Thiophene-Based Trimers and Their Bioapplications: An Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
838171
H2020 Marie Skłodowska-Curie Actions
CZ.02.2.69/0.0/0.0/20_079/0017045
H2020 Marie Skłodowska-Curie Actions
PubMed
34208624
PubMed Central
PMC8234281
DOI
10.3390/polym13121977
PII: polym13121977
Knihovny.cz E-zdroje
- Klíčová slova
- biosensing, conjugated polymers, photosensitizers, polythiophenes, terthiophenes, thiophene trimers,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.
Zobrazit více v PubMed
MacDiarmid A.G., Epstein A.J. Conducting Polymers: Past, Present and Future…. MRS Proc. 1993;328:133. doi: 10.1557/PROC-328-133. DOI
Mantione D., del Agua I., Sanchez-Sanchez A., Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers. 2017;9:354. doi: 10.3390/polym9080354. PubMed DOI PMC
Namsheer K., Rout C.S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659–5697. doi: 10.1039/D0RA07800J. PubMed DOI PMC
Malliaras G., Abidian M.R. Organic Bioelectronic Materials and Devices. Adv. Mater. 2015;27:7492. doi: 10.1002/adma.201504783. PubMed DOI PMC
Gómez I.J., Vázquez Sulleiro M., Mantione D., Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers. 2021;13:745. doi: 10.3390/polym13050745. PubMed DOI PMC
Döbbelin M., Marcilla R., Pozo-Gonzalo C., Mecerreyes D. Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. J. Mater. Chem. 2010;20:7613–7622. doi: 10.1039/c0jm00114g. DOI
Elschner A., Kirchmeyer S., Lovenich W., Merker U., Reuter K. PEDOT. CRC Press; Boca Raton, FL, USA: 2010.
Kaloni T.P., Giesbrecht P.K., Schreckenbach G., Freund M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017;29:10248–10283. doi: 10.1021/acs.chemmater.7b03035. DOI
Steinkopf W., Leitsmann R., Hofmann K.H. Studien in der Thiophenreihe. LVII. Über α-Polythienyle. Justus Liebig’s Ann. Chem. 1941;546:180–199. doi: 10.1002/jlac.19415460112. DOI
Buerle P., Becher J., Lau J., Mark P. Electronic Materials: The Oligomer Approach. Wiley-VCH Verlag GmbH; Weinheim, Germany: 1998. Sulfur-Containing Oligomers; pp. 105–233.
Zechmeister L., Sease J.W. A Blue-fluorescing Compound, Terthienyl, Isolated from Marigolds. J. Am. Chem. Soc. 1947;69:273–275. doi: 10.1021/ja01194a032. PubMed DOI
Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977;39:1098–1101. doi: 10.1103/PhysRevLett.39.1098. DOI
Tamao K., Sumitani K., Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 1972;94:4374–4376. doi: 10.1021/ja00767a075. DOI
Yamamoto T., Sanechika K., Yamamoto A. Preparation of thermostable and electric-conducting poly(2,5-thienylene) J. Polym. Sci. Polym. Lett. Ed. 1980;18:9–12. doi: 10.1002/pol.1980.130180103. DOI
Lin J.W.-P., Dudek L.P. Synthesis and properties of poly(2,5-thienylene) J. Polym. Sci. Polym. Chem. Ed. 1980;18:2869–2873. doi: 10.1002/pol.1980.170180910. DOI
Cunningham D.D., Laguren-Davidson L., Mark H.B., Van Pham C., Zimmer H. Synthesis of oligomeric 2,5-thienylenes; their U.V. spectra and oxidation potentials. J. Chem. Soc. Chem. Commun. 1987:1021–1023. doi: 10.1039/c39870001021. DOI
Roncali J., Giffard M., Frère P., Jubault M., Gorgues A. Extensively conjugated tetrathiafulvalene (TTF) π-electron donors with oligothiophenes spacer groups. J. Chem. Soc. Chem. Commun. 1993:689–691. doi: 10.1039/C39930000689. DOI
Li Z.H., Wong M.S., Fukutani H., Tao Y. Full Emission Color Tuning in Bis-Dipolar Diphenylamino-Endcapped Oligoarylfluorenes. Chem. Mater. 2005;17:5032–5040. doi: 10.1021/cm051163v. DOI
Yin B., Jiang C., Wang Y., La M., Liu P., Deng W. Synthesis and electrochromic properties of oligothiophene derivatives. Synth. Met. 2010;160:432–435. doi: 10.1016/j.synthmet.2009.11.025. DOI
Li Y., Li Z., Wang C., Li H., Lu H., Xu B., Tian W. Novel low-bandgap oligothiophene-based donor-acceptor alternating conjugated copolymers: Synthesis, properties, and photovoltaic applications. J. Polym. Sci. Part A Polym. Chem. 2010;48:2765–2776. doi: 10.1002/pola.24025. DOI
Guan L., Wang J., Huang J., Jiang C., La M., Liu P., Deng W. Synthesis and Photovoltaic Properties of Donor–Acceptor Oligothiophene Derivatives Possessing Mesogenic Properties. Synth. Commun. 2011;41:3662–3670. doi: 10.1080/00397911.2010.519845. DOI
Yu J., Shen T.-L., Weng W.-H., Huang Y.-C., Huang C.-I., Su W.-F., Rwei S.-P., Ho K.-C., Wang L. Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells. Adv. Energy Mater. 2012;2:245–252. doi: 10.1002/aenm.201100581. DOI
Chen Y., Li C., Zhang P., Li Y., Yang X., Chen L., Tu Y. Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties. Org. Electron. 2013;14:1424–1434. doi: 10.1016/j.orgel.2013.02.038. DOI
Grübel M., Meister S., Schulze U., Raftopoulos K.N., Baumer F., Papadakis C.M., Nilges T., Rieger B. Synthesis of Diisocyanate-Containing Thiophenes and Their Use in PDMS-Based Segmented Polymers. Macromol. Chem. Phys. 2016;217:59–71. doi: 10.1002/macp.201500289. DOI
Crisp G.T. Palladium Mediated Formation of Bithiophenes. Synth. Commun. 1989;19:307–316. doi: 10.1080/00397918908050983. DOI
Chantarak S., Liu F., Emrick T., Russell T.P. Solvent-Assisted Orientation of Poly(3-hexylthiophene)-Functionalized CdSe Nanorods Under an Electric Field. Macromol. Chem. Phys. 2014;215:1647–1653. doi: 10.1002/macp.201400188. DOI
Kamal M.R., Al-taweel S.A., El-abadelah M.M., Abu Ajaj K.M. SYNTHESIS OF α-THIOPHENE OLIGOMERS VIA ORGANOTIN COMPOUNDS. Phosphorus. Sulfur. Silicon Relat. Elem. 1997;126:65–74. doi: 10.1080/10426509708043546. DOI
Ahn S., Yabumoto K., Jeong Y., Akagi K. Low bandgap poly(thienylenemethine) derivatives bearing terarylene moieties in the side chains. Polym. Chem. 2014;5:6977–6989. doi: 10.1039/C4PY00849A. DOI
Amna B., Siddiqi H.M., Hassan A., Ozturk T. Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems. RSC Adv. 2020;10:4322–4396. doi: 10.1039/C9RA09712K. PubMed DOI PMC
Lightowler S., Hird M. Monodisperse Aromatic Oligomers of Defined Structure and Large Size through Selective and Sequential Suzuki Palladium-Catalyzed Cross-Coupling Reactions. Chem. Mater. 2005;17:5538–5549. doi: 10.1021/cm0512068. DOI
Yu M., Lynch V., Pagenkopf B.L. Intramolecular Cyclopropanation of Glycals: Studies toward the Synthesis of Canadensolide, Sporothriolide, and Xylobovide. Org. Lett. 2001;3:2563–2566. doi: 10.1021/ol016239h. PubMed DOI
Hassan Omar O., Babudri F., Farinola G.M., Naso F., Operamolla A., Pedone A. Synthesis of d-glucose and l-phenylalanine substituted phenylene–thiophene oligomers. Tetrahedron. 2011;67:486–494. doi: 10.1016/j.tet.2010.11.004. DOI
Gronowitz S., Peters D. Convenient synthesis of various terheterocyclic compounds by Pd(0)-catalyzed coupling reactions. Heterocycles. 1990;30:645–658. doi: 10.3987/COM-89-S90. DOI
Melucci M., Barbarella G., Sotgiu G. Solvent-Free, Microwave-Assisted Synthesis of Thiophene Oligomers via Suzuki Coupling. J. Org. Chem. 2002;67:8877–8884. doi: 10.1021/jo026269d. PubMed DOI
Alesi S., Di Maria F., Melucci M., Macquarrie D.J., Luque R., Barbarella G. Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem. 2008;10:517. doi: 10.1039/b718776a. DOI
DiMaria F., Barbarella G. Facilitated synthesis of functional oligothiophenes for application in thin film devices and live cell imaging. J. Sulfur Chem. 2013;34:627–637. doi: 10.1080/17415993.2013.807810. DOI
Beny J.P., Dhawan S.N., Kagan J., Sundlass S. Synthesis of 3,2′:5′,3″-terthiophene and other terthiophenes by the thiophenecarboxaldehyde.fwdarw. ethynylthiophene.fwdarw. dithienylbutadiyne route. J. Org. Chem. 1982;47:2201–2204. doi: 10.1021/jo00132a047. DOI
Kagan J., Perrine M.D. A Side Reaction in the Synthesis of 2-Ethynylthiophene from 2-Thiophenecarboxaldehyde by the Corey Procedure and an Inproved Synthesis of 2,2′:5′,2″-Terthiophene. Heterocycles. 1986;24:365. doi: 10.3987/R-1986-02-0365. DOI
Carpita A., Rossi R., Veracini C.A. Synthesis and 13C nmr characterization of some π-excessive heteropolyaromatic compounds. Tetrahedron. 1985;41:1919–1929. doi: 10.1016/S0040-4020(01)96555-X. DOI
Chen Z., Wu P., Cong R., Xu N., Tan Y., Tan C., Jiang Y. Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging. ACS Appl. Mater. Interfaces. 2016;8:3567–3574. doi: 10.1021/acsami.5b06935. PubMed DOI
Press D.J., Gendy C., Pasalkar S., Schechtel S., Heyne B., Sutherland T.C. Synthesis of Tetrathia–Oligothiophene Macrocycles. ACS Omega. 2019;4:3405–3408. doi: 10.1021/acsomega.8b03444. PubMed DOI PMC
Zheng Q., Hua R., Jiang J., Zhang L. A general approach to arylated furans, pyrroles, and thiophenes. Tetrahedron. 2014;70:8252–8256. doi: 10.1016/j.tet.2014.09.025. DOI
Zhang G., Yi H., Chen H., Bian C., Liu C., Lei A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaO t Bu. Org. Lett. 2014;16:6156–6159. doi: 10.1021/ol503015b. PubMed DOI
Urselmann D., Antovic D., Müller T.J.J. Pseudo five-component synthesis of 2,5-di(hetero)arylthiophenes via a one-pot Sonogashira–Glaser cyclization sequence. Beilstein J. Org. Chem. 2011;7:1499–1503. doi: 10.3762/bjoc.7.174. PubMed DOI PMC
Wynberg H., Metselaar J. A Convenient Route To Polythiophenes. Synth. Commun. 1984;14:1–9. doi: 10.1080/00397918408060857. DOI
Merz A., Ellinger F. Convenient Synthesis of α-Terthienyl and α-Quinquethienyl via a Friedel-Crafts Route. Synthesis (Stuttgart) 1991;1991:462–464. doi: 10.1055/s-1991-26494. DOI
Asano T., Ito S., Saito N., Hatakeda K. A Simple Synthesis of 2,2′,5′,2″-Terthienyl. Heterocycles. 1977;6:317. doi: 10.3987/R-1977-03-0317. DOI
Nakayama J., Nakamura Y., Murabayashi S., Hoshino M. Preparation of a-Quinque- and a-Septithiophenes and Their Positional Isomers. Heterocycles. 1987;26:939. doi: 10.3987/R-1987-04-0939. DOI
Sørensen A.R., Overgaard L., Johannsen I. Reactivity of 2,5-dithienyl-pyrroles and thiophenes. Synth. Met. 1993;55:1626–1631. doi: 10.1016/0379-6779(93)90296-9. DOI
Zaitsev K.V., Lam K., Poleshchuk O.K., Kuz’mina L.G., Churakov A.V. Oligothienyl catenated germanes and silanes: synthesis, structure, and properties. Dalt. Trans. 2018;47:5431–5444. doi: 10.1039/C8DT00256H. PubMed DOI
Shridhar D.R., Jogibhukta M., Rao P.S., Handa V.K. An Improved Method for the Preparation of 2,5-Disubstituted Thiophenes. Synthesis. 1982;1982:1061–1062. doi: 10.1055/s-1982-30065. DOI
Ben-Haida A., Hodge P. Polymer-supported syntheses of thiophene-containing compounds using a new type of traceless linker. Org. Biomol. Chem. 2012;10:1754. doi: 10.1039/c2ob06714e. PubMed DOI
Leriche P., Aillerie D., Roquet S., Allain M., Cravino A., Frère P., Roncali J. 3D-conjugated systems based on oligothiophenes and phosphorus nodes. Org. Biomol. Chem. 2008;6:3202. doi: 10.1039/b806169f. PubMed DOI
Khan M.S., Al-Suti M.K., Shah H.H., Al-Humaimi S., Al-Battashi F.R., Bjernemose J.K., Male L., Raithby P.R., Zhang N., Köhler A., et al. Synthesis and characterization of platinum(ii) di-ynes and poly-ynes incorporating ethylenedioxythiophene (EDOT) spacers in the backbone. Dalt. Trans. 2011;40:10174. doi: 10.1039/c1dt11010a. PubMed DOI
Goto H. Electrochemical Polymerization in crystal-preparation of polybithiophene with crystal order. J. Polym. Sci. Part A Polym. Chem. 2012;50:622–628. doi: 10.1002/pola.25071. DOI
Li Y., Shu Q., Du Q., Dai Y., Zhao S., Zhang J., Li L., Chen K. Surface Modification for Improving the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Inorganic Lead Halide Perovskite Quantum Dots. ACS Appl. Mater. Interfaces. 2020;12:451–460. doi: 10.1021/acsami.9b14365. PubMed DOI
Chen K., Deng X., Dodekatos G., Tüysüz H. Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. J. Am. Chem. Soc. 2017;139:12267–12273. doi: 10.1021/jacs.7b06413. PubMed DOI
Goto H. Circular Dichroism of Bipolarons in a Chiroptically Active Conjugated Polymer. J. Macromol. Sci. Part B. 2016;55:471–482. doi: 10.1080/00222348.2016.1168560. DOI
Goto H. Vortex fibril structure and chiroptical electrochromic effect of optically active poly(3,4-ethylenedioxythiophene) (PEDOT*) prepared by chiral transcription electrochemical polymerisation in cholesteric liquid crystal. J. Mater. Chem. 2009;19:4914. doi: 10.1039/b818993e. DOI
Jaafari A., Ouzeau V., Ely M., Rodriguez F., Chane-ching K., Yassar A., Aaron J.J. Synthesis and optical properties of novel 1,3-propanedione bearing oligothiophene substituents. Synth. Met. 2004;147:183–189. doi: 10.1016/j.synthmet.2004.10.002. DOI
Zanardi C., Zanfrognini B., Morandi S., Terzi F., Pigani L., Pasquali L., Seeber R. Synthesis, spectroscopic and electrochemical characterization of Co(II)-terpyridine based metallopolymer. Electrochim. Acta. 2018;260:314–323. doi: 10.1016/j.electacta.2017.12.095. DOI
Invernale M.A., Pendergraph S.A., Yavuz M.S., Ombaba M., Sotzing G.A. Conjugated polymers atypically prepared in water. J. Polym. Sci. Part A Polym. Chem. 2010;48:2024–2031. doi: 10.1002/pola.23972. PubMed DOI PMC
Pardieu E., Saad A., Dallery L., Garnier F., Vedrine C., Hauquier F., Dalko P., Pernelle C. Synthesis and characterization of β-substituted 3,4-ethylenedioxy terthiophene monomers for conducting polymer applications. Synth. Met. 2013;171:23–31. doi: 10.1016/j.synthmet.2013.03.012. DOI
Ji L., Edkins R.M., Sewell L.J., Beeby A., Batsanov A.S., Fucke K., Drafz M., Howard J.A.K., Moutounet O., Ibersiene F., et al. Experimental and Theoretical Studies of Quadrupolar Oligothiophene-Cored Chromophores Containing Dimesitylboryl Moieties as π-Accepting End-Groups: Syntheses, Structures, Fluorescence, and One- and Two-Photon Absorption. Chem. Eur. J. 2014;20:13618–13635. doi: 10.1002/chem.201402273. PubMed DOI
Imae I., Imabayashi S., Komaguchi K., Tan Z., Ooyama Y., Harima Y. Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Adv. 2014;4:2501–2508. doi: 10.1039/C3RA44129F. DOI
Imae I., Korai K., Ooyama Y., Komaguchi K., Harima Y. Synthesis of novel dyes having EDOT-containing oligothiophenes as π-linker for panchromatic dye-sensitized solar cells. Synth. Met. 2015;207:65–71. doi: 10.1016/j.synthmet.2015.06.009. DOI
Shen L., Liu P., Liu C., Jiang Q., Xu J., Duan X., Du Y., Jiang F. Advances in Efficient Polymerization of Solid-State Trithiophenes for Organic Thermoelectric Thin-Film. ACS Appl. Polym. Mater. 2020;2:376–384. doi: 10.1021/acsapm.9b00842. DOI
Imae I., Sagawa H., Mashima T., Komaguchi K., Ooyama Y., Harima Y., Imae I., Sagawa H., Mashima T., Komaguchi K., et al. Synthesis of Soluble Polythiophene Partially Containing 3,4-Ethylenedioxythiophene and 3-Hexylthiophene by Polycondensation. Open J. Polym. Chem. 2014;04:83–93. doi: 10.4236/ojpchem.2014.43010. DOI
Turbiez M., Frère P., Allain M., Videlot C., Ackermann J., Roncali J. Design of Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated Oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) Building Block. Chem. Eur. J. 2005;11:3742–3752. doi: 10.1002/chem.200401058. PubMed DOI
Abdiryim T., Jamal R., Zhao C., Awut T., Nurulla I. Structure and properties of solid-state synthesized poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene) Synth. Met. 2010;160:325–332. doi: 10.1016/j.synthmet.2009.10.033. DOI
Borghese A., Geldhof G., Antoine L. Direct C–H arylation of 3-methoxythiophene catalyzed by Pd. Application to a more efficient synthesis of π-alkoxy-oligothiophene derivatives. Tetrahedron Lett. 2006;47:9249–9252. doi: 10.1016/j.tetlet.2006.10.130. DOI
Sease J.W., Zechmeister L. Chromatographic and Spectral Characteristics of Some Polythienyls. J. Am. Chem. Soc. 1947;69:270–273. doi: 10.1021/ja01194a031. PubMed DOI
Uhlenbroek J.H., Bijloo J.D. Investigations on nematicides: III. Polythienyls and related compounds. Recl. Trav. Chim. Pays-Bas. 1960;79:1181–1196. doi: 10.1002/recl.19600791113. DOI
Luo T.-M.H., Legoff E. Facile Synthesis of α-Polythienyls via 1,4-Diketones. J. Chin. Chem. Soc. 1992;39:325–332. doi: 10.1002/jccs.199200056. DOI
