Turn Performance Variation in European Elite Short-Course Swimmers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35564428
PubMed Central
PMC9102928
DOI
10.3390/ijerph19095033
PII: ijerph19095033
Knihovny.cz E-zdroje
- Klíčová slova
- competition analysis, freestyle, performance, race analysis, swimming,
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- kompetitivní chování * MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plavání MeSH
- sportovní výkon * MeSH
- vysoká teplota MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Turn performances are important success factors for short-course races, and more consistent turn times may distinguish between higher and lower-ranked swimmers. Therefore, this study aimed to determine coefficients of variation (CV) and performance progressions (∆%) of turn performances. The eight finalists and eight fastest swimmers from the heats that did not qualify for the semi-finals, i.e., from 17th to 24th place, of the 100, 200, 400, and 800 (females only)/1500 m (males only) freestyle events at the 2019 European Short Course Championships were included, resulting in a total of 64 male (finalists: age: 22.3 ± 2.6, FINA points: 914 ± 31 vs. heats: age: 21.5 ± 3.1, FINA points: 838 ± 74.9) and 64 female swimmers (finalists: age: 22.9 ± 4.8, FINA points: 904 ± 24.5 vs. heats: age: 20.1 ± 3.6, FINA points: 800 ± 48). A linear mixed model was used to compare inter- and intra-individual performance variation. Interactions between CVs, ∆%, and mean values were analyzed using a two-way analysis of variance (ANOVA). The results showed impaired turn performances as the races progressed. Finalists showed faster turn section times than the eight fastest non-qualified swimmers from the heats (p < 0.001). Additionally, turn section times were faster for short-, i.e., 100 and 200 m, than middle- and long-distance races, i.e., 400 to 1500 m races (p < 0.001). Regarding variation in turn performance, finalists showed lower CVs and ∆% for all turn section times (0.74% and 1.49%) compared to non-qualified swimmers (0.91% and 1.90%, respectively). Similarly, long-distance events, i.e., 800/1500 m, showed lower mean CVs and higher mean ∆% (0.69% and 1.93%) than short-distance, i.e., 100 m events (0.93% and 1.39%, respectively). Regarding turn sections, the largest CV and ∆% were found 5 m before wall contact (0.70% and 1.45%) with lower CV and more consistent turn section times 5 m after wall contact (0.42% and 0.54%). Non-qualified swimmers should aim to match the superior turn performances and faster times of finalists in all turn sections. Both finalists and non-qualified swimmers should pay particular attention to maintaining high velocities when approaching the wall as the race progresses.
Department for Competitive Swimming Czech Swimming Federation 16017 Prague Czech Republic
Department for Elite Sport Swiss Federal Institute of Sport Magglingen 2532 Magglingen Switzerland
Section for High Performance Sports Swiss Swimming Federation 3063 Bern Switzerland
Zobrazit více v PubMed
Kjendlie P.L., Ingjer F., Stallman R.K., Stray-Gundersen J. Factors affecting swimming economy in children and adults. Eur. J. Appl. Physiol. 2004;93:65–74. doi: 10.1007/s00421-004-1164-8. PubMed DOI
Menting S.G.P., Elferink-Gemser M.T., Huijgen B.C., Hettinga F.J. Pacing in lane-based head-to-head competitions: A systematic review on swimming. J. Sports Sci. 2019;37:2287–2299. doi: 10.1080/02640414.2019.1627989. PubMed DOI
Stoggl T., Pellegrini B., Holmberg H.C. Pacing and predictors of performance during cross-country skiing races: A systematic review. J. Sport Health Sci. 2018;7:381–393. doi: 10.1016/j.jshs.2018.09.005. PubMed DOI PMC
Neuloh J.E., Skorski S., Mauger L., Hecksteden A., Meyer T. Analysis of end-spurt behaviour in elite 800-m and 1500-m freestyle swimming. Eur. J. Sport Sci. 2020;21:1628–1636. doi: 10.1080/17461391.2020.1851772. PubMed DOI
Stewart A.M., Hopkins W.G. Consistency of swimming performance within and between competitions. Med. Sci. Sports Exerc. 2000;32:997–1001. doi: 10.1097/00005768-200005000-00018. PubMed DOI
