Regional factors as major drivers for microbial community turnover in tropical cascading reservoirs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36060758
PubMed Central
PMC9434106
DOI
10.3389/fmicb.2022.831716
Knihovny.cz E-zdroje
- Klíčová slova
- ecological processes, microbial dispersion, microbial turnover, regional factors, tropical reservoirs,
- Publikační typ
- časopisecké články MeSH
The turnover of microbial communities across space is dictated by local and regional factors. Locally, selection shapes community assembly through biological interactions between organisms and the environment, while regional factors influence microbial dispersion patterns. Methods used to disentangle the effects of local and regional factors typically do not aim to identify ecological processes underlying the turnover. In this paper, we identified and quantified these processes for three operational microbial subcommunities (cyanobacteria, particle-attached, and free-living bacteria) from a tropical cascade of freshwater reservoirs with decreasing productivity, over two markedly different dry and rainy seasons. We hypothesized that during the dry season communities would mainly be controlled by selection shaped by the higher environmental heterogeneity that results from low hydrological flow and connectivity between reservoirs. We expected highly similar communities shaped by dispersal and a more homogenized environment during the rainy season, enhanced by increased flow rates. Even if metacommunities were largely controlled by regional events in both periods, the selection had more influence on free-living communities during the dry period, possibly related to elevated dissolved organic carbon concentration, while drift as a purely stochastic factor, had more influence on cyanobacterial communities. Each subcommunity had distinct patterns of turnover along the cascade related to diversity (Cyanobacteria), lifestyle and size (Free-living), and spatial dynamics (particle-attached).
Zobrazit více v PubMed
Bahram M., Kohout P., Anslan S., Harend H., Abarenkov K., Tedersoo L. (2016). Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 10, 885–896. doi: 10.1038/ismej.2015.164, PMID: PubMed DOI PMC
Berger B., Hoch B., Kavka G., Herndl G. (1996). Bacterial colonization of suspended solids in the river Danube. Aquat. Microb. Ecol. 10, 37–44. doi: 10.3354/ame010037 DOI
Bie T., Meester L., Brendonck L., Martens K., Goddeeris B., Ercken D., et al. . (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747. doi: 10.1111/j.1461-0248.2012.01794.x, PMID: PubMed DOI
Chase J. M. (2010a). Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391. doi: 10.1126/science.1187820, PMID: PubMed DOI
Chase J. M. (2010b). Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391. doi: 10.1126/science.1187820, PMID: PubMed DOI
Chase J. M., Myers J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. Royal Soc. B: Biol. Sci. 366, 2351–2363. doi: 10.1098/rstb.2011.0063, PMID: PubMed DOI PMC
Declerck S. A. J., Winter C., Shurin J. B., Suttle C. A., Matthews B. (2013). Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. ISME J. 7, 533–542. doi: 10.1038/ismej.2012.138, PMID: PubMed DOI PMC
Dziallas C., Grossart H.-P. (2011). Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp.: bacteria associated with Microcystis sp. Environ. Microbiol. 13, 1632–1641. doi: 10.1111/j.1462-2920.2011.02479.x, PMID: PubMed DOI
Edgar R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604, PMID: PubMed DOI
Emily Graham and James Stegen (2017). Dispersal-based microbial community assembly decreases biogeochemical function. PRO 5:65. doi: 10.3390/pr5040065 DOI
Farjalla V. F., Srivastava D. S., Marino N. A. C., Azevedo F. D., Dib V., Lopes P. M., et al. . (2012). Ecological determinism increases with organism size. Ecology 93, 1752–1759. doi: 10.1890/11-1144.1, PMID: PubMed DOI
Fenchel T., Finlay B. J. (2004). The ubiquity of small species: Patterns of local and global diversity. Bioscience 54:777. doi: 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2 DOI
Fine P. V. A., Kembel S. W. (2011). Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565. doi: 10.1111/j.1600-0587.2010.06548.x DOI