Tao T., Qian H.F., Zhang K., Geng J., Huang W. Functionalized oligothiophene-based heterocyclic aromatic fluorescent compounds with various donor-acceptor spacers and adjustable electronic properties: A theoretical and experimental perspective. Tetrahedron. 2013;69:7290–7299. doi: 10.1016/j.tet.2013.06.087. DOI
Tamao K., Kodama S., Nakajima I., Kumada M., Minato A., Suzuki K. Nickel-phosphine complex-catalyzed Grignard coupling-II. Grignard coupling of heterocyclic compounds. Tetrahedron. 1982;38:3347–3354. doi: 10.1016/0040-4020(82)80117-8. DOI
Roncali J., Gorgues A., Jubault M. Effects of Substitution of the Median Thiophene Ring on the Electrodeposition and Structure of Poly(terthienyls) Chem. Mater. 1993;5:1456–1464. doi: 10.1021/cm00034a015. DOI
Van Pham C., Burkhardt A., Shabana R., Cunningham D.D., Mark H.B., Zimmer H. A convenient synthesis of 2, 5-thienylene oligomers; some of their spectroscopic and electrochemical properties. Phosphorus. Sulfur. Silicon Relat. Elem. 1989;46:153–168. doi: 10.1080/10426508909412061. DOI
Gronowitz S., Hörnfeldt A.B., Galal A., Mark H.B. Synthesis of mixed oligomeric heteroarylenes containing furan, thiophene, and selenophene rings; their uv spectra and oxidation potentials. Phosphorus. Sulfur. Silicon Relat. Elem. 1989;42:171–176. doi: 10.1080/10426508908054892. DOI
Delabouglise D., Hmyene M., Horowitz G., Yassar A., Garnier F. Electrochemical coupling of dialkylated sexithiophene. Adv. Mater. 1992;4:107–110. doi: 10.1002/adma.19920040210. DOI
Bäuerle P., Pfau F., Schlupp H., Würthner F., Gaudl K.-U., Caro M.B., Fischer P. Synthesis and structural characterization of alkyl oligothiophenes—The first isomerically pure dialkylsexithiophene. J. Chem. Soc. Perkin Trans. 1993;3:489–494. doi: 10.1039/P29930000489. DOI
Ten Hoeve W., Wynberg H. Substituted 2 2′:5′,2″:5″,2‴5‴,2″″:5″″,2″‴5″‴2″″″:5″″″,2″″‴:5‴‴′:5‴‴″,2″″″″′,2′′′′′′′′′′-Undecithiophenes: The Longest Characterized Oligothiophenes. J. Am. Chem. Soc. 1991;113:5887–5889. doi: 10.1021/ja00015a067. DOI
Ferraris J.P., Newton M.D. Electrochemical and optical properties of thiophene-alkylheteroaromatic copolymers. Polymer. 1992;33:391–397. doi: 10.1016/0032-3861(92)90999-D. DOI
Andersson M.R., Pei Q., Hjertberg T., Inganäs O., Wennerström O., Österholm J.E. Synthesis of soluble poly(alkylthiophenes) which are thermally stable in the doped state. Synth. Met. 1993;55:1227–1231. doi: 10.1016/0379-6779(93)90229-P. DOI
Li W., Han Y., Li B., Liu C., Bo Z. Tris[tri(2-thienyl)phosphine]palladium as the catalyst precursor for thiophene-based Suzuki-Miyaura crosscoupling and polycondensation. J. Polym. Sci. Part A Polym. Chem. 2008;46:4556–4563. doi: 10.1002/pola.22792. DOI
Gohier F., Frère P., Roncali J. 3-Fluoro-4-hexylthiophene as a Building Block for Tuning the Electronic Properties of Conjugated Polythiophenes. J. Org. Chem. 2013;78:1497–1503. doi: 10.1021/jo302571u. PubMed DOI
Qiu Y., Mohin J., Tsai C.-H., Tristram-Nagle S., Gil R.R., Kowalewski T., Noonan K.J.T. Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene) Macromol. Rapid Commun. 2015;36:840–844. doi: 10.1002/marc.201500030. PubMed DOI
Gallazzi M.C., Castellani L., Marin R.A., Zerbi G. Regiodefined substituted poly(2,5-thienylene)s. J. Polym. Sci. Part A Polym. Chem. 1993;31:3339–3349. doi: 10.1002/pola.1993.080311322. DOI
Olinga T., Destri S., Porzio W., Selva A. Synthesis and characterization of 3-hexyl multi-substituted α,ω-diformyl-α-oligothiophenes (n = 3, 6, 8) Macromol. Chem. Phys. 1997;198:1091–1107. doi: 10.1002/macp.1997.021980413. DOI
Jones C.L., Higgins S.J. Symmetrical alkyl-substituted oligothiophenes as ligands: Complexation of the [(η-C5H5)Ru]+ moiety by hexyl-substituted ter-, quater- and quinque-thiophenes. J. Mater. Chem. 1999;9:865–874. doi: 10.1039/a809623f. DOI
Yang C., Abley M., Holdcroft S. Regioregular di(2′-(thienyl))furan- and di(2′-thienyl)benzene-based polymers: Steric and heavy-atom effects on the luminescence of conjugated systems. Macromolecules. 1999;32:6889–6891. doi: 10.1021/ma990937o. DOI
Kokubo H., Yamamoto T. Organometallic Syntheses of Head-to-Head Poly(3-hexylthiophene) and a Related Polymer With a Spacing Non-Substituted Thiophene Unit. Colloidal Solutions of the Polymers. Macromol. Chem. Phys. 2001;202:1031–1034. doi: 10.1002/1521-3935(20010401)202:7<1031::AID-MACP1031>3.0.CO;2-C. DOI
Diaz-Quijada G.A., Weinberg N., Holdcroft S., Mario Pinto B. Conformational analysis of oligothiophenes and oligo(thienyl)furans by use of a combined molecular dynamics/NMR spectroscopic protocol. J. Phys. Chem. A. 2002;106:1277–1285. doi: 10.1021/jp011784l. DOI
Saravanan C., Liu C.L., Chang Y.M., Lu J.D., Hsieh Y.J., Rwei S.P., Wang L. Fulleropyrrolidines bearing π-conjugated moiety for polymer solar cells: Contribution of the chromophoric substituent on C60 to the photocurrent. ACS Appl. Mater. Interfaces. 2012;4:6133–6141. doi: 10.1021/am301773t. PubMed DOI
XIA P.F., Lu J., Kwok C.H., Fukutani H., Wong M.S., Tao Y. Synthesis and properties of monodisperse multi-triarylamine-substituted oligothiophenes and 4,7-bis(2′-oligothienyl)-2,1,3-benzothiadiazoles for organic solar cell applications. J. Polym. Sci. Part A Polym. Chem. 2009;47:137–148. doi: 10.1002/pola.23131. DOI
Zhang H., Chen Z.E., Hu J., Hong Y. Novel metal-free organic dyes containing linear planar 11,12-dihydroindolo[2,3-a]carbazole donor for dye-sensitized solar cells: Effects of π spacer and alkyl chain. Dyes Pigments. 2019;164:213–221. doi: 10.1016/j.dyepig.2019.01.033. DOI
Ghosh T., Gopal A., Saeki A., Seki S., Nair V.C. P/n-Polarity of thiophene oligomers in photovoltaic cells: Role of molecular vs. supramolecular properties. Phys. Chem. Chem. Phys. 2015;17:10630–10639. doi: 10.1039/C5CP01044F. PubMed DOI
Gao X., Zhang Y., Fang C., Cai X., Hu B., Tu G. Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline. Org. Electron. 2017;46:276–282. doi: 10.1016/j.orgel.2017.04.002. DOI
Diaz-Quijada G.A., Weinberg N., Holdcroft S., Pinto B.M. Investigation of barriers to conformational interchange in oligothiophenes and oligo(thienyl)furans. J. Phys. Chem. A. 2002;106:1266–1276. doi: 10.1021/jp011783t. DOI
Luo T.-M.H., Chen L.-H. Synthesis of 2,5 -Bis(4-methyl-2-thienyl)thiophene and 2,5-Bis(4-methyl-2-thienyl)pyrrole. J. Chin. Chem. Soc. 1995;42:589–591. doi: 10.1002/jccs.199500079. DOI
Reddinger J.L., Reynolds J.R. Site Specific Electropolymerization To Form Transition-Metal-Containing, Electroactive Polythiophenes. Chem. Mater. 1998;10:1236–1243. doi: 10.1021/cm970574b. DOI
Belkessam F., Mohand A., Soulé J.-F., Elias A., Doucet H. Palladium-catalyzed 2,5-diheteroarylation of 2,5-dibromothiophene derivatives. Beilstein J. Org. Chem. 2014;10:2912–2919. doi: 10.3762/bjoc.10.309. PubMed DOI PMC
Araki K., Endo H., Masuda G., Ogawa T. Bridging Nanogap Electrodes by In Situ Electropolymerization of a Bis(terthiophenylphenanthroline)ruthenium Complex. Chem. Eur. J. 2004;10:3331–3340. doi: 10.1002/chem.200400063. PubMed DOI
Krömer J., Bäuerle P. Homologous series of regioregular alkylsubstituted oligothiophenes up to an 11-mer. Tetrahedron. 2001;57:3785–3794. doi: 10.1016/S0040-4020(01)00254-X. DOI
Wang C., Benz M.E., LeGoff E., Schindler J.L., Allbritton-Thomas J., Kannewurf C.R., Kanatzidis M.G. Studies on Conjugated Polymers: Preparation, Spectroscopic, and Charge-Transport Properties of a New Soluble Polythiophene Derivative: Poly(3′,4′dibutyl-2,2′:5′2″-terthiophene) Chem. Mater. 1994;6:401–411. doi: 10.1021/cm00040a012. DOI
Horne J.C., Blanchard G.J., LeGoff E. Rotational Isomerization Barriers of Thiophene Oligomers in the Ground and First Excited Electronic States. A 1H NMR and Fluorescence Lifetime Investigation. J. Am. Chem. Soc. 1995;117:9551–9558. doi: 10.1021/ja00142a025. DOI
Nakayama J., Ting Y., Sugihara Y., Ishii A. Synthesis of highly congested bi- and terthiophenes; 3,4,3′,′-tetra-tert-butylbithiophene and 3′,4′-di-tert-butyl-2,2′:5′,2″-terthiophene. Heterocycles. 1997;44:75–80. doi: 10.3987/COM-96-S11. DOI
Henderson P.T., Collard D.M. Thiophene: Alkylthiophene Copolymers from Substituted Dialkyloligothiophenes. Chem. Mater. 1995;7:1879–1889. doi: 10.1021/cm00058a019. DOI
Li J., Wang X., Du S., Tong J., Zhang P., Guo P., Yang C., Xia Y. A two-dimension medium band gap conjugated polymer based on 5,10-bis(alkylthien-2-yl)dithieno[3,2-d:3′,2′-d′]benzo[1,2-b:4,5-b′]dithiophene: Synthesis and photovoltaic application. J. Macromol. Sci. Part A Pure Appl. Chem. 2016;53:538–545. doi: 10.1080/10601325.2016.1201749. DOI
Huang W., Meng H., Yu W.L., Pei J., Chen Z.K., Lai Y.H. A novel series of p-N diblock light-emitting copolymers based on oligothiophenes and 1,4-Bis(oxadiazolyl)-2,5-dialkyloxybenzene. Macromolecules. 1999;32:118–126. doi: 10.1021/ma9813237. DOI
Meng H., Huang W. Novel photoluminescent polymers containing oligothiophene and m-phenylene-1,3,4-oxadiazole moieties: Synthesis and spectroscopic and electrochemical studies. J. Org. Chem. 2000;65:3894–3901. doi: 10.1021/jo991359c. PubMed DOI
Liu P., Shirota Y., Osada Y. A novel class of low-molecular-weight organic gels based on terthiophene. Polym. Adv. Technol. 2000;11:512–517. doi: 10.1002/1099-1581(200008/12)11:8/12<512::AID-PAT997>3.0.CO;2-L. DOI
Yan W., Zhang Q., Qin Q., Ye S., Lin Y., Liu Z., Bian Z., Chen Y., Huang C. Design, synthesis and photophysical properties of A-D-A-D-A small molecules for photovoltaic application. Dyes Pigments. 2015;121:99–108. doi: 10.1016/j.dyepig.2015.05.009. DOI
Pandolfi F., Rocco D., Mattiello L. Synthesis and characterization of new D-π-A and A-π-D-π-A type oligothiophene derivatives. Org. Biomol. Chem. 2019;17:3018–3025. doi: 10.1039/C8OB03077D. PubMed DOI
Jeon C.W., Kang S.H., Yun H.J., An T.K., Cha H., Park C.E., Kim Y.H. Synthesis and characterization of poly(dialkylterthiophene-bithiophene) and poly(dialkylterthiophene-thienothiophene) for organic thin film transistors and organic photovoltaic cells. Synth. Met. 2013;185–186:159–166. doi: 10.1016/j.synthmet.2013.10.007. DOI
Song H.G., Kim Y.J., Lee J.S., Kim Y.H., Park C.E., Kwon S.K. Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing. ACS Appl. Mater. Interfaces. 2016;8:34353–34359. doi: 10.1021/acsami.6b11297. PubMed DOI
Pokrop R., Verilhac J.M., Gasior A., Wielgus I., Zagorska M., Travers J.P., Pron A. Effect of molecular weight on electronic, electrochemical and spectroelectrochemical properties of poly(3,3″-dioctyl-2,2′5′,2″-terthiophene) J. Mater. Chem. 2006;16:3099–3106. doi: 10.1039/B605504D. DOI
Tang A., Zhan C., Yao J. Series of Quinoidal Methyl-Dioxocyano-Pyridine Based π-Extended Narrow-Bandgap Oligomers for Solution-Processed Small-Molecule Organic Solar Cells. Chem. Mater. 2015;27:4719–4730. doi: 10.1021/acs.chemmater.5b01350. DOI
Ie Y., Hirose T., Aso Y. Synthesis, properties, and FET performance of rectangular oligothiophene. J. Mater. Chem. 2009;19:8169–8175. doi: 10.1039/b912744e. DOI
Effenberger F., Grube G. Synthesis of Oligothienylfullerenes. Synthesis. 1998;1998:1372–1379. doi: 10.1055/s-1998-6090. DOI
Andreani F., Salatelli E., Lanzi M. Novel poly(3,3″- and 3′,4′-dialkyl-2,2′:5′,2″-terthiophene)s by chemical oxidative synthesis: Evidence for a new step towards the optimization of this process. Polymer. 1996;37:661–665. doi: 10.1016/0032-3861(96)83153-3. DOI
Amir E., Sivanandan K., Cochran J.E., Cowart J.J., Ku S.-Y., Seo J.H., Chabinyc M.L., Hawker C.J. Synthesis and characterization of soluble low-bandgap oligothiophene-[all]- S,S -dioxides-based conjugated oligomers and polymers. J. Polym. Sci. Part A Polym. Chem. 2011;49:1933–1941. doi: 10.1002/pola.24641. DOI
Speros J.C., Martinez H., Paulsen B.D., White S.P., Bonifas A.D., Goff P.C., Frisbie C.D., Hillmyer M.A. Effects of olefin content and alkyl chain placement on optoelectronic and morphological properties in poly(thienylene vinylenes) Macromolecules. 2013;46:5184–5194. doi: 10.1021/ma4009115. DOI
Ciofalo M., Ponterini G. Generation of singlet oxygen by 2,2′:5′,2″-terthiophene and some of its derivatives. J. Photochem. Photobiol. A Chem. 1994;83:1–6. doi: 10.1016/1010-6030(94)03802-3. DOI
Bricaud Q., Cravino A., Leriche P., Roncali J. Terthiophene-cyanovinylene π-conjugated polymers as donor material for organic solar cells. Synth. Met. 2009;159:2534–2538. doi: 10.1016/j.synthmet.2009.09.002. DOI
Lundin P.M., Giri G., Bao Z. A comparison of the properties of two structurally equivalent but regiochemically different mono-alkylated polybithiophenes prepared through AABB-type stille polycondensation. J. Polym. Sci. Part A Polym. Chem. 2013;51:908–915. doi: 10.1002/pola.26448. DOI
Somanathan N., Radhakrishnan S., Mukundan T., Schmidt H.W. Studies on 3-(2-Ethylhexyl)thiophene Polymers. Macromol. Mater. Eng. 2002;287:236–242. doi: 10.1002/1439-2054(20020401)287:4<236::AID-MAME236>3.0.CO;2-J. DOI
Wang H.J., Tzeng J.Y., Chou C.W., Huang C.Y., Lee R.H., Jeng R.J. Novel polythiophene derivatives functionalized with conjugated side-chain pendants comprising triphenylamine/carbazole moieties for photovoltaic cell applications. Polym. Chem. 2013;4:506–519. doi: 10.1039/C2PY20477K. DOI
Lee W.H., Son S.K., Kim K., Lee S.K., Shin W.S., Moon S.J., Kang I.N. Synthesis and characterization of new selenophene-based donor-acceptor low-bandgap polymers for organic photovoltaic cells. Macromolecules. 2012;45:1303–1312. doi: 10.1021/ma2020112. DOI
Andreani F., Angiolini L., Caretta D., Salatelli E. Synthesis and polymerization of 3,3″-di[(S)-(+)-2-methylbutyl]-2,2′:5′,2″-terthiophene: A new monomer precursor to chiral regioregular poly(thiophene) J. Mater. Chem. 1998;8:1109–1111. doi: 10.1039/a801593g. DOI
Barbarell G., Zambianchi M., Bongini A., Antolini L. Conformational chirality of oligothiophenes in the solid state. X-Ray structure of 3,4?,4?-trimethyl-2,2?:5?,2?-terthiophene. Adv. Mater. 1994;6:561–564. doi: 10.1002/adma.19940060706. DOI
Rossi R., Carpita A., Ciofalo M., Houben J.L. ChemInform Abstract: Synthesis and Characterization of 2,2′:5′,2′′-Terthiophene Derivatives of Possible Therapeutic Use. ChemInform. 2010;22 doi: 10.1002/chin.199118142. DOI
Martinez F., Neculqueo G. Synthesis and polymerization of 3-octylsubstituted thiophene, bithiophene and terthiophene. Int. J. Polym. Mater. Polym. Biomater. 1999;44:265–274. doi: 10.1080/00914039908009698. DOI
Wu C.G., Lai C.Y., Hsiao N.L. Molecular engineering leading to better processability of conjugated chromophores: The optical properties of new soluble copolymers containing alternative oligo-octylthiophene and oligo-methylene blocks. Eur. Polym. J. 2009;45:879–887. doi: 10.1016/j.eurpolymj.2008.11.037. DOI
Bidan G., De Nicola A., Enée V., Guillerez S. Synthesis and UV-Visible Properties of Soluble Regioregular Oligo(3-octylthiophenes), Monomer to Hexamer. Chem. Mater. 1998;10:1052–1058. doi: 10.1021/cm9706558. DOI
Leone A.K., Souther K.D., Vitek A.K., LaPointe A.M., Coates G.W., Zimmerman P.M., McNeil A.J. Mechanistic Insight into Thiophene Catalyst-Transfer Polymerization Mediated by Nickel Diimine Catalysts. Macromolecules. 2017;50:9121–9127. doi: 10.1021/acs.macromol.7b02271. DOI
Gondo S., Goto Y., Era M. Preparation of Regioregular Alkylthiophene Oligomers and Their Optical Properties. Mol. Cryst. Liq. Cryst. 2007;470:353–358. doi: 10.1080/15421400701503600. DOI
Beryozkina T., Senkovskyy V., Kaul E., Kiriy A. Kumada catalyst-transfer poly condensation of thiophene-based oligomers: Robustness of a chain-growth mechanism. Macromolecules. 2008;41:7817–7823. doi: 10.1021/ma801660x. DOI
Barbarella G., Bongini A., Zambianchi M. Regiochemistry and Conformation of Poly(3-hexylthiophene) via the Synthesis and the Spectroscopic Characterization of the Model Configurational Triads. Macromolecules. 1994;27:3039–3045. doi: 10.1021/ma00089a022. DOI
