites, including harmful substances. The recently discovered "eagle killer" neurotoxin aetokthonotoxin (AETX) is produced by the epiphytic cyanobacterium Aetokthonos hydrillicola growing on invasive water thyme (Hydrilla verticillata). The biosynthetic gene cluster of AETX was previously identified from an Aetokthonos strain isolated from the J. Strom Thurmond Reservoir, Georgia, USA. Here, a PCR protocol for easy detection of AETX-producers in environmental samples of plant-cyanobacterium consortia was designed and tested. Three different loci of the AETX gene cluster were amplified to confirm the genetic potential for AETX production, along with two variable types of rRNA ITS regions to confirm the homogeneity of the producer´s taxonomic identity. In samples of Hydrilla from three Aetokthonos-positive reservoirs and one Aetokthonos-negative lake, the PCR of all four loci provided results congruent with the Aetokthonos presence/absence detected by light and fluorescence microscopy. The production of AETX in the Aetokthonos-positive samples was confirmed using LC-MS. Intriguingly, in J. Strom Thurmond Reservoir, recently Hydrilla free, an Aetokthonos-like cyanobacterium was found growing on American water-willow (Justicia americana). Those specimens were positive for all three aet markers but contained only minute amounts of AETX. The obtained genetic information (ITS rRNA sequence) and morphology of the novel Aetokthonos distinguished it from all the Hydrilla-hosted A. hydrillicola, likely at the species level. Our results suggest that the toxigenic Aetokthonos spp. can colonize a broader array of aquatic plants, however the level of accumulation of the toxin may be driven by host-specific interactions such as the locally hyper-accumulated bromide in Hydrilla.
Daniel B Warnell School of Forestry and Natural Resources University of Georgia Athens GA 30602 USA
Institute of Pharmacy Martin Luther University Halle Wittenberg Halle 06120 Germany
Zobrazit více v PubMed
Adak S, Lukowski AL, Schafer RJB, Moore BS, 2022. From tryptophan to toxin: nature’s convergent biosynthetic strategy to aetokthonotoxin. J. Am. Chem. Soc. 144, 2861–2866. PubMed PMC
Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA, 2012. A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15, 19–25.
Birrenkott AH, Wilde SB, Hains JJ, Fischer JR, Murphy TM, Hope CP, Parnell PG, Bowerman WW, 2004. Establishing a food-chain link between aquatic plant material and avian vacuolar myelinopathy in mallards (Anas platyrhynchos). J. Wildlife Dis. 40, 485–492. PubMed
Boyer SL, Flechtner VR, Johansen JR, 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol. Biol. Evol. 18, 1057–1069. PubMed
Breinlinger S, Phillips TJ, Haram BN, Marěs J, Yerena JAM, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB, 2021. Hunting the eagle killer: a cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371, 1335. PubMed PMC
Casamatta DA, Villanueva CD, Garvey AD, Stocks HS, Vaccarino M, Dvorak P, Hasler P, Johansen JR, 2020. Reptodigitus chapmanii (Nostocales, Hapalosiphonaceae) gen. nov.: a unique nostocalean (Cyanobacteria) genus based on a polyphasic approach. J. Phycol. 56, 425–436. PubMed
Costa M, Costa-Rodrigues J, Fernandes MH, Barros P, Vasconcelos V, Martins R, 2012. Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar. Drugs 10, 2181–2207. PubMed PMC
Costa PR, 2016. Impact and effects of paralytic shellfish poisoning toxins derived from harmful algal blooms to marine fish. Fish Fish. 17, 226–248.
Cox PA, Banack SA, Murch SJ, 2003. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. P. Natl. Acad. Sci. USA 100, 13380–13383. PubMed PMC
Davis DA, Mondo K, Stern E, Annor AK, Murch SJ, Coyne TM, Brand LE, Niemeyer ME, Sharp S, Bradley WG, Cox PA, Mash DC, 2019. Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins. PLoS One 14, e0213346. PubMed PMC
Dodd SR, Haynie RS, Williams SM, Wilde SB, 2016. Alternate food-chain transfer of the toxin linked to avian vacuolar myelinopathy and implications for the endangered Florida snail kite (Rostrhamus sociabilis). J. Wildlife Dis. 52, 335–344. PubMed
Gaget V, Keulen A, Lau M, Monis P, Brookes JD, 2017a. DNA extraction from benthic Cyanobacteria: comparative assessment and optimization. J. Appl. Microbiol. 122, 294–304. PubMed
Gaget V, Lau M, Sendall B, Froscio S, Humpage AR, 2017b. Cyanotoxins: which detection technique for an optimum risk assessment? Water Res. 118, 227–238. PubMed
Gerrin WL, Haram B, Jennings CA, Brandon G, Wilde SB, 2022. Factors affecting movement and habitat use of grass carp in a mainstem reservoir. Fisheries Manag. Ecol. 29, 100–103.