Finlay B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063. doi: 10.1126/science.1070710, PMID: PubMed DOI
Freitas R., Vieira H. H., de Moraes G. P., de Melo M. L., Vieira A. A. H., Sarmento H. (2018). Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia 809, 233–246. doi: 10.1007/s10750-017-3472-0 DOI
Herlemann D. P., Labrenz M., Jürgens K., Bertilsson S., Waniek J. J., Andersson A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. doi: 10.1038/ismej.2011.41, PMID: PubMed DOI PMC
Hubbell S. P. (2001). The Unified neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press. PubMed
Izabel-Shen D., Höger A.-L., Jürgens K. (2021). Abundance-occupancy relationships along taxonomic ranks reveal a consistency of niche differentiation in marine Bacterioplankton With distinct lifestyles. Front. Microbiol. 12:690712. doi: 10.3389/fmicb.2021.690712, PMID: PubMed DOI PMC
Jones S. E., Lennon J. T. (2010). Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. 107, 5881–5886. doi: 10.1073/pnas.0912765107, PMID: PubMed DOI PMC
Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., et al. . (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. doi: 10.1093/bioinformatics/btq166, PMID: PubMed DOI
Kent A. D., Yannarell A. C., Rusak J. A., Triplett E. W., McMahon K. D. (2007). Synchrony in aquatic microbial community dynamics. ISME J. 1, 38–47. doi: 10.1038/ismej.2007.6, PMID: PubMed DOI
Kirchman D., Mitchell R. (1982). Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Environ. Microbiol. 43, 200–209. doi: 10.1128/aem.43.1.200-209.1982, PMID: PubMed DOI PMC
Langenheder S., Székely A. J. (2011). Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J. 5, 1086–1094. doi: 10.1038/ismej.2010.207, PMID: PubMed DOI PMC
Legendre P., Mi X., Ren H., Ma K., Yu M., Sun I.-F., et al. . (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674. doi: 10.1890/07-1880.1, PMID: PubMed DOI
Leibold M. A., Holyoak M., Mouquet N., Amarasekare P., Chase J. M., Hoopes M. F., et al. . (2004). The metacommunity concept: A framework for multi-scale community ecology: The metacommunity concept. Ecol. Lett. 7, 601–613. doi: 10.1111/j.1461-0248.2004.00608.x DOI
Lindström E. S., Bergström A.-K. (2005). Community composition of bacterioplankton and cell transport in lakes in two different drainage areas. Aquat. Sci. 67, 210–219. doi: 10.1007/s00027-005-0769-2 DOI
Lindstrom E. S., Kamst-Van Agterveld M. P., Zwart G. (2005). Distribution of typical freshwater bacterial groups is associated with pH, temperature, and Lake water retention time. Appl. Environ. Microbiol. 71, 8201–8206. doi: 10.1128/AEM.71.12.8201-8206.2005, PMID: PubMed DOI PMC
Logares R. (2017). Ramalok/Amplicon_Processing: Workflow For Analysing Miseq Amplicons Based On Uparse.
Logares R., Sunagawa S., Salazar G., Cornejo-Castillo F. M., Ferrera I., Sarmento H., et al. . (2014). Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities: using mi tag s to explore microbial communities. Environ. Microbiol. 16, 2659–2671. doi: 10.1111/1462-2920.12250, PMID: PubMed DOI
Logue J. B., Mouquet N., Peter H., Hillebrand H. (2011). Empirical approaches to metacommunities: A review and comparison with theory. Trends Ecol. Evol. 26, 482–491. doi: 10.1016/j.tree.2011.04.009, PMID: PubMed DOI
Lorenzen C. J. (1967). Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12, 343–346. doi: 10.4319/lo.1967.12.2.0343 DOI
Losos J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003. doi: 10.1111/j.1461-0248.2008.01229.x, PMID: PubMed DOI
Mahé F., Rognes T., Quince C., de Vargas C., Dunthorn M. (2014). Swarm: Robust and fast clustering method for amplicon-based studies. Peer J 2:e593. doi: 10.7717/peerj.593, PMID: PubMed DOI PMC
Marker A. F., Nush E. A., Rai H., Riemann B. (1980). The measurement of photosynthetic Pigments in freshwaters and standardization of methods: conclusions and recommendations. Archives fur Hydrobiologie 14, 91–106.
Minillo A. (2005). Análise da distribuição, densidade e toxicidade de florações de cianobactérias em reservatórios do médio e baixo rio Tietê (SP) e relação com as características limnológicas do sistema.