Li J.C., Lee S.H., Hahn Y.B., Kim K.J., Zong K., Lee Y.S. Synthesis and characterization of triphenylamine-3-hexylthiophene oligomer hybrids: A triphenylamine core carrying three terthiophene branches and triphenylamine end-capped quaterthiophene. Synth. Met. 2008;158:150–156. doi: 10.1016/j.synthmet.2008.01.002. DOI
Corriu R.J.P., Masse J.P. Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J. Chem. Soc. Chem. Commun. 1972:144a. doi: 10.1039/c3972000144a. DOI
Higuchi H., Nakayama T., Koyama H., Ojima J., Wada T., Sasabe H. Synthesis and Properties of α,ω-Disubstituted Oligo(3-hexylthiophene)s and Oligothienoquinonoids in Head-to-head Orientation. Bull. Chem. Soc. Jpn. 1995;68:2363–2377. doi: 10.1246/bcsj.68.2363. DOI
Tanaka S., Tamba S., Tanaka D., Sugie A., Mori A. Synthesis of well-defined head-to-tail-type oligothiophenes by regioselective deprotonation of 3-substituted thiophenes and nickel-catalyzed cross-coupling reaction. J. Am. Chem. Soc. 2011;133:16734–16737. doi: 10.1021/ja205953g. PubMed DOI
Kim Y., Park H., Abdilla A., Yun H., Han J., Stein G.E., Hawker C.J., Kim B.J. Chain-Length-Dependent Self-Assembly Behaviors of Discrete Conjugated Oligo(3-hexylthiophene) Chem. Mater. 2020 doi: 10.1021/acs.chemmater.0c00869. DOI
Tanaka S., Tanaka D., Tatsuta G., Murakami K., Tamba S., Sugie A., Mori A. Concise Synthesis of Well-Defined Linear and Branched Oligothiophenes with Nickel-Catalyzed Regiocontrolled Cross-Coupling of 3-Substituted Thiophenes by Catalytically Generated Magnesium Amide. Chem. Eur. J. 2013;19:1658–1665. doi: 10.1002/chem.201203331. PubMed DOI
Yagai S., Suzuki M., Lin X., Gushiken M., Noguchi T., Karatsu T., Kitamura A., Saeki A., Seki S., Kikkawa Y., et al. Supramolecular Engineering of Oligothiophene Nanorods without Insulators: Hierarchical Association of Rosettes and Photovoltaic Properties. Chem. Eur. J. 2014;20:16128–16137. doi: 10.1002/chem.201404428. PubMed DOI
Liu J.T., Hase H., Taylor S., Salzmann I., Forgione P. Approaching the Integer-Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross-Coupling. Angew. Chem. Int. Ed. 2020;59:7146–7153. doi: 10.1002/anie.201914458. PubMed DOI
Collis G.E., Burrell A.K., Blandford E.J., Officer D.L. A modular procedure for the synthesis of functionalised β-substituted terthiophene monomers for conducting polymer applications. Tetrahedron. 2007;63:11141–11152. doi: 10.1016/j.tet.2007.08.022. DOI
Kagan J., Liu H. 3′-Vinyl-2,2′:5′,2″-terthiophene: Synthesis, polymerization and copolymerization with styrene. Synth. Met. 1996;82:75–81. doi: 10.1016/S0379-6779(97)80013-6. DOI
Inaoka S., Collard D.M. Chemical and electrochemical polymerization of 3-alkylthiophenes on self-assembled monolayers of oligothiophene-substituted alkylsilanes. Langmuir. 1999;15:3752–3758. doi: 10.1021/la981330o. DOI
Kim D.H., Kim J.-H., Kim T.H., Kang D.M., Kim Y.H., Shim Y.-B., Shin S.C. Polyterthiophene Appended by Organomolybdenum Sulfide Cluster: Electrochemical Synthesis and Electrochemical Properties of Poly[Mo2(μ-C5H5)2{μ-η2:η2-SC(R)C S[C4HS(C4H3S-2)2-2,5]}2]s. Chem. Mater. 2003;15:825–827. doi: 10.1021/cm025630+. DOI
Yamazaki T., Murata Y., Komatsu K., Furukawa K., Morita M., Maruyama N., Yamao T., Fujita S. Synthesis and electrolytic polymerization of the ethylenedioxy-substituted terthiophene-fullerene dyad. Org. Lett. 2004;6:4865–4868. doi: 10.1021/ol048081h. PubMed DOI
Volz W., Vob J. A mild and simple synthesis of benzo[c]thiophenes and 4,7-di-hydrobenzo[c]thiophenes. Synth. 1990;1990:670–674. doi: 10.1055/s-1990-26976. DOI
Manca P., Pilo M.I., Casu G., Gladiali S., Sanna G., Scanu R., Spano N., Zucca A., Zanardi C., Bagnis D., et al. A new terpyridine tethered polythiophene: Electrosynthesis and characterization. J. Polym. Sci. Part A Polym. Chem. 2011;49:3513–3523. doi: 10.1002/pola.24786. DOI
Han A., Bai J., Murata Y., Komatsu K. Synthesis and characterization of the fullerene-terthiophene dyads. Heteroat. Chem. 2011;22:72–78. doi: 10.1002/hc.20659. DOI
Mitsudo K., Sato H., Yamasaki A., Kamimoto N., Goto J., Mandai H., Suga S. Synthesis and Properties of Ethene-Bridged Terthiophenes. Org. Lett. 2015;17:4858–4861. doi: 10.1021/acs.orglett.5b02417. PubMed DOI
Sordello F., Minero C., Viscardi G., Quagliotto P. Highly Photoactive Polythiophenes Obtained by Electrochemical Synthesis from Bipyridine-Containing Terthiophenes. Energies. 2019;12:341. doi: 10.3390/en12030341. DOI
Quagliotto P., Prosperini S., Viscardi G. Improved Synthesis of a Terthiophene-Based Monomeric Ligand That Forms a Highly Active Polymer for the Carbon Dioxide Reduction. Lett. Org. Chem. 2017;14 doi: 10.2174/1570178614666170503122330. DOI
Kim D.H., Kang B.S., Lim S.M., Bark K.M., Kim B.G., Shiro M., Shim Y.B., Shin S.C. Polyterthiophene-bearing pendant organomolybdenum complexes: Electropolymerization of erythro-[Mo2(μ-C5H5)2(CO) 4{μ-η2:η2-C(R)≡C[C 4HS(C4H3S-2)2-2,5]}] J. Chem. Soc. Dalt. Trans. 1998:1893–1898. doi: 10.1039/a800390d. DOI
Cao Y., Wolf M.O., Patrick B.O. A terthiophene-containing alkynylplatinum terpyridine pacman complex: Controllable folding/unfolding modulated by weak intermolecular interactions. Inorg. Chem. 2013;52:5636–5638. doi: 10.1021/ic400338v. PubMed DOI
Kuchison A.M., Wolf M.O., Patrick B.O. Photophysical properties and electropolymerization of gold complexes of 3,3″-diethynyl-2,2′:5′,2″-terthiophene. Inorg. Chem. 2010;49:8802–8812. doi: 10.1021/ic100961w. PubMed DOI
Wagner P., Partridge A.C., Jolley K.W., Officer D.L. Facile synthesis of acetylene-substituted terthiophenes. Tetrahedron Lett. 2007;48:6245–6248. doi: 10.1016/j.tetlet.2007.07.032. DOI
Cheng H., Djukic B., Jenkins H.A., Gorelsky S.I., Lemaire M.T. Iron(II) complexes containing thiophene-substituted “bispicen” ligands—Spin-crossover, ligand rearrangements, and ferromagnetic interactions. Can. J. Chem. 2010;88:954–963. doi: 10.1139/V10-086. DOI
Xiao Z., Ye G., Liu Y., Chen S., Peng Q., Zuo Q., Ding L. Pushing Fullerene Absorption into the Near-IR Region by Conjugately Fusing Oligothiophenes. Angew. Chem. Int. Ed. 2012;51:9038–9041. doi: 10.1002/anie.201203981. PubMed DOI
Sharma G.D., Mikroyannidis J.A., Roy M.S., Thomas K.R.J., Ball R.J., Kurchania R. Dithienylthienothiadiazole-based organic dye containing two cyanoacrylic acid anchoring units for dye-sensitized solar cells. RSC Adv. 2012;2:11457. doi: 10.1039/c2ra21718j. DOI
Wang Z., Gao Z., Feng Y., Liu Y., Yang B., Liu D., Lv Y., Lu P., Ma Y. Highly π-extended polymers based on phenanthro-pyrazine: Synthesis, characterization, theoretical calculation and photovoltaic properties. Polymer. 2013;54:6191–6199. doi: 10.1016/j.polymer.2013.09.015. DOI
Schwiderski R.L., Rasmussen S.C. Synthesis and Characterization of Thieno[3,4- b ]pyrazine-Based Terthienyls: Tunable Precursors for Low Band Gap Conjugated Materials. J. Org. Chem. 2013;78:5453–5462. doi: 10.1021/jo400577q. PubMed DOI
Sen C.P., Shrestha R.G., Shrestha L.K., Ariga K., Valiyaveettil S. Low-Band-Gap BODIPY Conjugated Copolymers for Sensing Volatile Organic Compounds. Chem. Eur. J. 2015;21:17344–17354. doi: 10.1002/chem.201502939. PubMed DOI
Xu X., Wang C., Bäcke O., James D.I., Bini K., Olsson E., Andersson M.R., Fahlman M., Wang E. Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. Polym. Chem. 2015;6:4624–4633. doi: 10.1039/C5PY00394F. DOI
Abdulahi B.A., Li X., Mone M., Kiros B., Genene Z., Qiao S., Yang R., Wang E., Mammo W. Structural engineering of pyrrolo[3,4- f ]benzotriazole-5,7(2 H,6 H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12% J. Mater. Chem. A. 2019;7:19522–19530. doi: 10.1039/C9TA06385D. DOI
Wang W., Guo H., Jones R.A. Synthesis and electropolymerization of N-heterocyclic carbene complexes of Pd(ii) and Pt(ii) from an emissive imidazolium salt with a terthiophene backbone. Dalt. Trans. 2019;48:14440–14449. doi: 10.1039/C9DT03363G. PubMed DOI
Freese T., Lücke A.-L., Schmidt C.A.S., Polamo M., Nieger M., Namyslo J.C., Schmidt A. Anionic N-heterocyclic carbenes derived from sydnone imines such as molsidomine. Trapping reactions with selenium, palladium, and gold. Tetrahedron. 2017;73:5350–5357. doi: 10.1016/j.tet.2017.07.032. DOI
Mikroyannidis J.A.A., Tsagkournos D.V.V., Balraju P., Sharma G.D.D. Efficient bulk heterojunction solar cells using an alternating phenylenevinylene copolymer with dithenyl(thienothiadiazole) segments as donor and PCBM or modified PCBM as acceptor. Sol. Energy Mater. Sol. Cells. 2011;95:3025–3035. doi: 10.1016/j.solmat.2011.06.025. DOI
Yen W.-C., Pal B., Yang J.-S., Hung Y.-C., Lin S.-T., Chao C.-Y., Su W.-F. Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative. J. Polym. Sci. Part A Polym. Chem. 2009;47:5044–5056. doi: 10.1002/pola.23557. DOI
Lepeltier M., Lukoyanova O., Jacobson A., Jeeva S., Perepichka D.F. New azaborine-thiophene heteroacenes. Chem. Commun. 2010;46:7007. doi: 10.1039/c0cc01963a. PubMed DOI
Li P., Fenwick O., Yilmaz S., Breusov D., Caruana D.J., Allard S., Scherf U., Cacialli F. Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chem. Commun. 2011;47:8820. doi: 10.1039/c1cc12752g. PubMed DOI
Zoombelt A.P., Fonrodona M., Turbiez M.G.R., Wienk M.M., Janssen R.A.J.R.A.J. Synthesis and photovoltaic performance of a series of small band gap polymers. J. Mater. Chem. 2009;19:5336. doi: 10.1039/b821979f. DOI
Xia Y., Luo J., Deng X., Li X., Li D., Zhu X., Yang W., Cao Y. Novel Random Low-Band-Gap Fluorene-Based Copolymers for Deep Red/Near Infrared Light-Emitting Diodes and Bulk Heterojunction Photovoltaic Cells. Macromol. Chem. Phys. 2006;207:511–520. doi: 10.1002/macp.200500517. DOI
Huber J., Jung C., Mecking S. Nanoparticles of Low Optical Band Gap Conjugated Polymers. Macromolecules. 2012;45:7799–7805. doi: 10.1021/ma3013459. DOI
Jeong J., Kumar R.S., Naveen M., Son Y.-A. Synthesis and characterization of triphenylamine-based polymers and their application towards solid-state electrochromic cells. RSC Adv. 2016;6:78984–78993. doi: 10.1039/C6RA12112H. DOI
Zoombelt A.P., Leenen M.A.M., Fonrodona M., Nicolas Y., Wienk M.M., Janssen R.A.J. The influence of side chains on solubility and photovoltaic performance of dithiophene–thienopyrazine small band gap copolymers. Polymer. 2009;50:4564–4570. doi: 10.1016/j.polymer.2009.07.028. DOI
Beaupré S., Breton A.-C., Dumas J., Leclerc M. Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chem. Mater. 2009;21:1504–1513. doi: 10.1021/cm802941e. DOI
Lai Y.-Y., Cheng Y.-J., Chen C.-H., Cheng S.-W., Cao F.-Y., Hsu C.-S. Synthesis, photophysical and photovoltaic properties of a new class of two-dimensional conjugated polymers containing donor–acceptor chromophores as pendant groups. Polym. Chem. 2013;4:3333. doi: 10.1039/c3py00168g. DOI
Cimrová V., Kmínek I., Pavlačková P., Výprachtický D., Cimrova V., Kminek I., Pavlackova P., Vyprachticky D. Low-bandgap donor-acceptor copolymers with 4,6-bis(3′-(2-ethylhexyl)thien-2′-yl)thieno[3,4-c][1,2,5]thiadiazole: synthesis, optical, electrochemical, and photovoltaic properties. J. Polym. Sci. Part A Polym. Chem. 2011;49:3426–3436. doi: 10.1002/pola.24780. DOI
Arrechea-Marcos I., de Echegaray P., Mancheño M.J., Ruiz Delgado M.C., Ramos M.M., Quintana J.A., Villalvilla J.M., Díaz-García M.A., López Navarrete J.T., Ponce Ortiz R., et al. Molecular aggregation of naphthalimide organic semiconductors assisted by amphiphilic and lipophilic interactions: a joint theoretical and experimental study. Phys. Chem. Chem. Phys. 2017;19:6206–6215. doi: 10.1039/C6CP06819G. PubMed DOI
Hwang Y.-J., Kim F.S., Xin H., Jenekhe S.A. New Thienothiadiazole-Based Conjugated Copolymers for Electronics and Optoelectronics. Macromolecules. 2012;45:3732–3739. doi: 10.1021/ma3000797. DOI
Mondal R., Becerril H.A., Verploegen E., Kim D., Norton J.E., Ko S., Miyaki N., Lee S., Toney M.F., Brédas J.-L., et al. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. J. Mater. Chem. 2010;20:5823. doi: 10.1039/c0jm00903b. DOI
Verolet Q., Soleimanpour S., Fujisawa K., Dal Molin M., Sakai N., Matile S. Design and Synthesis of Mixed Oligomers with Thiophenes, Dithienothiophene S, S -Dioxides, Thieno[3,4]pyrazines and 2,1,3-Benzothiadiazoles: Flipper Screening for Mechanosensitive Systems. ChemistryOpen. 2015;4:264–267. doi: 10.1002/open.201402139. PubMed DOI PMC
Steinberger S., Mishra A., Reinold E., Mena-Osteritz E., Mueller H., Uhrich C., Pfeiffer M., Baeuerle P., Müller H., Uhrich C., et al. Synthesis and characterizations of red/near-IR absorbing A–D–A–D–A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. J. Mater. Chem. 2012;22:2701–2712. doi: 10.1039/C2JM13285K. DOI
Kmínek I., Výprachtický D., Kříž J., Dybal J.J., Cimrová V., Kminek I., Vyprachticky D., Kriz J., Dybal J.J., Cimrova V. Low-band gap copolymers containing thienothiadiazole units: Synthesis, optical, and electrochemical properties. J. Polym. Sci. Part A Polym. Chem. 2010;48:2743–2756. doi: 10.1002/pola.24022. DOI
Zotti G., Zecchin S., Schiavon G., Vercelli B., Berlin A. Novel polythiophene regular copolymers from 3′,4′-diamino- and 3′,4′-dinitro-terthiophenes. Electrochim. Acta. 2005;50:1469–1474. doi: 10.1016/j.electacta.2004.10.037. DOI
Soucy-Breau C., Eachern A.M., Leitch L.C., Arnason T., Morand P. Synthesis and characterization of alkyl-, alkenyl-, acyl- and nitrogen-substituted derivatives of the potent phototoxin α-terthiophene. J. Heterocycl. Chem. 1991;28:411–416. doi: 10.1002/jhet.5570280239. DOI
Smith Z.C., Meyer D.M., Simon M.G., Staii C., Shukla D., Thomas S.W. Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. Macromolecules. 2015;48:959–966. doi: 10.1021/ma502289n. DOI
Clarke T.M., Gordon K.C., Chan W.S., Phillips D.L., Wagner P., Officer D.L. Raman Spectroscopy of Short-Lived Terthiophene Radical Cations Generated by Photochemical and Chemical Oxidation. ChemPhysChem. 2006;7:1276–1285. doi: 10.1002/cphc.200500680. PubMed DOI
Mehenni H., Dao L.H.L.H., Mehenni H., Dao L.H.L.H. Synthesis and characterization of novel conducting homopolymers based on amino β-styryl terthiophene. Can. J. Chem. 2008;86:1010–1018. doi: 10.1139/v08-136. DOI
Tarkuc S., Unver E.K., Udum Y.A., Tanyeli C., Toppare L. The effect of changes in π-conjugated terthienyl systems using thienyl and ethylenedioxybenzene functionalized thieno[3,4-b]pyrazine precursors: Multicolored low band gap polymers. Electrochim. Acta. 2010;55:7254–7258. doi: 10.1016/j.electacta.2010.07.017. DOI
Zhang Q.T., Tour J.M. Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers. J. Am. Chem. Soc. 1998;120:5355–5362. doi: 10.1021/ja972373e. DOI
Gotz G., Scheib S., Klose R., Heinze J., Bauerle P. Synthesis and properties of a series of regioregularly amino-substituted oligo- and polythiophenes. Adv. Funct. Mater. 2002;12:723–728. doi: 10.1002/1616-3028(20021016)12:10<723::AID-ADFM723>3.0.CO;2-2. DOI
Peng Q., Liu X., Qin Y., Zhou D., Xu J. Thieno[3,4-b]pyrazine-based low bandgap photovoltaic copolymers: Turning the properties by different aza-heteroaromatic donors. J. Polym. Sci. Part A Polym. Chem. 2011;49:4458–4467. doi: 10.1002/pola.24887. DOI
Herland A., Nilsson K.P.R., Olsson J.D.M., Hammarstroem P., Konradsson P., Inganaes O. Synthesis of a Regioregular Zwitterionic Conjugated Oligoelectrolyte, Usable as an Optical Probe for Detection of Amyloid Fibril Formation at Acidic pH. J. Am. Chem. Soc. 2005;127:2317–2323. doi: 10.1021/ja045835e. PubMed DOI
Ju X., Kong L., Zhao J., Bai G. Synthesis and electrochemical capacitive performance of thieno[3,4-b]pyrazine-based Donor-Acceptor type copolymers used as supercapacitor electrode material. Electrochim. Acta. 2017;238:36–48. doi: 10.1016/j.electacta.2017.04.011. DOI
Zhang Q., Tour J.M. Low Optical Bandgap Polythiophenes by an Alternating Donor/Acceptor Repeat Unit Strategy. J. Am. Chem. Soc. 1997;119:5065–5066. doi: 10.1021/ja9640399. DOI