Glomski LAM, Skogerboe JG, Getsinger KD, 2005. Comparative efficacy of diquat for control of two members of the hydrocharitaceae: Elodea and hydrilla. J. Aquat. Plant Manage. 43, 103–105.
Good KD, VanBriesen JM, 2017. Power plant bromide discharges and downstream drinking water systems in Pennsylvania. Environ. Sci. Technol. 51, 11829–11838. PubMed
Haller WT, 2014. Hydrilla. In: Gettys LA, Haller WT, Petty DG (Eds.), Biology and control of aquatic plants, a best management practices handbook. Aquatic Ecosystem Restoration Foundation, Marietta, pp. 29–34.
Haller WT, Sutton DL, 1975. Community structure and competition between Hydrilla and Vallisneria. Fla. Agr. Exp. Sta. 13, 48–50.
Hrouzek P, Kapuscik A, Vacek J, Voráčová K, Paichlová J, Kosina P, Voloshko L, Ventura S, Kopecký J, 2016. Cytotoxicity evaluation of large cyanobacterial strain set using selected human and murine in vitro cell models. Ecotox. Environ. Safe. 124, 177–185. PubMed
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM, 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483. PubMed
Jaramillo M, O’Shea KE, 2019. Analytical methods for assessment of cyanotoxin contamination in drinking water sources. Curr. Opin. Environ. Sci. Health 7, 45–51.
Johansen JR, Marěs J, Pietrasiak N, Bohunická M, Zima J Jr., Stenclova L, Hauer T, 2017. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS One 12, e0186393. PubMed PMC
Koerner DR, 1952. Amyotrophic lateral sclerosis on Guam - a clinical study and review of the literature. Ann. Intern. Med. 37, 1204–1220. PubMed
Kurland LT, 1988. Amyotrophic lateral sclerosis and Parkinsons-disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci. 11, 51–54. PubMed
Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik L, Martin MP, Johansen JR, 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur. J. Phycol. 49, 450–470.
Paerl HW, Barnard MA, 2020. Mitigating the global expansion of harmful cyanobacterial blooms: moving targets in a human- and climatically-altered world. Harmful Algae 96, 101845. PubMed PMC
Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert JF, 2013. A review of current knowledge on toxic benthic freshwater cyanobacteria - Ecology, toxin production and risk management. Water Res. 47, 5464–5479. PubMed
Ramya M, Kayalvizhi M, Haripriya G, Rathinasabapathi P, 2018. Detection of microcystin- producing cyanobacteria in water samples using loop-mediated isothermal amplification targeting mcyB gene. 3 Biotech 8, 378. PubMed PMC
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.
Rojas-Sandoval J, 2022. Hydrilla verticillata (hydrilla). CABI Compendium, CABI International. 10.1079/cabicompendium.28170. DOI
Strunecký O, Ivanova AP, Marěs J, 2022. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 10.1111/jpy.13304 online ahead of print. PubMed DOI
Sukenik A, Hadas O, Kaplan A, Quesada A, 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes - physiological, regional, and global driving forces. Front. Microbiol. 3, 86. PubMed PMC
Thomas NJ, Meteyer CU, Sileo L, 1998. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). Vet. Pathol. 35, 479–487. PubMed
Tidgewell K, Clark BR, Gerwick WH, 2010. The natural products chemistry of Cyanobacteria. In: Mander L, Liu H-W (Eds.), Comprehensive Natural Products II. Elsevier Science, Kidlington, pp. 142–183.
Vainikka P, Hupa M, 2012. Review on bromine in solid fuels – Part 2: Anthropogenic occurrence. Fuel 94, 34–51.
Wilde SB, Johansen JR, Wilde HD, Jiang P, Bartelme BA, Haynie RS, 2014. Aetokthonos hydrillicola gen. et sp. nov.: epiphytic cyanobacteria on invasive aquatic plants implicated in Avian Vacuolar Myelinopathy. Phytotaxa 181, 243–260.
Wiley FE, Wilde SB, Birrenkott AH, Williams SK, Murphy TM, Hope CP, Bowerman WW, Fischer JR, 2007. Investigation of the link between avian vacuolar myelinopathy and a novel species of cyanobacteria through laboratory feeding trials. J. Wildlife Dis. 43, 337–344. PubMed
Wood SA, Kelly LT, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister TG, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan KG, Vadeboncoeur Y, Zastepa A, Davis TW, 2020. Toxic benthic freshwater cyanobacterial proliferations: challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshwater Biol. 65, 1824–1842. PubMed PMC
Wurtsbaugh WA, 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIRES Water 6, e1373.