Cuenca-Fernandez F., Ruiz-Navarro J.J., Gonzalez-Ponce A., Lopez-Belmonte O., Gay A., Arellano R. Progression and variation of competitive 100 and 200m performance at the 2021 European Swimming Championships. Sports Biomech. 2021:1–15. doi: 10.1080/14763141.2021.1998591. PubMed DOI
López-Belmonte Ó., Gay A., Ruiz-Navarro J.J., Cuenca-Fernández F., González-Ponce Á., Arellano R. Pacing profiles, variability and progression in 400, 800 and 1500-m freestyle swimming events at the 2021 European Championship. Int. J. Perform. Anal. Sport. 2022;22:90–101. doi: 10.1080/24748668.2021.2010318. DOI
Skorski S., Faude O., Abbiss C.R., Caviezel S., Wengert N., Meyer T. Influence of pacing manipulation on performance of juniors in simulated 400-m swim competition. Int. J. Sports Physiol. Perform. 2014;9:817–824. doi: 10.1123/ijspp.2013-0469. PubMed DOI
Skorski S., Faude O., Rausch K., Meyer T. Reproducibility of pacing profiles in competitive swimmers. Int. J. Sports Med. 2013;34:152–157. doi: 10.1055/s-0032-1316357. PubMed DOI
Gonjo T., Olstad B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health. 2020;18:69. doi: 10.3390/ijerph18010069. PubMed DOI PMC
Barbosa T.M., Barbosa A.C., Simbana Escobar D., Mullen G.J., Cossor J.M., Hodierne R., Arellano R., Mason B.R. The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomech. 2021:1–18. doi: 10.1080/14763141.2021.1960417. PubMed DOI
Thompson K.G., MacLaren D.P., Lees A., Atkinson G. The effects of changing pace on metabolism and stroke characteristics during high-speed breaststroke swimming. J. Sports Sci. 2004;22:149–157. doi: 10.1080/02640410310001641467. PubMed DOI
Morais J.E., Barbosa T.M., Forte P., Pinto J.N., Marinho D.A. Assessment of the inter-lap stability and relationship between the race time and start, clean swim, turn and finish variables in elite male junior swimmers’ 200 m freestyle. Sports Biomech. 2021:1–14. doi: 10.1080/14763141.2021.1952298. PubMed DOI
Morais J.E., Barbosa T.M., Neiva H.P., Marinho D.A. Stability of pace and turn parameters of elite long-distance swimmers. Hum. Mov. Sci. 2019;63:108–119. doi: 10.1016/j.humov.2018.11.013. PubMed DOI
McGibbon K.E., Pyne D.B., Shephard M.E., Thompson K.G. Pacing in Swimming: A Systematic Review. Sports Med. 2018;48:1621–1633. doi: 10.1007/s40279-018-0901-9. PubMed DOI
Born D.P., Kuger J., Polach M., Romann M. Start and turn performances of elite male swimmers: Benchmarks and underlying mechanims. Sports Biomech. 2021:1–21. doi: 10.1080/14763141.2021.1872693. PubMed DOI
Olstad B.H., Wathne H., Gonjo T. Key Factors Related to Short Course 100 m Breaststroke Performance. Int. J. Environ. Res. Public Health. 2020;17:6257. doi: 10.3390/ijerph17176257. PubMed DOI PMC
Wolfrum M., Knechtle B., Rust C.A., Rosemann T., Lepers R. The effects of course length on freestyle swimming speed in elite female and male swimmers-A comparison of swimmers at national and international level. SpringerPlus. 2013;2:643. doi: 10.1186/2193-1801-2-643. PubMed DOI PMC
Polach M., Thiel D., Krenik J., Born D.P. Swimming turn performance: The distinguishing factor in 1500 m world championship freestyle races. BMC Res. Notes. 2021;14:248. doi: 10.1186/s13104-021-05665-x. PubMed DOI PMC
Polach M., Born D.P. Data Analysis: How Enhanced Turn Performance Led Florian Wellbrock to WR in 1500 Freestyle (Visual Charts). Swimming World Magazine, 15 January 2022. [(accessed on 1 March 2022)]. Available online: https://www.swimmingworldmagazine.com/news/data-analysis-how-enhanced-turn-performance-led-florian-wellbrock-to-world-record-in-1500-freestyle-visual-charts/
Morais J.E., Barbosa T.M., Forte P., Bragada J.A., Castro F.A.S., Marinho D.A. Stability analysis and prediction of pacing in elite 1500 m freestyle male swimmers. Sports Biomech. 2020:1–18. doi: 10.1080/14763141.2020.1810749. PubMed DOI
Ruiz-Navarro J.J., Lopez-Belmonte O., Gay A., Cuenca-Fernandez F., Arellano R. A new model of performance classification to standardize the research results in swimming. Eur. J. Sport Sci. 2022:1–23. doi: 10.1080/17461391.2022.2046174. PubMed DOI
IOC Swimming Events Tokyo. 2021. [(accessed on 16 February 2022)]. Available online: https://olympics.com/tokyo-2020/olympic-games/en/results/swimming/olympic-schedule-and-results.htm.