Schwiderski R.L., Rasmussen S.C. Side chain tuning of frontier orbitals in polymers of thieno[3,4-b]-pyrazine-based terthienyls. Synth. Met. 2014;193:58–63. doi: 10.1016/j.synthmet.2014.03.025. DOI
Vyprachticky D., Kminek I., Pavlackova P., Cimrova V. Syntheses of fluorene/carbazole-thienothiadiazole copolymers for organic photovoltaics. ECS Trans. 2011;33:111–118. doi: 10.1149/1.3553353. DOI
Karthik D., Kumar V., Justin Thomas K.R., Li C.-T., Ho K.-C. Synthesis and characterization of thieno[3,4-d]imidazole-based organic sensitizers for photoelectrochemical cells. Dyes Pigments. 2016;129:60–70. doi: 10.1016/j.dyepig.2016.02.009. DOI
Shen X., Chen S., Xiao Z., Zuo Q., Chen Y., Ding L. Synthesis of thienoselenadiazole-containing conjugated copolymers and their application in polymer solar cells. Polym. J. 2012;44:978–981. doi: 10.1038/pj.2012.33. DOI
Chen C.-L., Lin T.-P., Chen Y.-S., Sun S.-S. Probing receptor-anion interactions by ratiometric chemosensors containing pyrrolecarboxamide interacting sites. Eur. J. Org. Chem. 2007:3999–4010. doi: 10.1002/ejoc.200700294. DOI
Mangeney C., Lacroix J.-C., Chane-Ching K.I., Jouini M., Aeiyach S., Lacaze P.-C. Poly(3′,4′-[bis(N,N’-ethyloxamyl)]terthiophene): A new functionalized conductive polymer with tunable pendent ethyloxamyl substituents. Phys. Chem. Chem. Phys. 1999;1:2755–2760. doi: 10.1039/a808633h. DOI
Mangeney C., Lacroix J.-C., Chane-Ching K.I., Jouini M., Villain F., Ammar S., Jouini N., Lacaze P.-C. Conducting-polymer electrochemical switching as an easy means for control of the molecular properties of grafted transition metal complexes. Chem. Eur. J. 2001;7:5029–5040. doi: 10.1002/1521-3765(20011203)7:23<5029::AID-CHEM5029>3.0.CO;2-#. PubMed DOI
Mehenni H., Dao L.H. Towards the development of a direct electrochemical biodetector of avidin based on the poly(chloro amino-β-styryl terthiophene)-coated glassy carbon electrode. Aust. J. Chem. 2012;65:395–401. doi: 10.1071/CH11397. DOI
Mehenni H. Development of an avidin sensor based on the poly(methoxy amino-β-styryl terthiophene)-coated glassy carbon electrode. Can. J. Chem. 2012;90:271–277. doi: 10.1139/v11-160. DOI
Abdelwahab A.A., Kim D.-M., Halappa N.M., Shim Y.-B. A Selective Catalytic Oxidation of Ascorbic Acid at the Aminopyrimidyl Functionalized-Conductive Polymer Electrode. Electroanalysis. 2013;25:1178–1184. doi: 10.1002/elan.201200650. DOI
Park M.-O., Noh H.-B., Park D.-S., Yoon J.-H., Shim Y.-B. Long-life Heavy Metal Ions Sensor Based on Graphene Oxide-anchored Conducting Polymer. Electroanalysis. 2017;29:514–520. doi: 10.1002/elan.201600494. DOI
Singh R.P. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer. Analyst. 2011;136:1216–1221. doi: 10.1039/c0an00601g. PubMed DOI
Kim D.-M., Shim K.-B., Son J.I., Reddy S.S., Shim Y.-B. Spectroelectrochemical and electrochromic behaviors of newly synthesized poly[3′-(2-aminopyrimidyl)-2,2′:5′,2″-terthiophene] Electrochim. Acta. 2013;104:322–329. doi: 10.1016/j.electacta.2013.04.120. DOI
Chung S., Hwang B.-Y., Naveen M.H., Shim Y.-B. Detection of Rocuronium in Whole Blood Using a Lipid-Bonded Conducting Polymer and Porous Carbon Composite Electrode. Electroanalysis. 2018;30:1425–1431. doi: 10.1002/elan.201800102. DOI
Park M.-O., Seo K.-D., Shim Y.-B., Yoon J.-H., Park D.-S. Chromium(VI) sensor based on catalytic reduction using the nanoporous layer of poly(aminopyrimidyl- terthiophene) and AuNi composite. Sens. Actuators B Chem. 2019;301:127151. doi: 10.1016/j.snb.2019.127151. DOI
Naveen M.H., Noh H.-B., Al Hossain M.S., Kim J.H., Shim Y.-B. Facile potentiostatic preparation of functionalized polyterthiophene-anchored graphene oxide as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A Mater. Energy Sustain. 2015;3:5426–5433. doi: 10.1039/C4TA06774F. DOI
Herland A., Bjoerk P., Nilsson K.P.R., Olsson J.D.M., Asberg P., Konradsson P., Hammarstroem P., Inganaes O. Electroactive luminescent self-assembled bio-organic nanowires: Integration of semiconducting oligoelectrolytes within amyloidogenic proteins. Adv. Mater. 2005;17:1466–1471. doi: 10.1002/adma.200500183. DOI
Demanze F., Cornil J., Garnier F., Horowitz G., Valat P., Yassar A., Lazzaroni R., Brédas J.-L. Tuning of the Electronic and Optical Properties of Oligothiophenes via Cyano Substitution: A Joint Experimental and Theoretical Study. J. Phys. Chem. B. 1997;101:4553–4558. doi: 10.1021/jp970085z. DOI
Yassar A., Demanze F., Fichou D. Synthesis and electrical properties of cyano-substituted oligothiophenes towards n-type organic semiconductors. Opt. Mater. 1999;12:379–382. doi: 10.1016/S0925-3467(99)00044-0. DOI
Hapiot P., Demanze F., Yassar A., Garnier F. Molecular Engineering of Band Level Energies in Oligothiophenes, through Cyano-Substitutions. J. Phys. Chem. 1996;100:8397–8401. doi: 10.1021/jp953226a. DOI
Yassar A., Demanze F., Jaafari A., El Idrissi M., Coupry C. Cyano-Substituted Oligothiophenes: A New Approach to n-Type Organic Semiconductors. Adv. Funct. Mater. 2002;12:699–708. doi: 10.1002/1616-3028(20021016)12:10<699::AID-ADFM699>3.0.CO;2-S. DOI
Hsu D.-T., Lin C.-H. Synthesis of Benzo[c] and Naphtho[c]heterocycle Diesters and Dinitriles via Homoelongation. J. Org. Chem. 2009;74:9180–9187. doi: 10.1021/jo901754w. PubMed DOI
Demeter D., Allain M., Leriche P., Grosu I., Roncali J. Synthesis and electronic properties of terthienyls β-substituted by (thienyl)cyanovinylene groups. Tetrahedron Lett. 2010;51:4117–4120. doi: 10.1016/j.tetlet.2010.05.147. DOI
Schweiger L.F., Ryder K.S., Morris D.G., Glidle A., Cooper J.M. Strategies towards functionalised electronically conducting organic copolymers. J. Mater. Chem. 2000;10:107–114. doi: 10.1039/a904187g. DOI
Pozo-Gonzalo C., Khan T., McDouall J.J.W., Skabara P.J., Roberts D.M., Light M.E., Coles S.J., Hursthouse M.B., Neugebauer H., Cravino A., et al. Synthesis and electropolymerisation of 3′,4′-bis(alkylsulfanyl)terthiophenes and the significance of the fused dithiin ring in 2,5-dithienyl-3,4-ethylenedithiothiophene (DT-EDTT) J. Mater. Chem. 2002;12:500–510. doi: 10.1039/b109017h. DOI
Pozo-Gonzalo C., Roberts D.M.M., Skabara P.J.J. 3,4-Disubstituted terthiophene systems: Synthesis and electropolymerization. Synth. Met. 2001;119:115–116. doi: 10.1016/S0379-6779(00)01077-8. DOI
Amb C.M., Rasmussen S.C. Sterics versus Electronics: Regioselective Cross-Coupling of Polybrominated Thiophenes. Eur. J. Org. Chem. 2008;2008:801–804. doi: 10.1002/ejoc.200701148. DOI
Wang F., Gu H., Swager T.M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008;130:5392–5393. doi: 10.1021/ja710795k. PubMed DOI
Dong B., Li B., Cao Y., Meng X., Yan H., Ge S., Lu Y. Conjugated oligomers with thiophene and indole moieties: Synthesis, photoluminescence and electrochromic performances. Tetrahedron Lett. 2017;58:35–42. doi: 10.1016/j.tetlet.2016.11.090. DOI
Yamaguchi I., Nakahara T. Reactive polythiophenes with zincke salt structure: Synthesis, polymer reactions, and chemical properties. J. Polym. Sci. Part A Polym. Chem. 2012;50:3340–3349. doi: 10.1002/pola.26120. DOI
Schäferling M., Bäuerle P. Porphyrin-functionalized oligo- and polythiophenes. J. Mater. Chem. 2004;14:1132–1141. doi: 10.1039/B313296J. DOI
Bäuerle P., Scheib S. Molecular recognition of alkali-ions by crown-ether-functionalized poly(alkylthiophenes) Adv. Mater. 1993;5:848–853. doi: 10.1002/adma.19930051113. DOI
Quagliotto P., Barbero N., Barolo C., Buscaino R., Carfora P., Prosperini S., Viscardi G. Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes Pigments. 2017;137:468–479. doi: 10.1016/j.dyepig.2016.10.031. DOI
Sun C., Prosperini S., Quagliotto P., Viscardi G., Yoon S.S., Gobetto R., Nervi C. Electrocatalytic reduction of CO2 by thiophene-substituted rhenium(i) complexes and by their polymerized films. Dalt. Trans. 2016;45:14678–14688. doi: 10.1039/C5DT04491J. PubMed DOI
Vélez J.H., Díaz F.R., del Valle M.A., Bernède J.C., East G.A. Synthesis of 3′,4′-disubstituted terthiophenes. Characterization and electropolymerization. I. 3′,4′-dibromo-2,2′:5′,2″-terthiophene in photovoltaic display. J. Appl. Polym. Sci. 2006;102:5314–5321. doi: 10.1002/app.24865. DOI
Nagura K., Saito S., Yusa H., Yamawaki H., Fujihisa H., Sato H., Shimoikeda Y., Yamaguchi S. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 2013;135:10322–10325. doi: 10.1021/ja4055228. PubMed DOI
Rahimi A., Namyslo J.C., Drafz M.H.H., Halm J., Hübner E., Nieger M., Rautzenberg N., Schmidt A. Selective mono- to perarylations of tetrabromothiophene by a cyclobutene-1,2-diylbisimidazolium preligand. J. Org. Chem. 2011;76:7316–7325. doi: 10.1021/jo201317t. PubMed DOI
Tùng Đ.T., Tuân Đ.T., Rasool N., Villinger A., Reinke H., Fischer C., Langer P. Regioselective Palladium(0)-Catalyzed Cross-Coupling Reactions and Metal-Halide Exchange Reactions of Tetrabromothiophene: Optimization, Scope and Limitations. Adv. Synth. Catal. 2009;351:1595–1609. doi: 10.1002/adsc.200900044. DOI
Dang T.T., Rasool N., Dang T.T., Reinke H., Langer P. Synthesis of tetraarylthiophenes by regioselective Suzuki cross-coupling reactions of tetrabromothiophene. Tetrahedron Lett. 2007;48:845–847. doi: 10.1016/j.tetlet.2006.11.152. DOI
Lu K.-M., Li W.-M., Lin P.-Y., Liu K.-T., Liu C.-Y. Direct C-H Arylation as a Chemoselective Single-Step Access to π-Acceptor-π Type Building Blocks. Adv. Synth. Catal. 2017;359:3805–3817. doi: 10.1002/adsc.201700762. DOI
Bilik P., Tanious F., Kumar A., Wilson W.D., Boykin D.W., Colson P., Houssier C., Facompré M., Tardy C., Bailly C. Novel Dications with Unfused Aromatic Systems: Trithiophene and Trifuran Derivatives of Furimidazoline. ChemBioChem. 2001;2:559–569. doi: 10.1002/1439-7633(20010803)2:7/8<559::AID-CBIC559>3.0.CO;2-U. PubMed DOI
Mitsudo K., Shimohara S., Mizoguchi J., Mandai H., Suga S. Synthesis of nitrogen-bridged terthiophenes by tandem Buchwald-Hartwig coupling and their properties. Org. Lett. 2012;14:2702–2705. doi: 10.1021/ol300887t. PubMed DOI
Leitner T.D., Vogt A., Popović D., Mena-Osteritz E., Walzer K., Pfeiffer M., Bäuerle P. Influence of alkyl chain length in S,N-heteropentacenes on the performance of organic solar cells. Mater. Chem. Front. 2018;2:959–968. doi: 10.1039/C7QM00542C. DOI
Lee H., Jo H., Kim D., Biswas S., Sharma G.D., Ko J. The effect of acceptor end groups on the physical and photovoltaic properties of A-π-D-π-A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes Pigments. 2016;129:209–219. doi: 10.1016/j.dyepig.2016.02.029. DOI
Schroeder B.C., Kirkus M., Nielsen C.B., Ashraf R.S., McCulloch I. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics. Macromolecules. 2015;48:5557–5562. doi: 10.1021/acs.macromol.5b00941. DOI
Mishra A., Popovic D., Vogt A., Kast H., Leitner T., Walzer K., Pfeiffer M., Mena-Osteritz E., Bäuerle P. A-D-A-type S, N-Heteropentacenes: Next-Generation Molecular Donor Materials for Efficient Vacuum-Processed Organic Solar Cells. Adv. Mater. 2014;26:7217–7223. doi: 10.1002/adma.201402448. PubMed DOI
Kimura M., Sakai R., Sato S., Fukawa T., Ikehara T., Maeda R., Mihara T. Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers. Adv. Funct. Mater. 2012;22:469–476. doi: 10.1002/adfm.201101953. DOI
Bandini M., Pietrangelo A., Sinisi R., Umani-Ronchi A., Wolf M.O. New Electrochemically Generated Polymeric Pd Complexes as Heterogeneous Catalysts for Suzuki Cross-Coupling Reactions. Eur. J. Org. Chem. 2009;2009:3554–3561. doi: 10.1002/ejoc.200900306. DOI
SATAKE Y., ITO S., FUJIHARA H. Synthesis and Electropolymerization of Terthiophene-modified Gold and Palladium Nanoparticles: Metal Nanoparticle-Polythiophene Composites. J. Japan Soc. Colour Mater. 2005;78:157–163. doi: 10.4011/shikizai1937.78.157. DOI
Michalitsch R., Elkassmi A., Yassar A., Gamier F. A practical synthesis of functionalized alkyl-oligothiophenes for molecular self-assembly. J. Heterocycl. Chem. 2001;38:649–653. doi: 10.1002/jhet.5570380317. DOI
Strover L., Roux C., Malmström J., Pei Y., Williams D.E., Travas-Sejdic J. Switchable surfaces of electroactive polymer brushes grafted from polythiophene ATRP-macroinitiator. Synth. Met. 2012;162:381–390. doi: 10.1016/j.synthmet.2011.12.024. DOI
Foster E.L., De Leon A.C.C., Mangadlao J., Advincula R. Electropolymerized and polymer grafted superhydrophobic, superoleophilic, and hemi-wicking coatings. J. Mater. Chem. 2012;22:11025–11031. doi: 10.1039/c2jm31067h. DOI
Robitaille L., Leclerc M. Synthesis, Characterization, and Langmuir-Blodgett Films of Fluorinated Polythiophenes. Macromolecules. 1994;27:1847–1851. doi: 10.1021/ma00085a028. DOI
Crouch D.J., Sparrowe D., Heeney M., McCulloch I., Skabara P.J. Polyterthiophenes Incorporating 3,4-Difluorothiophene Units: Application in Organic Field-Effect Transistors. Macromol. Chem. Phys. 2010;211:2642–2648. doi: 10.1002/macp.201000363. DOI
Büchner W., Garreau R., Lemaire M., Roncali J., Garnier F. Poly(fhiorinated 3-alkyl thiophene) J. Electroanal. Chem. 1990;277:355–358. doi: 10.1016/0022-0728(90)85115-L. DOI
Facchetti A., Yoon M.H., Stern C.L., Hutchison G.R., Ratner M.A., Marks T.J. Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nTs; n = 2–6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. J. Am. Chem. Soc. 2004;126:13480–13501. doi: 10.1021/ja048988a. PubMed DOI
Le Y., Umemoto Y., Okabe M., Kusunoki T., Nakayama K.I., Pu Y.J., Kido J., Tada H., Aso Y. Electronegative oligothiophenes based on difluorodioxocyclopentene- annelated thiophenes: Synthesis, properties, and n-Type FET performances. Org. Lett. 2008;10:833–836. doi: 10.1021/ol7029678. PubMed DOI
Ie Y., Umemoto Y., Kaneda T., Aso Y. Electronegative oligothiophenes based on a hexafluorocyclopentene-annelated thiophene unit. Org. Lett. 2006;8:5381–5384. doi: 10.1021/ol062238j. PubMed DOI
Ie Y., Umemoto Y., Nitani M., Aso Y. Perfluoroalkyl-annelated conjugated systems toward n-type organic semiconductors. Pure Appl. Chem. 2008;80:589–597. doi: 10.1351/pac200880030589. DOI
Wu T., Boyer J.-C., Barker M., Wilson D., Branda N.R. A “Plug-and-Play” Method to Prepare Water-Soluble Photoresponsive Encapsulated Upconverting Nanoparticles Containing Hydrophobic Molecular Switches. Chem. Mater. 2013;25:2495–2502. doi: 10.1021/cm400802d. DOI
Gronowitz S., Svensson A. On the Ring-Opening of Some 3-Lithiobithienyls and 3′-Lithio-α-terthienyls. Isr. J. Chem. 1986;27:25–28. doi: 10.1002/ijch.198600004. DOI
Zhang Y., Gao X., Li J., Tu G. Highly selective palladium-catalyzed Stille coupling reaction toward chlorine-containing NIR electroluminescent polymers. J. Mater. Chem. C. 2015;3:7463–7468. doi: 10.1039/C5TC01013F. DOI
Imamura K., Hirayama D., Yoshimura H., Takimiya K., Aso Y., Otsubo T. Application of flash vacuum pyrolysis to the synthesis of sulfur-containing heteroaromatic systems. Tetrahedron Lett. 1999;40:2789–2792. doi: 10.1016/S0040-4039(99)00295-6. DOI
Higgins T.B., Mirkin C.A. Model Coordination Complexes for Designing Poly(terthiophene)/Rh(I) Hybrid Materials with Electrochemically Tunable Reactivities. Chem. Mater. 1998;10:1589–1595. doi: 10.1021/cm970765e. DOI
Awaji H., Nakahodo T., Fujihara H. Synthesis of heterosegment-functioned hybrid nanotubes of polythiophene and heterometallic nanoparticles by sequential template-based electropolymerization. Chem. Commun. 2011;47:3547–3549. doi: 10.1039/c0cc04235h. PubMed DOI
Ponnapati R., Felipe M.J., Advincula R. Electropolymerizable Terthiophene-Terminated Poly(aryl ether) Dendrimers with Naphthalene and Perylene Cores. Macromolecules. 2011;44:7530–7537. doi: 10.1021/ma201733a. DOI
Tajima T., Nishihama T., Miyake S., Takahashi N., Takaguchi Y. Synthesis and Properties of (Terthiophene) 4 –Poly(amidoamine)–C 60 Pentad. Bull. Chem. Soc. Jpn. 2015;88:736–745. doi: 10.1246/bcsj.20140283. DOI
