• This record comes from PubMed

The expanded genome of Hexamita inflata, a free-living diplomonad

. 2025 Feb 01 ; 12 (1) : 192. [epub] 20250201

Language English Country Great Britain, England Media electronic

Document type Journal Article, Dataset

Links

PubMed 39893204
PubMed Central PMC11787283
DOI 10.1038/s41597-025-04514-x
PII: 10.1038/s41597-025-04514-x
Knihovny.cz E-resources

Diplomonads are anaerobic, flagellated protists, being part of the Metamonada group of Eukaryotes. Diplomonads either live as endobionts (parasites and commensals) of animals or free-living in low-oxygen environments. Genomic information is available for parasitic diplomonads like Giardia intestinalis and Spironucleus salmonicida, while little is known about the genomic arrangements of free-living diplomonads. We have generated the first reference genome of a free-living diplomonad, Hexamita inflata. The final version of the genome assembly is fragmented (1241 contigs) but substantially larger (142 Mbp) than the parasitic diplomonad genomes (9.8-14.7 Mbp). It encodes 79,341 proteins; 29,874 have functional annotations and 49,467 are hypothetical proteins. Interspersed repeats comprise 34% of the genome (9617 Retroelements, 2676 DNA transposons). The large expansion of protein-encoding capacity and the interspersed repeats are the major reasons for the large genome size. This genome from a free-living diplomonad will be the basis for further studies of the Diplomonadida lineage and the evolution of parasitism-free living style transitions.

See more in PubMed

Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol31, R1267–R1280, 10.1016/j.cub.2021.07.066 (2021). PubMed

Sibbald, S. J. & Archibald, J. M. More protist genomes needed. Nat Ecol Evol1, 145, 10.1038/s41559-017-0145 (2017). PubMed

Kornalikova, M., Hampl, V. & Treitli, S. C. Investigation of the genome sizes and ploidy within the genus Monocercomonoides. J Eukaryot Microbiol69, e12925, 10.1111/jeu.12925 (2022). PubMed

Kolisko, M. et al. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol8, 205, 10.1186/1471-2148-8-205 (2008). PubMed PMC

Keeling, P. J. & Doolittle, W. F. Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol14, 895–901, 10.1093/oxfordjournals.molbev.a025832 (1997). PubMed

Lloyd, D. & Williams, C. F. Comparative biochemistry of Giardia, Hexamita and Spironucleus: Enigmatic diplomonads. Mol Biochem Parasitol197, 43–49, 10.1016/j.molbiopara.2014.10.002 (2014). PubMed

Sassera, D. et al. Draft Genome Sequence of Stenotrophomonas maltophilia Strain EPM1, Found in Association with a Culture of the Human Parasite Giardia duodenalis. Genome Announc1, e0018213, 10.1128/genomeA.00182-13 (2013). PubMed PMC

Rada, P., Kellerova, P., Verner, Z. & Tachezy, J. Investigation of the Secretory Pathway in Trichomonas vaginalis Argues against a Moonlighting Function of Hydrogenosomal Enzymes. J Eukaryot Microbiol66, 899–910, 10.1111/jeu.12741 (2019). PubMed

ENA European Nucleotide Archivehttps://identifiers.org/ena.embl:PRJEB61042 (2024). PubMed PMC

ENA Illumina readshttps://identifiers.org/insdc.sra:ERX10822047 (2024).

ENA PacBio readshttps://identifiers.org/insdc.sra:ERX10822065 (2024).

ENA Nanopore readshttps://identifiers.org/insdc.sra:ERX10822163 (2024).

Assembled RNA seq reads10.6084/m9.figshare.26068135.v1 (2024).

Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods10, 563–569, 10.1038/nmeth.2474 (2013). PubMed

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760, 10.1093/bioinformatics/btp324 (2009). PubMed PMC

Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One9, e112963, 10.1371/journal.pone.0112963 (2014). PubMed PMC

Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics29, 2669–2677, 10.1093/bioinformatics/btt476 (2013). PubMed PMC

De Maio, N. et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom510.1099/mgen.0.000294 (2019). PubMed PMC

Xu, F. et al. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol14, 62, 10.1186/s12915-016-0284-z (2016). PubMed PMC

ENA Genome Assemblyhttps://identifiers.org/insdc.gca:GCA_963988835.2 (2024).

Hudson, A. J. et al. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages. BMC Evol Biol19, 162, 10.1186/s12862-019-1488-y (2019). PubMed PMC

Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics20, 2878–2879, 10.1093/bioinformatics/bth315 (2004). PubMed

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119, 10.1186/1471-2105-11-119 (2010). PubMed PMC

Xu, F. et al. A chromosome-scale reference genome for Spironucleus salmonicida. Sci Data9, 585, 10.1038/s41597-022-01703-w (2022). PubMed PMC

Xu, F. et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom610.1099/mgen.0.000402 (2020). PubMed PMC

Xu, F., Jex, A. & Svard, S. G. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data7, 38, 10.1038/s41597-020-0377-y (2020). PubMed PMC

Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods18, 366–368, 10.1038/s41592-021-01101-x (2021). PubMed PMC

Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol34, 2115–2122, 10.1093/molbev/msx148 (2017). PubMed PMC

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics30, 1236–1240, 10.1093/bioinformatics/btu031 (2014). PubMed PMC

Clark, C. G., Ali, I. K., Zaki, M., Loftus, B. J. & Hall, N. Unique organisation of tRNA genes in Entamoeba histolytica. Mol Biochem Parasitol146, 24–29, 10.1016/j.molbiopara.2005.10.013 (2006). PubMed

Chan, P. P. & Lowe, T. M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol1962, 1–14, 10.1007/978-1-4939-9173-0_1 (2019). PubMed PMC

Deng, Z. L., Munch, P. C., Mreches, R. & McHardy, A. C. Rapid and accurate identification of ribosomal RNA sequences via deep learning. Nucleic Acids Res50, e60, 10.1093/nar/gkac112 (2022). PubMed PMC

Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics22, 1658–1659, 10.1093/bioinformatics/btl158 (2006). PubMed

Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr Protoc1, e323, 10.1002/cpz1.323 (2021). PubMed

Salas-Leiva, D. E. et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun12, 6003, 10.1038/s41467-021-26077-2 (2021). PubMed PMC

Tanifuji, G. et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One13, e0194487, 10.1371/journal.pone.0194487 (2018). PubMed PMC

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol20, 238, 10.1186/s13059-019-1832-y (2019). PubMed PMC

Xiong, J. et al. Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena. PLoS Biol17, e3000294, 10.1371/journal.pbio.3000294 (2019). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...