Born D.P., Kuger J., Polach M., Romann M. Turn Fast and Win: The Importance of Acyclic Phases in Top-Elite Female Swimmers. Sports. 2021;9:122. doi: 10.3390/sports9090122. PubMed DOI PMC
Morais J.E., Marinho D.A., Arellano R., Barbosa T.M. Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomech. 2019;18:100–114. doi: 10.1080/14763141.2018.1435713. PubMed DOI
Shapiro J.R., Klein S.L., Morgan R. Stop ‘controlling’ for sex and gender in global health research. BMJ Glob. Health. 2021;6:e005714. doi: 10.1136/bmjgh-2021-005714. PubMed DOI PMC
Pyne D., Trewin C., Hopkins W. Progression and variability of competitive performance of Olympic swimmers. J. Sports Sci. 2004;22:613–620. doi: 10.1080/02640410310001655822. PubMed DOI
Ferguson C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2016;40:532–538. doi: 10.1037/a0015808. DOI
Arellano R., Ruíz-Teba A., Morales-Ortíz E., Gay A., Cuenca-Fernandez F., Llorente-Ferrón F., López-Contreras G. Short course 50m male freestyle performance comparison between national and regional Spanish swimmers. ISBS Proc. Arch. 2018;36:139.
Sánchez L., Arellano R., Cuenca-Fernández F. Analysis and influence of the underwater phase of breaststroke on short-course 50 and 100m performance. Int. J. Perform. Anal. Sport. 2021;21:307–323. doi: 10.1080/24748668.2021.1885838. DOI
Veiga S., Roig A. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports Biomech. 2017;16:34–44. doi: 10.1080/14763141.2016.1179782. PubMed DOI
Veiga S., Cala A., Frutos P.G., Navarro E. Comparison of starts and turns of national and regional level swimmers by individualized-distance measurements. Sports Biomech. 2014;13:285–295. doi: 10.1080/14763141.2014.910265. PubMed DOI
Marinho D.A., Barbosa T.M., Neiva H.P., Silva A.J., Morais J.E. Comparison of the Start, Turn and Finish Performance of Elite Swimmers in 100 m and 200 m Races. J. Sports Sci. Med. 2020;19:397–407. PubMed PMC
Nicol E., Ball K., Tor E. The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports Biomech. 2021;20:444–457. doi: 10.1080/14763141.2018.1561930. PubMed DOI
Veiga S., Cala A., Mallo J., Navarro E. A new procedure for race analysis in swimming based on individual distance measurements. J. Sports Sci. 2013;31:159–165. doi: 10.1080/02640414.2012.723130. PubMed DOI
Gonjo T., Olstad B.H. Start and Turn Performances of Competitive Swimmers in Sprint Butterfly Swimming. J. Sports Sci. Med. 2020;19:727–734. PubMed PMC
Papic C., Andersen J., Naemi R., Hodierne R., Sanders R.H. Augmented feedback can change body shape to improve glide efficiency in swimming. Sports Biomech. 2021:1–20. doi: 10.1080/14763141.2021.1900355. PubMed DOI
Formosa D.P., Sayers M.G., Burkett B. Backstroke swimming: Exploring gender differences in passive drag and instantaneous net drag force. J. Appl. Biomech. 2013;29:662–669. doi: 10.1123/jab.29.6.662. PubMed DOI
Ruiz-Navarro J.J., Cano-Adamuz M., Andersen J.T., Cuenca-Fernandez F., Lopez-Contreras G., Vanrenterghem J., Arellano R. Understanding the effects of training on underwater undulatory swimming performance and kinematics. Sports Biomech. 2021:1–16. doi: 10.1080/14763141.2021.1891276. PubMed DOI