Taniguchi N., Nakabayashi K., Harada T., Tajima N., Shizuma M., Fujiki M., Imai Y. Circularly Polarized Luminescence of Chiral Binaphthyl with Achiral Terthiophene Fluorophores. Chem. Lett. 2015;44:598–600. doi: 10.1246/cl.150011. DOI
Mantione D., Istif E., Dufil G., Vallan L., Parker D., Brochon C., Cloutet E., Hadziioannou G., Berggren M., Stavrinidou E., et al. Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues. ACS Appl. Electron. Mater. 2020;2:acsaelm.0c00861. doi: 10.1021/acsaelm.0c00861. DOI
Ponnapati R., Felipe M.J., Park J.Y., Vargas J., Advincula R. Terthiophene-Jacketed Poly(benzyl ether) Dendrimers: Sonication Synthesis, Electropolymerization, and Polythiophene Film Formation. Macromolecules. 2010;43:10414–10421. doi: 10.1021/ma1017023. DOI
Melucci M., Dionigi C., Lanzani G., Viola I., Gigli G., Barbarella G. Shaping Thiophene Oligomers into Fluorescent Nanobeads Forming Two-Dimensionally Patterned Assemblies by the Capillary Effect. Macromolecules. 2005;38:10050–10054. doi: 10.1021/ma051602b. DOI
Mouffouk F., Brown S.J., Demetriou A.M., Higgins S.J., Nichols R.J., Rajapakse R.M.G., Reeman S. Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. J. Mater. Chem. 2005;15:1186–1196. doi: 10.1039/b413974g. DOI
Grande C.D., Tria M.C., Jiang G., Ponnapati R., Advincula R. Surface-Grafted Polymers from Electropolymerized Polythiophene RAFT Agent. Macromolecules. 2011;44:966–975. doi: 10.1021/ma102065u. DOI
Zanardi C., Scanu R., Pigani L., Pilo M.I., Sanna G., Seeber R., Spano N., Terzi F., Zucca A. Synthesis and electrochemical polymerisation of 3′-functionalised terthiophenes. Electrochemical and spectroelectrochemical characterisation. Electrochim. Acta. 2006;51:4859–4864. doi: 10.1016/j.electacta.2006.01.025. DOI
Saha S., Baker G.L. Surface-tethered conjugated polymers created via the grafting-from approach. J. Appl. Polym. Sci. 2015;132:41363/1–41363/9. doi: 10.1002/app.41363. DOI
Xu W.-C., Zhou Q., Ashendel C.L., Chang C.-T., Chang C.-J. Novel protein kinase C inhibitors: synthesis and PKC inhibition of β-substituted polythiophene derivatives. Bioorg. Med. Chem. Lett. 1999;9:2279–2282. doi: 10.1016/S0960-894X(99)00375-3. PubMed DOI
Spires J.B., Peng H., Williams D., Travas-Sejdic J. An improved terthiophene conducting polymer for DNA-sensing. Electrochim. Acta. 2011;58:134–141. doi: 10.1016/j.electacta.2011.09.016. DOI
Janeliunas D., Eelkema R., Nieto-Ortega B., Ramirez Aguilar F.J., Lopez Navarrete J.T., van der Mee L., Stuart M.C.A., Casado J., van Esch J.H. Designing new symmetrical facial oligothiophene amphiphiles. Org. Biomol. Chem. 2013;11:8435–8442. doi: 10.1039/c3ob41645c. PubMed DOI
van Rijn P., Savenije T.J., Stuart M.C.A., van Esch J.H. Amphiphilic conjugated thiophenes for self-assembling antenna systems in water. Chem. Commun. 2009:2163–2165. doi: 10.1039/b823268g. PubMed DOI
Liu C.-Y., Chong H., Lin H.-A., Yamashita Y., Zhang B., Huang K., Hashizume D., Yu H. Palladium-catalyzed direct C–H arylations of dioxythiophenes bearing reactive functional groups: a step-economical approach for functional π-conjugated oligoarenes. Org. Biomol. Chem. 2015;13:8505–8511. doi: 10.1039/C5OB00705D. PubMed DOI
Miller L.L., Yu Y. Synthesis of β-Methoxy, Methyl-Capped α-Oligothiophenes. J. Org. Chem. 1995;60:6813–6819. doi: 10.1021/jo00126a034. DOI
Torsi L., Tafuri A., Cioffi N., Gallazzi M.C., Sassella A., Sabbatini L., Zambonin P.G. Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens. Actuators B Chem. 2003;93:257–262. doi: 10.1016/S0925-4005(03)00172-2. DOI
Rodriguez-Alba E., Ortiz-Palacios J., Morales-Espinoza E.G., Vonlanthen M., Valderrama B.X., Rivera E. Synthesis, characterization and optical properties of novel oligothiophenes bearing pyrene units attached via well defined oligo(ethylene glycol) spacers. Synth. Met. 2015;206:92–105. doi: 10.1016/j.synthmet.2015.05.007. DOI
Rodriguez-Alba E., Ortiz-Palacios J., Vonlanthen M., Rojas-Montoya S.M., Porcu P., Ruiu A., Rivera E. Design of novel well-defined oligothiophenes bearing donor-acceptor groups (pyrene-porphyrin): Synthesis, characterization, optical properties and energy transfer. J. Mol. Struct. 2019;1183:28–36. doi: 10.1016/j.molstruc.2019.01.078. DOI
Zotti G., Marin R.A., Gallazzi M.C. Electrochemical Polymerization of Mixed Alkyl-AlkoxyBithiophenes and -terthiophenes. Substitution-Driven Polymerization from Thiophene Hexamers to Long-Chain Polymers. Chem. Mater. 1997;9:2945–2950. doi: 10.1021/cm970295o. DOI
Girotto E.M., Casalbore-Miceli G., Camaioni N., de Paoli M.A., Fichera A.M., Belobrzeckaja L., Gallazzi M.C. Effect of the synthesis temperature and the length of alkyl substituents on photoelectrical properties of polyterthiophenes. J. Mater. Chem. 2001;11:1072–1076. doi: 10.1039/b008479o. DOI
Arbizzani C., Gallazzi M.C., Mastragostino M., Rossi M., Soavi F. Capacitance and cycling stability of poly(alkoxythiophene) derivative electrodes. Electrochem. Commun. 2001;3:16–19. doi: 10.1016/S1388-2481(00)00139-9. DOI
Gambhir S., Wagner K., Officer D.L. Towards functionalized terthiophene-based polymers. Synth. Met. 2005;154:117–120. doi: 10.1016/j.synthmet.2005.07.030. DOI
Santos M.J.L., Girotto E.M., Nogueira A.F. Photoelectrochemical properties of poly(terthiophene) films modified with a fullerene derivative. Thin Solid Films. 2006;515:2644–2649. doi: 10.1016/j.tsf.2006.04.021. DOI
Wang C.Y., Tsekouras G., Wagner P., Gambhir S., Too C.O., Officer D., Wallace G.G. Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synth. Met. 2010;160:76–82. doi: 10.1016/j.synthmet.2009.10.001. DOI
Czichy M., Wagner P., Lapkowski M., Officer D.L. Effect of π-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C60. J. Electroanal. Chem. 2016;772:103–109. doi: 10.1016/j.jelechem.2016.04.009. DOI
Gallazzi M.C., Toscano F., Paganuzzi D., Bertarelli C., Farina A., Zotti G. Polythiophenes with unusual electrical and optical properties based on donor acceptor alternance strategy. Macromol. Chem. Phys. 2001;202:2074–2085. doi: 10.1002/1521-3935(20010601)202:10<2074::AID-MACP2074>3.0.CO;2-9. DOI
Mares D., Romagnoli C., Rossi R., Carpita A., Ciofalo M., Bruni A. Antifungal activity of some 2,2′:5′,2″-terthiophene derivatives. Mycoses. 1994;37:377–383. doi: 10.1111/myc.1994.37.9-10.377. PubMed DOI
Rossi R., Carpita A., Ciofalo M., Lippolis V. Selective and efficient syntheses of phototoxic 2,2′:5′,2″-terthiophene derivatives bearing a functional substituent in the 3′- or the 5-position. Tetrahedron. 1991;47:8443–8460. doi: 10.1016/S0040-4020(01)96185-X. DOI
Abdiryim T., Jamal R., Ubul A., Nurulla I. Solid-state synthesis of poly(3′,4′-dimethoxy-2,2′:5′,2″-terthiophene): Comparison with poly(terthiophene) and poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene) Molecules. 2012;17:8647–8660. doi: 10.3390/molecules17078647. PubMed DOI PMC
Yigit D., Aykan M., Guellue M. Substituent effect on supercapacitive performances of conducting polymer-based redox electrodes: Poly(3′,4′-bis(alkyloxy) 2,2’:5’,2’’-terthiophene) derivatives. J. Polym. Sci. Part A Polym. Chem. 2018;56:480–495. doi: 10.1002/pola.28927. DOI
Lisak G., Wagner K., Wagner P., Barnsley J.E., Gordon K.C., Bobacka J., Wallace G.G., Ivaska A., Officer D.L. A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synth. Met. 2016;219:101–108. doi: 10.1016/j.synthmet.2016.05.016. DOI
Van Rijn P., Janeliunas D., Brizard A.M., Stuart M.C.A., Koper G.J.M., Eelkema R., van Esch J.H. Self-assembly behaviour of conjugated terthiophene surfactants in water. New J. Chem. 2011;35:558–567. doi: 10.1039/C0NJ00760A. DOI
Umeda R., Awaji H., Nakahodo T., Fujihara H. Nanotube Composites Consisting of Metal Nanoparticles and Polythiophene from Electropolymerization of Terthiophene-Functionalized Metal (Au, Pd) Nanoparticles. J. Am. Chem. Soc. 2008;130:3240–3241. doi: 10.1021/ja7114212. PubMed DOI
Lee J.U., Huh J., Kim K.H., Park C., Jo W.H. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol) Carbon N. Y. 2007;45:1051–1057. doi: 10.1016/j.carbon.2006.12.017. DOI
Wang Y., Partridge A., Wu Y. Comparison of a carboxylated terthiophene surface with carboxymethylated dextran layer for surface plasmon resonance detection of progesterone. Anal. Biochem. 2016;508:46–49. doi: 10.1016/j.ab.2016.05.027. PubMed DOI
Wang Y., Partridge A., Wu Y. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta. 2019;198:350–357. doi: 10.1016/j.talanta.2019.02.035. PubMed DOI
Grant D.K., Jolley K.W., Officer D.L., Gordon K.C., Clarke T.M. Towards functionalized poly(terthiophenes): Regioselective synthesis of oligoether-substituted bis(styryl)sexithiophenes. Org. Biomol. Chem. 2005;3:2008–2015. doi: 10.1039/b502791h. PubMed DOI
Demeter D., Blanchard P., Allain M., Grosu I., Roncali J. Synthesis and Metal Cation Complexing Properties of Crown-Annelated Terthiophenes Containing 3,4-Ethylenedioxythiophene. J. Org. Chem. 2007;72:5285–5290. doi: 10.1021/jo070699s. PubMed DOI
Yamamoto T., Omote M., Miyazaki Y., Kashiwazaki A., Lee B.-L., Kanbara T., Osakada K., Inoue T., Kubota K. Poly(thiophene-2,5-diyl)s with a Crown Ethereal Subunit. Preparation, Optical Properties, and n-Doped State Stabilized against Air. Macromolecules. 1997;30:7158–7165. doi: 10.1021/ma9708104. DOI
Berlin A., Zotti G., Zecchin S., Schiavon G. EQCM analysis of the alkali metal ion coordination properties of novel poly(thiophene)s 3,4-functionalized with crown-ether moieties. Synth. Met. 2002;131:149–160. doi: 10.1016/S0379-6779(02)00176-5. DOI
Baeuerle P., Scheib S. Synthesis and characterization of thiophenes, oligothiophenes and polythiophenes with crown ether units in direct π-conjugation. Acta Polym. 1995;46:124–129. doi: 10.1002/actp.1995.010460204. DOI
Lukovskaya E.V., Bobyleva A.A., Fedorova O.A., Fedorov Y.V., Anisimov A.V., Didane Y., Brisset H., Fages F. Novel crown-containing 3-styryl derivatives of oligothiophenes: synthesis, structure, and optical and electrochemical characteristics. Russ. Chem. Bull. 2009;58:1509–1515. doi: 10.1007/s11172-009-0203-3. DOI
Reddinger J.L., Reynolds J.R. A Novel Polymeric Metallomacrocycle Sensor Capable of Dual-Ion Cocomplexation. Chem. Mater. 1998;10:3–5. doi: 10.1021/cm9705000. DOI
Goldoni F., Antolini L., Pourtois G., Schenning A.P.H.J., Janssen R.A.J., Lazzaroni R., Bredas J.-L., Meijer E.W. Effect of ion coordination on the conformational and electronic structure of 3,4-bis(alkylthio)thiophenes. Eur. J. Inorg. Chem. 2001:821–828. doi: 10.1002/1099-0682(200103)2001:3<821::AID-EJIC821>3.0.CO;2-A. DOI
Faye D., Duong T.H., Vieitez I., Gohier F.F., Brisset H., Frere P., Briand J.-F.J.-F., Leriche P., Bressy C., Frère P., et al. Electroactive polyacrylates bearing linear conjugated systems based on EDOT moieties. Polymer. 2017;117:17–24. doi: 10.1016/j.polymer.2017.04.015. DOI
Barbarella G., Zambianchi M., Di Toro R., Colonna M.J., Iarossi D., Goldoni F., Bongini A. Regioselective Oligomerization of 3-(Alkylsulfanyl)Thiophenes with Ferric Chloride. J. Org. Chem. 1996;61:8285–8292. doi: 10.1021/jo960982j. PubMed DOI
Rossi R., Ciofalo M., Carpita A., Ponterini G. Singlet-triplet intersystem crossing in 2,2’:5’,2’’-terthiophene and some of its derivatives. J. Photochem. Photobiol. A Chem. 1993;70:59–67. doi: 10.1016/1010-6030(93)80009-X. DOI
Spencer H.J., Skabara P.J., Giles M., McCulloch I., Coles S.J., Hursthouse M.B. The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT-EDOT copolymers. J. Mater. Chem. 2005;15:4783–4792. doi: 10.1039/b511075k. DOI
Skabara P.J., Serebryakov I.M., Roberts D.M., Perepichka I.F., Coles S.J., Hursthouse M.B. Novel Terthiophene and Bis(thienyl)furan Derivatives as Precursors to Highly Electroactive Polymers. J. Org. Chem. 1999;64:6418–6424. doi: 10.1021/jo990198+. DOI
Skabara P.J., Berridge R., Serebryakov I.M., Kanibolotsky A.L., Kanibolotskaya L., Gordeyev S., Perepichka I.F., Sariciftci N.S., Winder C. cFluorene functionalised sexithiophenes-utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. J. Mater. Chem. 2007;17:1055–1062. doi: 10.1039/B609858D. DOI
Berridge R., Skabara P.J., Pozo-Gonzalo C., Kanibolotsky A., Lohr J., McDouall J.J.W., McInnes E.J.L., Wolowska J., Winder C., Sariciftci N.S., et al. Incorporation of Fused Tetrathiafulvalenes (TTFs) into Polythiophene Architectures: Varying the Electroactive Dominance of the TTF Species in Hybrid Systems. J. Phys. Chem. B. 2006;110:3140–3152. doi: 10.1021/jp057256h. PubMed DOI
Skabara P.J., Roberts D.M., Serebryakov I.M., Pozo-Gonzalo C. The development of an electropolymerizable unit for TTF-thiophene fused monomers. Chem. Commun. 2000:1005–1006. doi: 10.1039/b001943g. DOI
Skabara P.J., Serebryakov I.M., Perepichka I.F., Sariciftci N.S., Neugebauer H., Cravino A. Toward Controlled Donor-Acceptor Interactions in Noncomposite Polymeric Materials: Synthesis and Characterization of a Novel Polythiophene Incorporating π-Conjugated 1,3-Dithiole-2-ylidenefluorene Units as Strong D-A Components. Macromolecules. 2001;34:2232–2241. doi: 10.1021/ma0015931. DOI
Berridge R., Wright S.P., Skabara P.J., Dyer A., Steckler T., Argun A.A., Reynolds J.R., Harrington R.W., Clegg W. Electrochromic properties of a fast switching, dual colour polythiophene bearing non-planar dithiinoquinoxaline units. J. Mater. Chem. 2007;17:225–231. doi: 10.1039/B613879A. DOI
Forgie J.C., Kanibolotsky A.L., Skabara P.J., Coles S.J., Hursthouse M.B., Harrington R.W., Clegg W. Electrochemical, Spectroelectrochemical, and Comparative Studies of Novel Organic Conjugated Monomers and Polymers Featuring the Redox-Active Unit Tetrathianaphthalene. Macromolecules. 2009;42:2570–2580. doi: 10.1021/ma900010n. DOI
Ie Y., Yoshimura A., Takeuchi D., Osakada K., Aso Y. Synthesis and properties of polymer having electronegative terthiophene pendants based on cyclopenta[c]thiophene. Chem. Lett. 2011;40:1039–1040. doi: 10.1246/cl.2011.1039. DOI
Endou M., Ie Y., Aso Y. Encapsulated oligothiophenes having electron-affinity characteristics. Chem. Commun. 2012;48:540–542. doi: 10.1039/C1CC14994F. PubMed DOI
Qian D., Ye L., Zhang M., Liang Y., Li L., Huang Y., Guo X., Zhang S., Tan Z., Hou J. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules. 2012;45:9611–9617. doi: 10.1021/ma301900h. DOI
Qian D., Ma W., Li Z., Guo X., Zhang S., Ye L., Ade H., Tan Z., Hou J. Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content. J. Am. Chem. Soc. 2013;135:8464–8467. doi: 10.1021/ja402971d. PubMed DOI
Bin H., Xiao L., Liu Y., Shen P., Li Y. Effects of donor unit and π-bridge on photovoltaic properties of D-A copolymers based on benzo[1,2-b:4,5-c’]-dithiophene-4,8-dione acceptor unit. J. Polym. Sci. Part A Polym. Chem. 2014;52:1929–1940. doi: 10.1002/pola.27209. DOI
Zhang G., Guo J., Zhang J., Li W., Wang X., Lu H., Qiu L. Benzodithiophenedione and diketopyrrolopyrrole based conjugated copolymers for organic thin-film transistors by structure modulation. Dyes Pigments. 2016;126:20–28. doi: 10.1016/j.dyepig.2015.10.047. DOI
Liu T., Meng D., Cai Y., Sun X., Li Y., Huo L., Liu F., Wang Z., Russell T.P., Sun Y. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Adv. Sci. 2016;3 doi: 10.1002/advs.201600117. PubMed DOI PMC
Huang X., Weng K., Huo L., Fan B., Yang C., Sun X., Sun Y. Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. J. Mater. Chem. C Mater. Opt. Electron. Devices. 2016;4:9052–9059. doi: 10.1039/C6TC02915A. DOI
Li Z., Weng K., Chen A., Sun X., Wei D., Yu M., Huo L., Sun Y. Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor-Acceptor-Based Copolymers. Macromol. Rapid Commun. 2018;39 doi: 10.1002/marc.201700547. PubMed DOI
Rehman T., Liu Z.-X., Lau T.-K., Yu Z., Shi M., Lu X., Li C.-Z., Chen H. Influence of Bridging Groups on the Photovoltaic Properties of Wide-Bandgap Poly(BDTT-alt-BDD)s. ACS Appl. Mater. Interfaces. 2019;11:1394–1401. doi: 10.1021/acsami.8b16628. PubMed DOI
