The expanded genome of Hexamita inflata, a free-living diplomonad
Language English Country Great Britain, England Media electronic
Document type Journal Article, Dataset
PubMed
39893204
PubMed Central
PMC11787283
DOI
10.1038/s41597-025-04514-x
PII: 10.1038/s41597-025-04514-x
Knihovny.cz E-resources
- MeSH
- Diplomonadida * genetics MeSH
- Genome, Protozoan * MeSH
- Retroelements MeSH
- Interspersed Repetitive Sequences MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
- Names of Substances
- Retroelements MeSH
Diplomonads are anaerobic, flagellated protists, being part of the Metamonada group of Eukaryotes. Diplomonads either live as endobionts (parasites and commensals) of animals or free-living in low-oxygen environments. Genomic information is available for parasitic diplomonads like Giardia intestinalis and Spironucleus salmonicida, while little is known about the genomic arrangements of free-living diplomonads. We have generated the first reference genome of a free-living diplomonad, Hexamita inflata. The final version of the genome assembly is fragmented (1241 contigs) but substantially larger (142 Mbp) than the parasitic diplomonad genomes (9.8-14.7 Mbp). It encodes 79,341 proteins; 29,874 have functional annotations and 49,467 are hypothetical proteins. Interspersed repeats comprise 34% of the genome (9617 Retroelements, 2676 DNA transposons). The large expansion of protein-encoding capacity and the interspersed repeats are the major reasons for the large genome size. This genome from a free-living diplomonad will be the basis for further studies of the Diplomonadida lineage and the evolution of parasitism-free living style transitions.
Department of Biology Lund University Lund Sweden
Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
European Molecular Biology Laboratory Genomics Core Facility Heidelberg Germany
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
See more in PubMed
Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol31, R1267–R1280, 10.1016/j.cub.2021.07.066 (2021). PubMed
Sibbald, S. J. & Archibald, J. M. More protist genomes needed. Nat Ecol Evol1, 145, 10.1038/s41559-017-0145 (2017). PubMed
Kornalikova, M., Hampl, V. & Treitli, S. C. Investigation of the genome sizes and ploidy within the genus Monocercomonoides. J Eukaryot Microbiol69, e12925, 10.1111/jeu.12925 (2022). PubMed
Kolisko, M. et al. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol8, 205, 10.1186/1471-2148-8-205 (2008). PubMed PMC
Keeling, P. J. & Doolittle, W. F. Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol14, 895–901, 10.1093/oxfordjournals.molbev.a025832 (1997). PubMed
Lloyd, D. & Williams, C. F. Comparative biochemistry of Giardia, Hexamita and Spironucleus: Enigmatic diplomonads. Mol Biochem Parasitol197, 43–49, 10.1016/j.molbiopara.2014.10.002 (2014). PubMed
Sassera, D. et al. Draft Genome Sequence of Stenotrophomonas maltophilia Strain EPM1, Found in Association with a Culture of the Human Parasite Giardia duodenalis. Genome Announc1, e0018213, 10.1128/genomeA.00182-13 (2013). PubMed PMC
Rada, P., Kellerova, P., Verner, Z. & Tachezy, J. Investigation of the Secretory Pathway in Trichomonas vaginalis Argues against a Moonlighting Function of Hydrogenosomal Enzymes. J Eukaryot Microbiol66, 899–910, 10.1111/jeu.12741 (2019). PubMed
ENA European Nucleotide Archivehttps://identifiers.org/ena.embl:PRJEB61042 (2024). PubMed PMC
ENA Illumina readshttps://identifiers.org/insdc.sra:ERX10822047 (2024).
ENA PacBio readshttps://identifiers.org/insdc.sra:ERX10822065 (2024).
ENA Nanopore readshttps://identifiers.org/insdc.sra:ERX10822163 (2024).
Assembled RNA seq reads10.6084/m9.figshare.26068135.v1 (2024).
Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods10, 563–569, 10.1038/nmeth.2474 (2013). PubMed
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760, 10.1093/bioinformatics/btp324 (2009). PubMed PMC
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One9, e112963, 10.1371/journal.pone.0112963 (2014). PubMed PMC
Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics29, 2669–2677, 10.1093/bioinformatics/btt476 (2013). PubMed PMC
De Maio, N. et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom510.1099/mgen.0.000294 (2019). PubMed PMC
Xu, F. et al. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol14, 62, 10.1186/s12915-016-0284-z (2016). PubMed PMC
ENA Genome Assemblyhttps://identifiers.org/insdc.gca:GCA_963988835.2 (2024).
Hudson, A. J. et al. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages. BMC Evol Biol19, 162, 10.1186/s12862-019-1488-y (2019). PubMed PMC
Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics20, 2878–2879, 10.1093/bioinformatics/bth315 (2004). PubMed
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119, 10.1186/1471-2105-11-119 (2010). PubMed PMC
Xu, F. et al. A chromosome-scale reference genome for Spironucleus salmonicida. Sci Data9, 585, 10.1038/s41597-022-01703-w (2022). PubMed PMC
Xu, F. et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom610.1099/mgen.0.000402 (2020). PubMed PMC
Xu, F., Jex, A. & Svard, S. G. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data7, 38, 10.1038/s41597-020-0377-y (2020). PubMed PMC
Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods18, 366–368, 10.1038/s41592-021-01101-x (2021). PubMed PMC
Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol34, 2115–2122, 10.1093/molbev/msx148 (2017). PubMed PMC
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics30, 1236–1240, 10.1093/bioinformatics/btu031 (2014). PubMed PMC
Clark, C. G., Ali, I. K., Zaki, M., Loftus, B. J. & Hall, N. Unique organisation of tRNA genes in Entamoeba histolytica. Mol Biochem Parasitol146, 24–29, 10.1016/j.molbiopara.2005.10.013 (2006). PubMed
Chan, P. P. & Lowe, T. M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol1962, 1–14, 10.1007/978-1-4939-9173-0_1 (2019). PubMed PMC
Deng, Z. L., Munch, P. C., Mreches, R. & McHardy, A. C. Rapid and accurate identification of ribosomal RNA sequences via deep learning. Nucleic Acids Res50, e60, 10.1093/nar/gkac112 (2022). PubMed PMC
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics22, 1658–1659, 10.1093/bioinformatics/btl158 (2006). PubMed
Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr Protoc1, e323, 10.1002/cpz1.323 (2021). PubMed
Salas-Leiva, D. E. et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun12, 6003, 10.1038/s41467-021-26077-2 (2021). PubMed PMC
Tanifuji, G. et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One13, e0194487, 10.1371/journal.pone.0194487 (2018). PubMed PMC
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol20, 238, 10.1186/s13059-019-1832-y (2019). PubMed PMC
Xiong, J. et al. Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena. PLoS Biol17, e3000294, 10.1371/journal.pbio.3000294 (2019). PubMed PMC