Nemergut D. R., Schmidt S. K., Fukami T., O’Neill S. P., Bilinski T. M., Stanish L. F., et al. . (2013). Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356. doi: 10.1128/MMBR.00051-12, PMID: PubMed DOI PMC
Newton R. J., Jones S. E., Eiler A., McMahon K. D., Bertilsson S. (2011). A guide to the natural history of freshwater Lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49. doi: 10.1128/MMBR.00028-10, PMID: PubMed DOI PMC
Nusch E. A. (1980). Comparison of different methods for Chlorophyll and Phaeopigments Determination. Arch. Hydrobiol. 14, 4–36.
Ofiteru I. D., Lunn M., Curtis T. P., Wells G. F., Criddle C. S., Francis C. A., et al. . (2010). Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl. Acad. Sci. 107, 15345–15350. doi: 10.1073/pnas.1000604107, PMID: PubMed DOI PMC
Pedrós-Alió C., Brock T. D. (1982). Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Appl. Environ. Microbiol. 44, 203–218. doi: 10.1128/aem.44.1.203-218.1982, PMID: PubMed DOI PMC
Rappé M. S., Giovannoni S. J. (2003). The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394. doi: 10.1146/annurev.micro.57.030502.090759 PubMed DOI
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/
Ricklefs R. E., Miller G. (1990). Ecology 1999. WH Fr. and C. New York, 898.
Rodgher S. (2001). Estudos ecotoxicológicos e limnológicos nos reservatórios em cascata do médio e baixo rio Tietê: uma análise espacial e temporal.
Rodgher S., Espíndola E. L. G., Rocha O., Fracácio R., Pereira R. H. G., Rodrigues M. H. S. (2005). Limnological and ecotoxicological studies in the cascade of reservoirs in the Tietê river (São Paulo, Brazil). Braz. J. Biol. 65, 697–710. doi: 10.1590/S1519-69842005000400017 PubMed DOI
Smith M. W., Zeigler Allen L., Allen A. E., Herfort L., Simon H. M. (2013). Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front. Microbiol. 4:120. doi: 10.3389/fmicb.2013.00120, PMID: PubMed DOI PMC
Smith W. S., Espíndola E. L. G., Rocha O. (2014). Environmental gradient in reservoirs of the medium and low Tietê River: Limnological differences through the habitat sequence. Acta Limnol. Bras. 26, 73–88. doi: 10.1590/S2179-975X2014000100009 DOI
Sotero-Santos R. B., Silva C. R. D. S. E., Verani N. F., Nonaka K. O., Rocha O. (2006). Toxicity of a cyanobacteria bloom in Barra Bonita reservoir (middle Tietê River, São Paulo, Brazil). Ecotoxicol. Environ. Saf. 64, 163–170. doi: 10.1016/j.ecoenv.2005.03.011, PMID: PubMed DOI
Stegen J. C., Lin X., Fredrickson J. K., Chen X., Kennedy D. W., Murray C. J., et al. . (2013). Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079. doi: 10.1038/ismej.2013.93, PMID: PubMed DOI PMC
Stewart E. J. (2012). Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160. doi: 10.1128/JB.00345-12, PMID: PubMed DOI PMC
Tuomisto H., Ruokolainen L., Ruokolainen K. (2012). Modelling niche and neutral dynamics: On the ecological interpretation of variation partitioning results. Ecography 35, 961–971. doi: 10.1111/j.1600-0587.2012.07339.x DOI
Vellend M. (2016). The Theory of Ecological Communities (MPB-57). Available at: 10.1515/9781400883790, [Accessed January 30 2019]. DOI
Verreydt D., De Meester L., Decaestecker E., Villena M.-J., Van Der Gucht K., Vannormelingen P., et al. . (2012). Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities: Dispersal-mediated metacommunity responses. Ecol. Lett. 15, 218–226. doi: 10.1111/j.1461-0248.2011.01728.x, PMID: PubMed DOI
Webb C. O., Ackerly D. D., Kembel S. W. (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100. doi: 10.1093/bioinformatics/btn358, PMID: PubMed DOI
Zhang Z., Schwartz S., Wagner L., Miller W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214. doi: 10.1089/10665270050081478, PMID: PubMed DOI
Zhou J., Liu W., Deng Y., Jiang Y.-H., Xue K., He Z., et al. . (2013). Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4 4:e00584-12-e00584-12. doi: 10.1128/mBio.00584-12, PMID: PubMed DOI PMC