Lopes Graca J.F., Chane-Ching K.I., Yassar A. A new polymer based on a conjugated terthiophene-β-diketone ligand: Electrochemical study and structural aspects. Electrochim. Acta. 2005;50:1475–1480. doi: 10.1016/j.electacta.2004.10.013. DOI
Fuse S., Asai Y., Sugiyama S., Matsumura K., Maitani M.M., Wada Y., Ogomi Y., Hayase S., Kaiho T., Takahashi T. Synthesis of EDOT-containing organic dyes via one-pot, four-component Suzuki–Miyaura coupling and the evaluation of their photovoltaic properties. Tetrahedron. 2014;70:8690–8695. doi: 10.1016/j.tet.2014.09.039. DOI
Istif E., Mantione D., Vallan L., Hadziioannou G., Brochon C., Cloutet E., Pavlopoulou E. Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers. ACS Appl. Mater. Interfaces. 2020;12:8695–8703. doi: 10.1021/acsami.9b21058. PubMed DOI
Wagner K., Crowe L.L., Wagner P., Gambhir S., Partridge A.C., Earles J.C., Clarke T.M., Gordon K.C., Officer D.L. Indanedione-Substituted Poly(terthiophene)s: Processable Conducting Polymers with Intramolecular Charge Transfer Interactions. Macromolecules. 2010;43:3817–3827. doi: 10.1021/ma902782x. DOI
Collis G.E., Burrell A.K., Scott S.M., Officer D.L. Toward Functionalized Conducting Polymers: Synthesis and Characterization of Novel β-(Styryl)terthiophenes. J. Org. Chem. 2003;68:8974–8983. doi: 10.1021/jo034855g. PubMed DOI
Collis G.E., Burrell A.K., Officer D.L. β-Terthiophene aldehyde and phosphonate: Key building blocks for the synthesis of functionalized conducting polymers. Tetrahedron Lett. 2001;42:8733–8735. doi: 10.1016/S0040-4039(01)01894-9. DOI
Liao Z., Wang Y., An Y., Tan Y., Meng X., Wu F., Chen L., Chen Y. Post-Treatment-Free Main Chain Donor and Side Chain Acceptor (D-s-A) Copolymer for Efficient Nonfullerene Solar Cells with a Small Voltage Loss. Macromol. Rapid Commun. 2018;39 doi: 10.1002/marc.201700706. PubMed DOI
Elmas S., Beelders W., Bradley S.J., Kroon R., Laufersky G., Andersson M., Nann T. Platinum Terpyridine Metallopolymer Electrode as Cost-Effective Replacement for Bulk Platinum Catalysts in Oxygen Reduction Reaction and Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2017;5:10206–10214. doi: 10.1021/acssuschemeng.7b02198. DOI
Lee T.-Y., Shim Y.-B., Shin S.C. Simple preparation of terthiophene-3′-carboxylic acid and characterization of its polymer. Synth. Met. 2002;126:105–110. doi: 10.1016/S0379-6779(01)00556-2. DOI
Zanoni M., Coleman S., Fraser K.J., Byrne R., Wagner K., Gambhir S., Officer D.L., Wallace G.G., Diamond D. Physicochemical study of spiropyran-terthiophene derivatives: Photochemistry and thermodynamics. Phys. Chem. Chem. Phys. 2012;14:9112–9120. doi: 10.1039/c2cp41137g. PubMed DOI
McTiernan C.D., Abbas S.A., Chahma M. Organic surface modification using stable conducting materials. New J. Chem. 2012;36:2106–2111. doi: 10.1039/c2nj40366h. DOI
Lee J.Y., Jeong E.-D., Ahn C.W., Lee J.-W. Bioactive conducting scaffolds: Active ester-functionalized polyterthiophene. Synth. Met. 2013;185–186:66–70. doi: 10.1016/j.synthmet.2013.09.044. DOI
Yassar A., Moustrou C., Youssoufi H.K., Samat A., Guglielmetti R., Garnier F. Synthesis and Characterization of Poly(thiophenes) Functionalized by Photochromic Spironaphthoxazine Groups. Macromolecules. 1995;28:4548–4553. doi: 10.1021/ma00117a025. DOI
Jang S.-Y., Sotzing G.A., Marquez M. Intrinsically Conducting Polymer Networks of Poly(thiophene) via Solid-State Oxidative Cross-Linking of a Poly(norbornylene) Containing Terthiophene Moieties. Macromolecules. 2002;35:7293–7300. doi: 10.1021/ma0202484. DOI
Destri S., Porzio W., Meinardi F., Tubino R., Salerno G. Novel Erbium-Substituted Oligothiophene Chelates for Infrared Emission. Macromolecules. 2003;36:273–275. doi: 10.1021/ma025590v. DOI
Destri S., Pasini M., Porzio W., Rizzo F., Dellepiane G., Ottonelli M., Musso G., Meinardi F., Veltri L. New erbium complexes emitting in infrared region based on oligothiophene and thiophenefluorene carboxylate. J. Lumin. 2007;127:601–610. doi: 10.1016/j.jlumin.2007.03.018. DOI
Pokrop R., Pamula K., Deja-Drogomirecka S., Zagorska M., Borysiuk J., Reiss P., Pron A. Electronic, electrochemical, and spectroelectrochemical properties of hybrid materials consisting of carboxylic acid derivatives of oligothiophene and CdSe semiconductor nanocrystals. J. Phys. Chem. C. 2009;113:3487–3493. doi: 10.1021/jp808351h. DOI
Zhang Y., Lu B., Dong L., Sun H., Hu D., Xing H., Duan X., Chen S., Xu J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta. 2016;220:122–129. doi: 10.1016/j.electacta.2016.10.100. DOI
Tiu B.D.B., Pernites R.B., Tiu S.B., Advincula R.C. Detection of aspartame via microsphere-patterned and molecularly imprinted polymer arrays. Colloids Surfaces, A Physicochem. Eng. Asp. 2016;495:149–158. doi: 10.1016/j.colsurfa.2016.01.038. DOI
Peng H., Zhang L., Spires J., Soeller C., Travas-Sejdic J. Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer. 2007;48:3413–3419. doi: 10.1016/j.polymer.2007.04.029. DOI
Spires J.B., Peng H., Williams D., Travas-Sejdic J. The solvent-induced collapse of a redox-active conducting polymer and the consequence on its DNA-sensing ability. J. Electroanal. Chem. 2011;658:1–9. doi: 10.1016/j.jelechem.2011.02.021. DOI
Bruns C.J., Herman D.J., Minuzzo J.B., Lehrman J.A., Stupp S.I. Rationalizing Molecular Design in the Electrodeposition of Anisotropic Lamellar Nanostructures. Chem. Mater. 2013;25:4330–4339. doi: 10.1021/cm402505p. DOI
Baeuerle P., Hiller M., Scheib S., Sokolowski M., Umbach E. Post-polymerization functionalization of conducting polymers. Novel poly(alkylthiophene)s substituted with easily replaceable activated ester groups. Adv. Mater. 1996;8:214–218. doi: 10.1002/adma.19960080305. DOI
Kim D.-M., Yoon J.-H., Won M.-S., Shim Y.-B. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. Electrochim. Acta. 2012;67:201–207. doi: 10.1016/j.electacta.2012.02.033. DOI
Beouch L., Boileau S., Chevrot C., Tran-Van F. Electropolymerization of hydrogen bond supramolecular associations between terthiophene-3-acetic acid and 4,4′-bipyridine. Polym. Int. 2017;66:1389–1394. doi: 10.1002/pi.5389. DOI
Badeva D., Tran-Van F., Beouch L., Chevrot C., Markova I., Racheva T., Froyer G. Embedding and electropolymerization of terthiophene derivatives in porous n-type silicon. Mater. Chem. Phys. 2012;133:592–598. doi: 10.1016/j.matchemphys.2012.01.126. DOI
Boopathi M., Won M.-S., Kim Y.H., Shin S.C., Shim Y.-B. Electrocatalytic Reduction of Molecular Oxygen Using a Poly(terthiophene carboxylic acid) Appended by 1,5-Diaminonaphthalene Copper Complex. J. Electrochem. Soc. 2002;149:E265–E271. doi: 10.1149/1.1482769. DOI
Destri S., Giovanella U., Fazio A., Porzio W., Gabriele B., Zotti G. A new soluble poly(bithiophene)-co-3,4-di(methoxycarbonyl)methyl thiophene for LED. Org. Electron. 2002;3:149–156. doi: 10.1016/S1566-1199(02)00052-6. DOI
Fazio A., Gabriele B., Salerno G., Destri S. Synthesis of 3,4-bis[(methoxycarbonyl)methylthiophene and bis-, ter- and pentathiophenes with alternating 3,4-bis[(methoxycarbonyl)methyl] substituted rings. Tetrahedron. 1999;55:485–502. doi: 10.1016/S0040-4020(98)01047-3. DOI
Atilgan N., Cihaner A., Oenal A.M. Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. React. Funct. Polym. 2010;70:244–250. doi: 10.1016/j.reactfunctpolym.2009.12.006. DOI
Taranekar P., Fulghum T., Baba A., Patton D., Advincula R. Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR. Langmuir. 2007;23:908–917. doi: 10.1021/la061820d. PubMed DOI
Allard S., Braun L., Brehmer M., Zentel R. Oligothiophenes for pattern formation by stamping. Macromol. Chem. Phys. 2003;204:68–75. doi: 10.1002/macp.200290056. DOI
Asil D., Cihaner A., Oenal A.M. Electropolymerization and ion sensitivity of chemiluminescent thienyl systems. Electrochim. Acta. 2009;54:6740–6746. doi: 10.1016/j.electacta.2009.06.053. DOI
Atilgan N., Algi F., Oenal A.M., Cihaner A. Synthesis and properties of a novel redox driven chemiluminescent material built on a terthienyl system. Tetrahedron. 2009;65:5776–5781. doi: 10.1016/j.tet.2009.05.019. DOI
Watson K.J., Wolfe P.S., Nguyen S.T., Zhu J., Mirkin C.A. Norbornenyl-Substituted Thiophenes and Terthiophenes: Novel Doubly Polymerizable Monomers. Macromolecules. 2000;33:4628–4633. doi: 10.1021/ma992035t. DOI
Higgins S.J., Mouffouk F., Brown S.J., Williams D.R., Cossins A.R. An electrogenerated polyterthiophene for binding and sensing polyadenosine-functionalised oligonucleotides. Sens. Actuators B Chem. 2007;122:253–258. doi: 10.1016/j.snb.2006.05.031. DOI
Gelmi A., Zanoni M., Higgins M.J., Gambhir S., Officer D.L., Diamond D., Wallace G.G. Optical switching of protein interactions on photosensitive-electroactive polymers measured by atomic force microscopy. J. Mater. Chem. B Mater. Biol. Med. 2013;1:2162–2168. doi: 10.1039/c3tb00463e. PubMed DOI
Saitou K., Nishiyabu R., Iyoda M., Kubo Y. Gold nanoparticle-templated assembly of oligothiophenes: Preparation and film properties. Tetrahedron. 2011;67:9685–9689. doi: 10.1016/j.tet.2011.10.032. DOI
Maione S., Fabregat G., del Valle L.J., Bendrea A.-D., Cianga L., Cianga I., Estrany F., Aleman C. Effect of the graft ratio on the properties of polythiophene-g-poly(ethylene glycol) J. Polym. Sci. Part B Polym. Phys. 2015;53:239–252. doi: 10.1002/polb.23617. DOI
Sakakibara K., Rosenau T. Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung. 2012;66:9–19. doi: 10.1515/HF.2011.137. DOI
Jiang G., Ponnapati R., Pernites R., Felipe M.J., Advincula R. Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP): Synthesis and Electropolymerization of Terthiophene-Functionalized Olefin Peripheral Dendrons. Macromolecules. 2010;43:10262–10274. doi: 10.1021/ma101746e. DOI
Nicoletta F.P., Chidichimo G., Cupelli D., De Filpo G., De Benedittis M., Gabriele B., Salerno G., Fazio A. Electrochromic polymer-dispersed liquid-crystal film: A new bifunctional device. Adv. Funct. Mater. 2005;15:995–999. doi: 10.1002/adfm.200400403. DOI
Asil D., Cihaner A., Algi F., Oenal A.M. A novel conducting polymer based on terthienyl system bearing strong electron-withdrawing substituents and its electrochromic device application. J. Electroanal. Chem. 2008;618:87–93. doi: 10.1016/j.jelechem.2008.02.027. DOI
McTiernan C.D., Chahma M. Synthesis and characterization of alanine functionalized oligo/polythiophenes. New J. Chem. 2010;34:1417–1423. doi: 10.1039/c0nj00016g. DOI
Kim D.-S., Ahn K.H. Fluorescence “turn-on” sensing of carboxylate anions with oligothiophene-based o-(carboxamido)trifluoroacetophenones. J. Org. Chem. 2008;73:6831–6834. doi: 10.1021/jo801178y. PubMed DOI
McTiernan C.D., Omri K., Chahma M. Chiral Conducting Surfaces via Electrochemical Oxidation of L-Leucine-Oligothiophenes. J. Org. Chem. 2010;75:6096–6103. doi: 10.1021/jo100722v. PubMed DOI
Chahma M., McTiernan C.D., Abbas S.A. Characterization of phenomena occurring at the interface of chiral conducting surfaces. New J. Chem. 2014;38:3379–3385. doi: 10.1039/C4NJ00489B. DOI
Kaewtong C., Niamsa N., Wanno B., Morakot N., Pulpoka B., Tuntulani T. Optical chemosensors for Hg2+ from terthiophene appended rhodamine derivatives: FRET based molecular and in situ hybrid gold nanoparticle sensors. New J. Chem. 2014;38:3831–3839. doi: 10.1039/C4NJ00412D. DOI
Guo H., Liu M., Han Y., Han S., Chen Y. Synthesis and characterization of S,N-heteroacenes by Bischler-Napieralski reaction. Chin. J. Polym. Sci. 2016;34:1319–1329. doi: 10.1007/s10118-016-1846-9. DOI
Guo X., Ortiz R.P., Zheng Y., Kim M.-G., Zhang S., Hu Y., Lu G., Facchetti A., Marks T.J. Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. J. Am. Chem. Soc. 2011;133:13685–13697. doi: 10.1021/ja205398u. PubMed DOI
Najari A., Beaupre S., Berrouard P., Zou Y., Pouliot J.-R., Lepage-Perusse C., Leclerc M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater. 2011;21:718–728. doi: 10.1002/adfm.201001771. DOI
Wen S., Cheng W., Li P., Yao S., Xu B., Li H., Gao Y., Wang Z., Tian W. Synthesis and Photovoltaic Properties of Thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor Copolymers. J. Polym. Sci. Part A Polym. Chem. 2012;50:3758–3766. doi: 10.1002/pola.26164. DOI
Zhang G., Fu Y., Xie Z., Zhang Q. Low bandgap polymers with benzo [1,2-b:4,5-b’] dithiophene and bisthiophene-dioxopyrrolothiophene units for photovoltaic applications. Polymer. 2011;52:415–421. doi: 10.1016/j.polymer.2010.11.022. DOI
Lu Y., Lei Y., Wu B., Xu X., Zhu F., Hu X., Ong B.S., Ng S.C. Synthesis and properties of benzo[c]-, pyrrolo[3,4-c]-, and thieno[3,4-c]-pyrrole-4,6-dione copolymers. New J. Chem. 2015;39:2642–2650. doi: 10.1039/C4NJ01810A. DOI
Zhang Z., Zhou Z., Hu Q., Liu F., Russell T.P., Zhu X. 1,3-Bis(thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Appl. Mater. Interfaces. 2017;9:6213–6219. doi: 10.1021/acsami.6b14572. PubMed DOI
Kim J., Lee W.-H., Park J.B., Hwang D.-H., Kang I.-N. Synthesis and characterization of the fluorinated thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor polymers for organic solar cells. Dyes Pigments. 2019;160:403–409. doi: 10.1016/j.dyepig.2018.08.022. DOI
Sonmez G., Meng H., Wudl F. Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-Infrared Applications. Chem. Mater. 2003;15:4923–4929. doi: 10.1021/cm034115o. DOI
Blanco R., Gomez R., Seoane C., Segura J.L., Mena-Osteritz E., Baeuerle P. An Ambipolar Peryleneamidine Monoimide-Fused Polythiophene with Narrow Band Gap. Org. Lett. 2007;9:2171–2174. doi: 10.1021/ol0706861. PubMed DOI
Raimundo J.-M., Blanchard P., Brisset H., Akoudad S., Roncali J. Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity. Chem. Commun. 2000:939–940. doi: 10.1039/b002369h. DOI
Vangeneugden D.L., Kiebooms R.H.L., Vanderzande D.J.M., Gelan J.M.J. V A general synthetic route towards soluble poly(1,3-dithienylisothianaphthene) derivatives. Synth. Met. 1999;101:120–121. doi: 10.1016/S0379-6779(98)01315-0. DOI
Vangeneugden D., Kiebooms R., Adriaensens P., Vanderzande D., Gelan J., Desmet J., Huyberechts G. “Formal” copolymers based on 1,3-dithienylisothianaphthene derivatives. Promising materials for electronic devices. Acta Polym. 1998;49:687–692. doi: 10.1002/(SICI)1521-4044(199812)49:12<687::AID-APOL687>3.0.CO;2-U. DOI
Kiebooms R., Adriaensens P., Vanderzande D., Gelan J., Swann M.J., Bloor D., Drury C.J., Brooke G.M. Poly(tetrafluorobenzo[c]thiophene). Structure Analysis of Oligomers and Model Compound Based on 1D and 2D NMR Spectroscopy. Macromolecules. 1996;29:5981–5989. doi: 10.1021/ma960311n. DOI
Yamamoto K., Ie Y., Nitani M., Tohnai N., Kakiuchi F., Zhang K., Pisula W., Asadi K., Blom P.W.M., Aso Y. Oligothiophene quinoids containing a benzo[c]thiophene unit for the stabilization of the quinoidal electronic structure. J. Mater. Chem. C Mater. Opt. Electron. Devices. 2018;6:7493–7500. doi: 10.1039/C8TC01802B. DOI
Kiebooms R., Hoogmartens I., Adriaensens P., Vanderzande D., Gelan J. Low-Band-Gap Conjugated Polymers. Improved Model Compounds for the Structural Analysis of Poly(isothianaphthene) Macromolecules. 1995;28:4961–4969. doi: 10.1021/ma00118a025. DOI
Hoogmartens I., Adriaensens P., Carleer R., Vanderzande D., Martens H., Gelan J. An investigation into the electronic structure of poly(isothianaphthene) Synth. Met. 1992;51:219–228. doi: 10.1016/0379-6779(92)90274-M. DOI
Kawabata K., Takeguchi M., Goto H. Optical Activity of Heteroaromatic Conjugated Polymer Films Prepared by Asymmetric Electrochemical Polymerization in Cholesteric Liquid Crystals: Structural Function for Chiral Induction. Macromolecules. 2013;46:2078–2091. doi: 10.1021/ma400302j. DOI
Musmanni S., Ferraris J.P. Preparation and characterization of conducting polymers based on 1,3-di(2-thienyl)benzo[c]thiophene. J. Chem. Soc. Chem. Commun. 1993:172–174. doi: 10.1039/c39930000172. DOI