Houel N., Elipot M., Andre F., Hellard P. Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during underwater phase of a grab start. J. Appl. Biomech. 2013;29:49–54. doi: 10.1123/jab.29.1.49. PubMed DOI
Papic C., McCabe C., Gonjo T., Sanders R. Effect of torso morphology on maximum hydrodynamic resistance in front crawl swimming. Sports Biomech. 2020:1–15. doi: 10.1080/14763141.2020.1773915. PubMed DOI
Naemi R., Easson W.J., Sanders R.H. Hydrodynamic glide efficiency in swimming. J. Sci. Med. Sport. 2010;13:444–451. doi: 10.1016/j.jsams.2009.04.009. PubMed DOI
Cortesi M., Gatta G., Michielon G., Di Michele R., Bartolomei S., Scurati R. Passive Drag in Young Swimmers: Effects of Body Composition, Morphology and Gliding Position. Int. J. Environ. Res. Public Health. 2020;17:2002. doi: 10.3390/ijerph17062002. PubMed DOI PMC
Vilas-Boas J.P., Costa L., Fernandes R.J., Ribeiro J., Figueiredo P., Marinho D., Silva A.J., Rouboa A., Machado L. Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. J. Appl. Biomech. 2010;26:324–331. doi: 10.1123/jab.26.3.324. PubMed DOI
Marinho D.A., Barbosa T.M., Rouboa A.I., Silva A.J. The Hydrodynamic Study of the Swimming Gliding: A Two-Dimensional Computational Fluid Dynamics (CFD) Analysis. J. Hum. Kinet. 2011;29:49–57. doi: 10.2478/v10078-011-0039-4. PubMed DOI PMC
Veiga S., Roig A. Underwater and surface strategies of 200 m world level swimmers. J. Sports Sci. 2016;34:766–771. doi: 10.1080/02640414.2015.1069382. PubMed DOI
Veiga S., Pla R., Qiu X., Boudet D., Guimard A. Effects of Extended Underwater Sections on the Physiological and Biomechanical Parameters of Competitive Swimmers. Front. Physiol. 2022;13:815766. doi: 10.3389/fphys.2022.815766. PubMed DOI PMC
Tor E., Pease D.L., Ball K.A. How does drag affect the underwater phase of a swimming start. J. Appl Biomech. 2015;31:8–12. doi: 10.1123/JAB.2014-0081. PubMed DOI
Novais M.L., Silva A.J., Mantha V.R., Ramos R.J., Rouboa A.I., Vilas-Boas J.P., Luis S.R., Marinho D.A. The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis. J. Hum. Kinet. 2012;33:55–62. doi: 10.2478/v10078-012-0044-2. PubMed DOI PMC
Pla R., Poszalczyk G., Souaissia C., Joulia F., Guimard A. Underwater and Surface Swimming Parameters Reflect Performance Level in Elite Swimmers. Front. Physiol. 2021;12:712652. doi: 10.3389/fphys.2021.712652. PubMed DOI PMC
Ikeda Y., Ichikawa H., Shimojo H., Nara R., Baba Y., Shimoyama Y. Relationship between dolphin kick movement in humans and velocity during undulatory underwater swimming. J. Sports Sci. 2021;39:1497–1503. doi: 10.1080/02640414.2021.1881313. PubMed DOI
Hochstein S., Blickhan R. Body movement distribution with respect to swimmer’s glide position in human underwater undulatory swimming. Hum. Mov. Sci. 2014;38:305–318. doi: 10.1016/j.humov.2014.08.017. PubMed DOI
Determining Validity and Reliability of an In-Field Performance Analysis System for Swimming