D’Auria M., Guarnaccio A., Racioppi R., Santagata A., Teghil R. Synthesis and photophysical properties of some dithienylbenzo[c]thiophene derivatives. Heterocycles. 2015;91:313–331. doi: 10.3987/COM-14-13145. DOI
Baeuerle P., Goetz G., Emerle P., Port H. Synthesis and characterization of new annulated terheterocycles. Adv. Mater. 1992;4:564–568. doi: 10.1002/adma.19920040907. DOI
Lakshmikantham M.V., Lorcy D., Scordilis-Kelley C., Wu X.L., Parakka J.P., Metzger R.M., Cava M.P. Poly(naphtho[2,3-c]thiophene-alt-bithiophene): a novel low band gap polymer. Adv. Mater. 1993;5:723–726. doi: 10.1002/adma.19930051007. DOI
Qin Y., Kim J.Y., Frisbie C.D., Hillmyer M.A. Distannylated Isothianaphthene: A Versatile Building Block for Low Bandgap Conjugated Polymers. Macromolecules. 2008;41:5563–5570. doi: 10.1021/ma8011575. DOI
Clement J.A., Mohanakrishnan A.K. Synthesis and characterization of naphth-annelated thiophene analogs. Tetrahedron. 2010;66:2340–2350. doi: 10.1016/j.tet.2010.01.111. DOI
Raj M.R., Anandan S. Donor conjugated polymers-based on alkyl chain substituted oligobenzo[c]thiophene derivatives with well-balanced energy levels for bulk heterojunction solar cells. RSC Adv. 2013;3:14595–14608. doi: 10.1039/c3ra41518j. DOI
Lorcy D., Cava M.P. Poly(isothianaphthene-bithiophene): a new regularly structured polythiophene analog. Adv. Mater. 1992;4:562–564. doi: 10.1002/adma.19920040906. DOI
Wu Y., Jing Y., Guo X., Zhang S., Zhang M., Huo L., Hou J. A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polym. Chem. 2013;4:536–541. doi: 10.1039/C2PY20674A. DOI
Paulussen H., Vanderzande D., Gelan J. The synthesis of methoxy substituted model compounds for structural analysis of poly(isothianaphthene) derivatives. Synth. Met. 1995;69:569–570. doi: 10.1016/0379-6779(94)02572-G. DOI
Tuennermann M., Rehsies P., Floerke U., Bauer M. A Straightforward Synthesis to Novel 1,10-Phenanthrolines with Fused Thiophene Structure. Synlett. 2018;29:2638–2642. doi: 10.1055/s-0037-1611022. DOI
Karsten B.P., Viani L., Gierschner J., Cornil J., Janssen R.A.J. An Oligomer Study on Small Band Gap Polymers. J. Phys. Chem. A. 2008;112:10764–10773. doi: 10.1021/jp805817c. PubMed DOI
Perzon E., Wang X., Zhang F., Mammo W., Delgado J.L., de la Cruz P., Inganaes O., Langa F., Andersson M.R. Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. Synth. Met. 2005;154:53–56. doi: 10.1016/j.synthmet.2005.07.011. DOI
Mak C.S.K., Leung Q.Y., Chan W.K., Djurisic A.B. Optically tunable intramolecular charge transfer dyes for vacuum deposited bulk heterojunction solar cells. Nanotechnology. 2008;19:424008/1–424008/8. doi: 10.1088/0957-4484/19/42/424008. PubMed DOI
Petersen M.H., Gevorgyan S.A., Krebs F.C. Thermocleavable Low Band Gap Polymers and Solar Cells Therefrom with Remarkable Stability toward Oxygen. Macromolecules. 2008;41:8986–8994. doi: 10.1021/ma801932a. DOI
Yue W., Larsen-Olsen T.T., Hu X., Shi M., Chen H., Hinge M., Fojan P., Krebs F.C., Yu D. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers. J. Mater. Chem. A Mater. Energy Sustain. 2013;1:1785–1793. doi: 10.1039/C2TA00695B. DOI
Sonmez G., Sonmez H.B., Shen C.K.F., Jost R.W., Rubin Y., Wudl F. A Processable Green Polymeric Electrochromic. Macromolecules. 2005;38:669–675. doi: 10.1021/ma0484173. DOI
Keshtov M.L., Godovsky D.Y., Khokhlov A.R., Mizobe T., Fujita H., Goto E., Hiyoshi J., Nakamura S., Kawauchi S., Higashihara T., et al. Synthesis and photovoltaic properties of thieno[3,4-b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-d]imidazole-containing conjugated polymers. J. Polym. Sci. Part A Polym. Chem. 2015;53:1067–1075. doi: 10.1002/pola.27570. DOI
Zhang Y., Kong L., Du H., Zhao J., Xie Y. Three novel donor-acceptor type electrochromic polymers containing 2,3-bis(5-methylfuran-2-yl)thieno[3,4-b]pyrazine acceptor and different thiophene donors: Low-band-gap, neutral green-colored, fast-switching materials. J. Electroanal. Chem. 2018;830–831:7–19. doi: 10.1016/j.jelechem.2018.10.020. DOI
Mak C.S.K., Cheung W.K., Leung Q.Y., Chan W.K. Conjugated Copolymers Containing Low Bandgap Rhenium(I) Complexes. Macromol. Rapid Commun. 2010;31:875–882. doi: 10.1002/marc.200900890. PubMed DOI
Mak C.S.K., Leung Q.Y., Li C.H., Chan W.K. Tuning the electronic properties of conjugated polymer by tethering low-bandgap rhenium(I) complex on the main chain. J. Polym. Sci. Part A Polym. Chem. 2010;48:2311–2319. doi: 10.1002/pola.23996. DOI
Esmer E.N., Tarkuc S., Udum Y.A., Toppare L. Near infrared electrochromic polymers based on phenazine moieties. Mater. Chem. Phys. 2011;131:519–524. doi: 10.1016/j.matchemphys.2011.10.014. DOI
de Echegaray P., Mancheno M.J., Arrechea-Marcos I., Juarez R., Lopez-Espejo G., Lopez Navarrete J.T., Ramos M.M., Seoane C., Ortiz R.P., Segura J.L. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors. J. Org. Chem. 2016;81:11256–11267. doi: 10.1021/acs.joc.6b02214. PubMed DOI
Keshtov M.L., Kuklin S.A., Konstantinov I.O., Peregudov A.S., Muranov A.V., Khokhlov A.R. New monomer based on thienopyrazine with fluorocarbazole substituents as a promising building block for organic electronics. Dokl. Chem. 2017;472:25–29. doi: 10.1134/S0012500817020033. DOI
Sonmez G., Shen C.K.F., Rubin Y., Wudl F. The unusual effect of bandgap lowering by C60 on a conjugated polymer. Adv. Mater. 2005;17:897–900. doi: 10.1002/adma.200306494. DOI
Zhang L., Lo K.C., Chan W.K. A new route to the synthesis of near-infrared absorbing pyrazinopyrazine bridged dyes with intramolecular charge transfer character. Chem. Commun. 2014;50:4245–4247. doi: 10.1039/c4cc01084a. PubMed DOI
Mikroyannidis J.A., Tsagkournos D.V., Sharma S.S., Vijay Y.K., Sharma G.D. Synthesis and application of low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units for bulk heterojunction solar cells. J. Mater. Chem. 2011;21:4679–4688. doi: 10.1039/c0jm03436c. DOI
Shao J., Wang G., Wang K., Yang C., Wang M. Direct arylation polycondensation for efficient synthesis of narrow-bandgap alternating D–A copolymers consisting of naphthalene diimide as an acceptor. Polym. Chem. 2015;6:6836–6844. doi: 10.1039/C5PY00595G. DOI
Gao J., He D., Zhang W., Xiao Z., Zuo Q., Shi Z., Ding L. Synthesis, characterization and photovoltaic properties of conjugated copolymers based on 2-alkyl-thieno[3,4-b]imidazole. Synth. Met. 2012;162:1694–1700. doi: 10.1016/j.synthmet.2012.07.001. DOI
Shi Z., Neo W.T., Lin T.T., Zhou H., Xu J. Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. RSC Adv. 2015;5:96328–96335. doi: 10.1039/C5RA19956E. DOI
Lee G.B., Kim R., Cha H.-J., Park C.E., Kim J.H., Kim Y.-H. New donor-acceptor copolymer containing dialkoxy naphthalene and carbonylated thieno[3,4-b]thiophene for OTFT and OPV. Macromol. Res. 2014;22:569–573. doi: 10.1007/s13233-014-2068-z. DOI
Chen L., Cai S., Wang X., Chen Y. Novel Donor-Acceptor Copolymers Based on Dithienosilole and Ketone Modified Thieno[3,4-b]thiophene for Photovoltaic Application. Chin. J. Chem. 2013;31:1455–1462. doi: 10.1002/cjoc.201300562. DOI
Huang Y., Guo X., Liu F., Huo L., Chen Y., Russell T.P., Han C.C., Li Y., Hou J. Improving the Ordering and Photovoltaic Properties by Extending π-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure. Adv. Mater. 2012;24:3383–3389. doi: 10.1002/adma.201200995. PubMed DOI
Al-Taweel S.A., Al-Saraierh H.F. Synthesis of thiophene oligomers via organotin compounds. Phosphorus Sulfur Silicon Relat. Elem. 1999;155:47–57. doi: 10.1080/10426509908044969. DOI
Truong M.A., Fukuta S., Koganezawa T., Shoji Y., Ueda M., Higashihara T. Synthesis, characterization, and application to polymer solar cells of polythiophene derivatives with ester- or ketone-substituted phenyl side groups. J. Polym. Sci. Part A Polym. Chem. 2015;53:875–887. doi: 10.1002/pola.27513. DOI
Seol H., Shin S.C., Shim Y.-B. Trace analysis of Al (III) ions based on the redox current of a conducting polymer. Electroanalysis. 2004;16:2051–2057. doi: 10.1002/elan.200403058. DOI
Dragonetti C., Righetto S., Roberto D., Valore A., Benincori T., Sannicolo F., Angelis F., Fantacci S. Cationic cyclometallated iridium(III) complexes with substituted 1,10-phenanthrolines: The role of the cyclometallated moiety on this new class of complexes with interesting luminescent and second order non linear optical properties. J. Mater. Sci. Mater. Electron. 2009;20:460–464. doi: 10.1007/s10854-008-9670-9. DOI
Noh H.-B., Won M.-S., Hwang J., Kwon N.-H., Shin S.C., Shim Y.-B. Conjugated polymers and an iron complex as electrocatalytic materials for an enzyme-based biofuel cell. Biosens. Bioelectron. 2010;25:1735–1741. doi: 10.1016/j.bios.2009.12.020. PubMed DOI
Noh H.-B., Shim Y.-B. Catalytic activity of polymerized self-assembled artificial enzyme nanoparticles: Applications to microfluidic channel-glucose biofuel cells and sensors. J. Mater. Chem. A Mater. Energy Sustain. 2016;4:2720–2728. doi: 10.1039/C5TA08823B. DOI
Tovar J.D., Swager T.M. Cofacially constrained organic semiconductors. J. Polym. Sci. Part A Polym. Chem. 2003;41:3693–3702. doi: 10.1002/pola.10970. DOI
Mitschke U., Bauerle P. Synthesis, characterization, and electrogenerated chemiluminescence of phenyl-substituted, phenyl-annulated, and spirofluorenyl-bridged oligothiophenes. J. Chem. Soc. Perkin Trans. 1. 2001:740–753. doi: 10.1039/b006553f. DOI
Briehn C.A., Kirschbaum T., Baeuerle P. Polymer-Supported Synthesis of Regioregular Head-to-Tail-Coupled Oligo(3-arylthiophene)s Utilizing a Traceless Silyl Linker. J. Org. Chem. 2000;65:352–359. doi: 10.1021/jo991188b. PubMed DOI
Olejnik E., Herzog-Ronen C., Eichen Y., Ehrenfreund E. Recombination kinetics of polarons in films of alkylator-sensing co-polymers. Synth. Met. 2009;159:1024–1027. doi: 10.1016/j.synthmet.2009.01.026. DOI
Dinsdale D.R., Lough A.J., Lemaire M.T. Structure and magnetic properties of an unusual homoleptic iron(III) thiocyanate dimer. Dalt. Trans. 2015;44:11077–11082. doi: 10.1039/C5DT00743G. PubMed DOI
Zhao B., Liu D., Peng L., Li H., Shen P., Xiang N., Liu Y., Tan S. Effect of oxadiazole side chains based on alternating fluorene-thiophene copolymers for photovoltaic cells. Eur. Polym. J. 2009;45:2079–2086. doi: 10.1016/j.eurpolymj.2009.03.018. DOI
Huang M.H., Tian Z.F., Huang H. Synthesis and photovoltaic properties of poly(p-phenylenevinylene) derivatives modified by thiophene derivatives. Adv. Mater. Res. 2013;643:13–16. doi: 10.4028/www.scientific.net/AMR.643.13. DOI
Nagarjuna G., Yurt S., Jadhav K.G., Venkataraman D. Impact of Pendant 1,2,3-Triazole on the Synthesis and Properties of Thiophene-Based Polymers. Macromolecules. 2010;43:8045–8050. doi: 10.1021/ma101657e. DOI
Algi F., Cihaner A. A novel terthienyl based polymer electrochrome with peripheral BODIPY. Polymer. 2012;53:3469–3475. doi: 10.1016/j.polymer.2012.06.007. DOI
Clarke T.M., Gordon K.C., Wagner P., Officer D.L. Modulation of Electronic Properties in Neutral and Oxidized Oligothiophenes Substituted with Conjugated Polyaromatic Hydrocarbons. J. Phys. Chem. A. 2007;111:2385–2397. doi: 10.1021/jp066922r. PubMed DOI
Wagner P., Officer D.L. Structural and electronic properties of substituted terthiophenes. Synth. Met. 2005;154:325–328. doi: 10.1016/j.synthmet.2005.07.082. DOI
Chen D., Zhao Y., Zhong C., Yu G., Liu Y., Qin J. Two-dimensional copolymers with D-A type side chains for organic thin-film transistors: synthesis and properties. Polym. Chem. 2011;2:2842–2849. doi: 10.1039/c1py00331c. DOI
Clarke T.M., Gordon K.C., Officer D.L., Grant D.K. The effect of oxidation on the structure of styryl-substituted sexithiophenes: A resonance Raman spectroscopy and density functional theory study. J. Chem. Phys. 2006;124:164501/1–164501/11. doi: 10.1063/1.2185095. PubMed DOI
Grant D.K., Officer D.L. Towards processable polyether-functionalized poly(3′-styrylterthiophenes) Synth. Met. 2005;154:93–96. doi: 10.1016/j.synthmet.2005.07.016. DOI
Cutler C.A., Burrell A.K., Collis G.E., Dastoor P.C., Officer D.L., Too C.O., Wallace G.G. Photoelectrochemical cells based on polymers and copolymers from terthiophene and nitrostyrylterthiophene. Synth. Met. 2001;123:225–237. doi: 10.1016/S0379-6779(01)00294-6. DOI
Loire G., Schouteeten S., Andrioletti B., Prim D., Tranchier J.-P., Rose-Munch F., Rose E., Persoons A. Oligothiophene-substituted arenetricarbonylchromium complexes. Comptes Rendus Chim. 2003;6:223–230. doi: 10.1016/S1631-0748(03)00036-5. DOI
Kuo C.-Y., Huang Y.-C., Hsiow C.-Y., Yang Y.-W., Huang C.-I., Rwei S.-P., Wang H.-L., Wang L. Effect of Side-Chain Architecture on the Optical and Crystalline Properties of Two-Dimensional Polythiophenes. Macromolecules. 2013;46:5985–5997. doi: 10.1021/ma4007945. DOI
Mei S., Wu F., Huang Y., Zhao B., Tan S. Synthesis and photovoltaic properties of the copolymers based on 3-ethylrhodanine side group. Eur. Polym. J. 2015;67:31–39. doi: 10.1016/j.eurpolymj.2015.03.049. DOI
Chen J., Burrell A.K., Collis G.E., Officer D.L., Swiegers G.F., Too C.O., Wallace G.G. Preparation, characterization and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. Electrochim. Acta. 2002;47:2715–2724. doi: 10.1016/S0013-4686(02)00136-6. DOI
O’Sullivan T.J., Djukic B., Dube P.A., Lemaire M.T. A conducting metallopolymer featuring valence tautomerism. Chem. Commun. 2009:1903–1905. doi: 10.1039/b818952h. PubMed DOI
Manca P., Pilo M.I., Sanna G., Bergamini G., Ceroni P., Boaretto R., Caramori S. Heteroleptic Ru(II)-terpyridine complex and its metal-containing conducting polymer: Synthesis and characterization. Synth. Met. 2015;200:109–116. doi: 10.1016/j.synthmet.2015.01.002. DOI
Murata Y., Suzuki M., Komatsu K. Synthesis and electropolymerization of fullerene-terthiophene dyads. Org. Biomol. Chem. 2003;1:2624–2625. doi: 10.1039/B306206F. PubMed DOI
Frankevich V.E., Dashtiev M., Zenobi R., Kitagawa T., Lee Y., Murata Y., Yamazaki T., Gao Y., Komatsu K., Oliva J.M. MALDI-Fourier transform mass spectrometric and theoretical studies of donor-acceptor and donor-bridge-acceptor fullerenes. Phys. Chem. Chem. Phys. 2005;7:1036–1042. doi: 10.1039/B414349C. PubMed DOI
Manca P., Pilo M.I., Sanna G., Zucca A., Bergamini G., Ceroni P. Ru2+ complexes comprising terpyridine ligands appended with terthiophene chromophores: Energy transfer and energy reservoir effect. Chem. Commun. 2011;47:3413–3415. doi: 10.1039/c0cc04674d. PubMed DOI
Visy C., Lukkari J., Kankare J. Electrochemically Polymerized Terthiophene Derivatives Carrying Aromatic Substituents. Macromolecules. 1994;27:3322–3329. doi: 10.1021/ma00090a028. DOI
Amir E., Rozen S. Synthesis of [all]-S,S-Dioxide Oligothiophenes Using HOF⋅CH3CN. Angew. Chemie Int. Ed. 2005;44:7374–7378. doi: 10.1002/anie.200501681. PubMed DOI
Miller R.W., Dodge N.J., Dyer A.M., Fortner-Buczala E.M., Whalley A.C. A one-pot method for the preparation of 2,5-diarylthiophene-1-oxides from arylacetylenes. Tetrahedron Lett. 2016;57:1860–1862. doi: 10.1016/j.tetlet.2016.03.051. DOI
Tsai C.-H., Chirdon D.N., Maurer A.B., Bernhard S., Noonan K.J.T. Synthesis of Thiophene 1,1-Dioxides and Tuning Their Optoelectronic Properties. Org. Lett. 2013;15:5230–5233. doi: 10.1021/ol4024024. PubMed DOI
Barbarella G., Favaretto L., Sotgiu G., Zambianchi M., Arbizzani C., Bongini A., Mastragostino M. Controlling the Electronic Properties of Polythiophene through the Insertion of Nonaromatic Thienyl S, S -dioxide Units. Chem. Mater. 1999;11:2533–2541. doi: 10.1021/cm990245e. DOI
Leclerc N., Michaud A., Sirois K., Morin J.-F., Leclerc M. Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Adv. Funct. Mater. 2006;16:1694–1704. doi: 10.1002/adfm.200600171. DOI
Melucci M., Frère P., Allain M., Levillain E., Barbarella G., Roncali J. Molecular engineering of hybrid π-conjugated oligomers combining 3,4-ethylenedioxythiophene (EDOT) and thiophene-S,S-dioxide units. Tetrahedron. 2007;63:9774–9783. doi: 10.1016/j.tet.2007.07.006. DOI
Barbarella G., Favaretto L., Sotgiu G., Zambianchi M., Bongini A., Arbizzani C., Mastragostino M., Anni M., Gigli G., Cingolani R. Tuning Solid-State Photoluminescence Frequencies and Efficiencies of Oligomers Containing One Central Thiophene- S, S -dioxide Unit. J. Am. Chem. Soc. 2000;122:11971–11978. doi: 10.1021/ja002037p. DOI
Anni M., Gigli G., Paladini V., Cingolani R., Barbarella G., Favaretto L., Sotgiu G., Zambianchi M. Color engineering by modified oligothiophene blends. Appl. Phys. Lett. 2000;77:2458–2460. doi: 10.1063/1.1314886. DOI
Berlin A., Zotti G., Zecchin S., Schiavon G., Cocchi M., Virgili D., Sabatini C. 3,4-Ethylenedioxy-substituted bithiophene-alt-thiophene-S,S-dioxide regular copolymers. Synthesis and conductive, magnetic and luminescence properties. J. Mater. Chem. 2003;13:27–33. doi: 10.1039/b206669f. DOI
Kuchison A.M., Wolf M.O., Patrick B.O. Conjugated ligand-based tribochromic luminescence. Chem. Commun. 2009:7387–7389. doi: 10.1039/b915089g. PubMed DOI
Moore S.A., Davies D.L., Karim M.M., Nagle J.K., Wolf M.O., Patrick B.O. Photophysical behaviour of cyclometalated iridium(iii) complexes with phosphino(terthiophene) ligands. Dalt. Trans. 2013;42:12354–12363. doi: 10.1039/c3dt51320c. PubMed DOI
Moore S.A., Nagle J.K., Wolf M.O., Patrick B.O. Coordination Mode Dependent Excited State Behavior in Group 8 Phosphino(terthiophene) Complexes. Inorg. Chem. 2011;50:5113–5122. doi: 10.1021/ic200392n. PubMed DOI
Clot O., Wolf M.O., Patrick B.O. Electropolymerization of a cyclometalated terthiophene: A hybrid material with a palladium-carbon bond to the backbone. J. Am. Chem. Soc. 2000;122:10456–10457. doi: 10.1021/ja002258v. DOI
Clot O., Wolf M.O., Patrick B.O. Electropolymerization of Pd(II) complexes containing phosphinoterthiophene ligands. J. Am. Chem. Soc. 2001;123:9963–9973. doi: 10.1021/ja016465m. PubMed DOI
Kuchison A.M., Wolf M.O., Patrick B.O. Photophysical and electrochemical properties of Ru(II) complexes containing tridentate bisphosphino-oligothiophene ligands. Dalt. Trans. 2011;40:6912–6921. doi: 10.1039/c1dt10217f. PubMed DOI
Cao Y., Wolf M.O., Patrick B.O. Dual-Emissive Platinum(II) Metallacycles with Thiophene-Containing Bisacetylide Ligands. Inorg. Chem. 2016;55:8985–8993. doi: 10.1021/acs.inorgchem.6b01464. PubMed DOI
Manca P., Scanu R., Zucca A., Sanna G., Spano N., Pilo M.I. Electropolymerization of a Ru(II)-terpyridine complex ethynyl-terthiophene functionalized originating different metallopolymers. Polymer. 2013;54:3504–3509. doi: 10.1016/j.polymer.2013.05.026. DOI
Scanu R., Manca P., Zucca A., Sanna G., Spano N., Seeber R., Zanardi C., Pilo M.I. Homoleptic Ru(II) complex with terpyridine ligands appended with terthiophene moieties: Synthesis, characterization and electropolymerization. Polyhedron. 2013;49:24–28. doi: 10.1016/j.poly.2012.09.056. DOI
Zöllner M.J., Becker E., Jahn U., Kowalsky W., Johannes H.H. New versatile strategy towards zinc(II)-, copper(II)- and cobalt(II)metallated thiophene/porphyrin-hybrids. Eur. J. Org. Chem. 2010:4426–4435. doi: 10.1002/ejoc.200901237. DOI
Zoellner M.J., Fraehmcke J.S., Elstner M., Jahn U., Jones P.G., Becker E., Kowalsky W., Johannes H.-H. A New Synthetic Approach to Thiophene-Nickel(II)porphyrin Hybrid Molecules and their Electrochemical and Computational Investigation. Macromol. Chem. Phys. 2010;211:359–371. doi: 10.1002/macp.200900480. DOI
Collis G.E., Campbell W.M., Officer D.L., Burrell A.K. The design and synthesis of porphyrin/oligiothiophene hybrid monomers. Org. Biomol. Chem. 2005;3:2075–2084. doi: 10.1039/b502517f. PubMed DOI
Nguyen M.T., Jones R.A., Holliday B.J. Direct synthesis of CdSe nanocrystals within a conducting metallopolymer: Toward improving charge transfer in hybrid nanomaterials. Chem. Commun. 2016;52:13112–13115. doi: 10.1039/C6CC07193G. PubMed DOI
Reddinger J.L., Reynolds J.R. Tunable Redox and Optical Properties Using Transition Metal-Complexed Polythiophenes. Macromolecules. 1997;30:673–675. doi: 10.1021/ma961689o. DOI
Kim J.S.J.J., Kang D.M., Shin S.C., Choi M.Y., Kim J.S.J.J., Lee S.S., Kim J.S.J.J. Functional polyterthiophene-appended uranyl-salophen complex: Electropolymerization and ion-selective response for monohydrogen phosphate. Anal. Chim. Acta. 2008;614:85–92. doi: 10.1016/j.aca.2008.03.008. PubMed DOI
Pozo-Gonzalo C., Berridge R., Skabara P.J., Cerrada E., Laguna M., Coles S.J., Hursthouse M.B. A new family of conjugated metallopolymers from electropolymerised bis[(terthiophene)dithiolene] complexes. Chem. Commun. 2002:2408–2409. doi: 10.1039/b206243g. PubMed DOI
Kang B.S., Kim D.H., Jung T.S., Jang E.K., Pak Y., Shin S.C., Park D.S., Shim Y.B. Polyterthiophene appended by transition-metal cluster: Electropolymerization of 3′-[CCo3(CO)9]-5,2′:5′,2″-terthiophene. Synth. Met. 1999;105:9–12. doi: 10.1016/S0379-6779(99)00057-0. DOI
Hyun D., Park D., Shim Y., Chul S. Polyterthiophene p -conjugated by organomolybdenum complex. J. Organomet. Chem. 2000;608:133–138.
Burrell A.K., Chen J., Collis G.E., Grant D.K., Officer D.L., Too C.O., Wallace G.G. Functionalised poly(terthiophenes) Synth. Met. 2003;135–136:97–98. doi: 10.1016/S0379-6779(02)00865-2. DOI
Bäuerle P., Gaudl K.U. New functionalized polythiophenes. Synth. Met. 1991;43:3037–3042. doi: 10.1016/0379-6779(91)91233-Z. DOI
Özenler S., Kaya H., Elmaci N., Yildiz U.H. Transition-Metal-Free Direct C-H Arylation of Thiophene in Aqueous Media via Potassium Peroxymonosulfate. ChemistrySelect. 2019;4:8516–8521. doi: 10.1002/slct.201901508. DOI
Havinga E.E., van Horssen L.W., ten Hoeve W., Wynberg H., Meijer E.W. Self-doped water-soluble conducting polymers. Polym. Bull. 1987;18:277–281. doi: 10.1007/BF00255122. DOI
Dufil G., Parker D., Gerasimov J.Y., Nguyen T.Q., Berggren M., Stavrinidou E. Enzyme-assistedin vivopolymerisation of conjugated oligomer based conductors. J. Mater. Chem. B. 2020;8:4221–4227. doi: 10.1039/D0TB00212G. PubMed DOI
Volkov A.V., Singh S.K., Stavrinidou E., Gabrielsson R., Franco-Gonzalez J.F., Cruce A., Chen W.M., Simon D.T., Berggren M., Zozoulenko I.V. Spectroelectrochemistry and Nature of Charge Carriers in Self-Doped Conducting Polymer. Adv. Electron. Mater. 2017;3:1700096. doi: 10.1002/aelm.201700096. DOI
Stavrinidou E., Gabrielsson R., Nilsson K.P.R., Singh S.K., Franco-Gonzalez J.F., Volkov A.V., Jonsson M.P., Grimoldi A., Elgland M., Zozoulenko I.V., et al. In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proc. Natl. Acad. Sci. 2017;114:2807–2812. doi: 10.1073/pnas.1616456114. PubMed DOI PMC
Fujimoto N., Nakahodo T., Fujihara H. Synthesis of anionic sulfonate-functionalized conducting polymer nanotubes and selective confinement of cationic gold nanoparticles in their inner cavities via electrostatic interaction. Chem. Lett. 2013;42:1394–1396. doi: 10.1246/cl.130692. DOI
Tanaka S., Kumei M. A new polythiophene prepared by the electropolymerization of a branched sexithienyl. J. Chem. Soc. Chem. Commun. 1995:815. doi: 10.1039/c39950000815. DOI
Jeong S., Kong M.S., Kim J.H., Kim K.H., Cho Y., Han Y.S. Synthesis of a thiophene derivative and its effects as an additive on the performance of solar cells. Mol. Cryst. Liq. Cryst. 2019;678:121–130. doi: 10.1080/15421406.2019.1597538. DOI
Moriyama Y., Matsuda K., Tanifuji N., Irie S., Irie M. Electrochemical Cyclization/Cycloreversion Reactions of Diarylethenes. Org. Lett. 2005;7:3315–3318. doi: 10.1021/ol051149o. PubMed DOI
Bolduc A., Lachapelle V., Skene W.G. Snap Together Bonds for Amine Capturing—New Spectroscopic and Amperometric Sensors. Macromol. Symp. 2010;297:87–93. doi: 10.1002/masy.200900065. DOI
Apodaca D.C., Pernites R.B., Ponnapati R.R., Del Mundo F.R., Advincula R.C. Electropolymerized Molecularly Imprinted Polymer Films of a Bis-Terthiophene Dendron: Folic Acid Quartz Crystal Microbalance Sensing. ACS Appl. Mater. Interfaces. 2011;3:191–203. doi: 10.1021/am100805y. PubMed DOI
Park J.Y., Advincula R.C. Electroluminescent Behaviors of Electrochemically Cross-Linkable Poly(benzyl ether) Terthiophene Dendrimers. Macromol. Chem. Phys. 2016;217:1948–1954. doi: 10.1002/macp.201600222. DOI
Postigo A., Bulacio L., Sortino M. Photodynamic inactivation of oropharyngeal Candida strains. Phytomedicine. 2014;21:1424–1431. doi: 10.1016/j.phymed.2014.04.028. PubMed DOI
Postigo A., Funes M., Petenatti E., Bottai H., Pacciaroni A., Sortino M. Antifungal photosensitive activity of Porophyllum obscurum (Spreng.) DC.: Correlation of the chemical composition of the hexane extract with the bioactivity. Photodiagn. Photodyn. Ther. 2017;20:263–272. doi: 10.1016/j.pdpdt.2017.10.023. PubMed DOI
Zhou Z., Ergene C., Lee J.Y., Shirley D.J., Carone B.R., Caputo G.A., Palermo E.F. Sequence and Dispersity Are Determinants of Photodynamic Antibacterial Activity Exerted by Peptidomimetic Oligo(thiophene)s. ACS Appl. Mater. Interfaces. 2019;11:1896–1906. doi: 10.1021/acsami.8b19098. PubMed DOI
Luo Z.-G., Liu Z.-Y., Yang Z.-H. The synthesis and photoactivated cytotoxicity of novel 5-phenyl-3-(2,2′:5′,2″-terthien-5-yl)-4,5-dihydro-1H-pyrazoles. Chin. Chem. Lett. 2014;25:333–336. doi: 10.1016/j.cclet.2013.11.007. DOI
Chen X., Xu H., Wang Y., Hu S., Zhang Z., Zhang Y. Study on active oxygen quantum yield, insecticidal activities and stability of diphenylthiophene. Agric. Sci. China. 2007;6:458–465. doi: 10.1016/S1671-2927(07)60070-4. DOI
Huang Q., Yun X., Rao W., Xiao C. Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl. Pestic. Biochem. Physiol. 2017;137:1–7. doi: 10.1016/j.pestbp.2016.09.006. PubMed DOI
Zhang J., Ahmad S., Wang L.-Y., Han Q., Zhang J.-C., Luo Y.-P. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of Aedes aegypti larvae. Free Radic. Biol. Med. 2019;137:87–98. doi: 10.1016/j.freeradbiomed.2019.04.021. PubMed DOI
Huang Q.-C., Liu Y., Zhan T.-S., Deng Y.-F., He Y. Comparable Susceptibilities of Human 293 Cells and Insect Tn-5B1-4 Cells to Photoactivated α-Terthienyl. J. Agric. Food Chem. 2010;58:2637–2642. doi: 10.1021/jf902204q. PubMed DOI
Weidenhamer J.D., Montgomery T.M., Cipollini D.F., Weston P.A., Mohney B.K. Plant Density and Rhizosphere Chemistry: Does Marigold Root Exudate Composition Respond to Intra- and Interspecific Competition? J. Chem. Ecol. 2019;45:525–533. doi: 10.1007/s10886-019-01073-5. PubMed DOI
Zhao B., Huo J., Zhang J., Zhao B., Liu N., Dong J. Transketolase Is Identified as a Target of Herbicidal Substance α-Terthienyl by Proteomics. Toxins. 2018;10:41. doi: 10.3390/toxins10010041. PubMed DOI PMC
Nakano H., Cantrell C.L., Mamonov L.K., Osbrink W.L.A., Ross S.A. Echinopsacetylenes A and B, New Thiophenes from Echinops transiliensis. Org. Lett. 2011;13:6228–6231. doi: 10.1021/ol202680a. PubMed DOI
Marques M.M.M., Morais S.M., Vieira I.G.P., Vieira M.G.S., Silva A.R.A., de Almeida R.R., Guedes M.I.F. Larvicidal activity of Tagetes erecta against Aedes Aegypti. J. Am. Mosq. Control Assoc. 2011;27:156–158. doi: 10.2987/10-6056.1. PubMed DOI
Faizi S., Fayyaz S., Bano S., Yawar Iqbal E. Isolation of Nematicidal Compounds from Tagetes patula L. Yellow Flowers: Structure-Activity Relationship Studies against Cyst Nematode Heterodera zeae Infective Stage Larvae. J. Agric. Food Chem. 2011;59:9080–9093. doi: 10.1021/jf201611b. PubMed DOI
Liu Y., Man L., Wang X., Ying L. Research on the antimicrobial activity of α-triple thiophene in the marigold. Adv. J. Food Sci. Technol. 2015;7:936–939.
Chow C.-F. Two-photon induced emissive thiophene donor–acceptor systems as molecular probes for in vitro bio-imaging: synthesis, crystal structure, and spectroscopic properties. RSC Adv. 2013;3:18835–18843. doi: 10.1039/c3ra42914h. DOI
Guo Z., Hu T., Sun T., Li T., Chi H., Niu Q. A colorimetric and fluorometric oligothiophene-indenedione-based sensor for rapid and highly sensitive detection of cyanide in real samples and bioimaging in living cells. Dyes Pigments. 2019;163:667–674. doi: 10.1016/j.dyepig.2018.12.057. DOI
Guo Z., Niu Q., Yang Q., Li T., Chi H. Highly selective and sensitive dual-mode sensor for colorimetric and turn-on fluorescent detection of cyanide in water, agro-products and living cells. Anal. Chim. Acta. 2019;1065:113–123. doi: 10.1016/j.aca.2019.03.024. PubMed DOI
Yin P., Niu Q., Yang Q., Lan L., Li T. A new “naked-eye” colorimetric and ratiometric fluorescent sensor for imaging Hg2+ in living cells. Tetrahedron. 2019;75:130687. doi: 10.1016/j.tet.2019.130687. DOI
Liu Q., Mukherjee S., Huang R., Liu K., Liu T., Liu K., Miao R., Peng H., Fang Y., Liu Q. Naphthyl End-Capped Terthiophene-Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring. Chem. Asian J. 2019;14:2751–2758. doi: 10.1002/asia.201900622. PubMed DOI
Akhtar M.H., Hussain K.K., Gurudatt N.G., Chandra P., Shim Y.-B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018;116:108–115. doi: 10.1016/j.bios.2018.05.049. PubMed DOI
Preya U.H., Lee K.-T., Jang D.S., Kim N.-J., Lee J.-Y., Choi J.-H. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress. Chem. Biol. Interact. 2017;272:72–79. doi: 10.1016/j.cbi.2017.05.011. PubMed DOI
Jiang J., Ding C., Li L., Gao C., Jiang Y., Tan C., Hua R. Synthesis and antiproliferative activity of RITA and its analogs. Tetrahedron Lett. 2014;55:6635–6638. doi: 10.1016/j.tetlet.2014.10.074. DOI
Jin W., Shi Q., Hong C., Cheng Y., Ma Z., Qu H. Cytotoxic properties of thiophenes from Echinops grijissi Hance. Phytomedicine. 2008;15:768–774. doi: 10.1016/j.phymed.2007.10.007. PubMed DOI
Kim H.-Y., Kim H.M., Ryu B., Lee J.-S., Choi J.-H., Jang D.S. Constituents of the aerial parts of Eclipta prostrata and their cytotoxicity on human ovarian cancer cells in vitro. Arch. Pharmacal Res. 2015;38:1963–1969. doi: 10.1007/s12272-015-0599-2. PubMed DOI
Saito T.K., Seki M., Tabata H. Self-organized ZnO nanorod with photooxidative cell membrane perforation enables large-scale cell manipulation. Anal. Bioanal. Chem. 2008;391:2513–2519. doi: 10.1007/s00216-008-2226-2. PubMed DOI
Noh H.-B., Revin S.B., Shim Y.-B. Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode. Electrochim. Acta. 2014;139:315–322. doi: 10.1016/j.electacta.2014.07.044. DOI
Jamal R., Liu Y., Abdurexit A., Sawut N., Yan Y., Ali A., Abdiryim T. Electrochemical Sensor for Detection of Paracetamol Based on Pendent Nitrogen Heterocyclic Ring-Functionalized Polyterthiophene Derivatives. ChemistrySelect. 2021;6:4473–4481. doi: 10.1002/slct.202100065. DOI
Jo H., Her J., Lee H., Shim Y.-B., Ban C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta. 2017;165:442–448. doi: 10.1016/j.talanta.2016.12.091. PubMed DOI
Kim D.-M., Shim Y.-B. Disposable Amperometric Glycated Hemoglobin Sensor for the Finger Prick Blood Test. Anal. Chem. 2013;85:6536–6543. doi: 10.1021/ac401411y. PubMed DOI
Noh H.-B., Chandra P., Moon J.O., Shim Y.-B. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials. 2012;33:2600–2607. doi: 10.1016/j.biomaterials.2011.12.026. PubMed DOI
Das D., Kim D.-M., Park D.-S., Shim Y.-B. A Glucose Sensor Based on an Aminophenyl Boronic Acid Bonded Conducting Polymer. Electroanalysis. 2011;23:2036–2041. doi: 10.1002/elan.201100145. DOI
Lee W.-C., Gurudatt N.G., Park D.-S., Kim K.B., Choi C.S., Shim Y.-B. Microneedle array sensor for monitoring glucose in single cell using glucose oxidase-bonded polyterthiophene coated on AuZn oxide layer. Sens. Actuators B Chem. 2020;320:128416. doi: 10.1016/j.snb.2020.128416. DOI
Noh H.-B., Rahman M.A., Yang J.E., Shim Y.-B. Ag(I)-cysteamine complex based electrochemical stripping immunoassay: Ultrasensitive human IgG detection. Biosens. Bioelectron. 2011;26:4429–4435. doi: 10.1016/j.bios.2011.04.058. PubMed DOI
Chandra P., Koh W.C.A., Noh H.-B., Shim Y.-B. In vitro monitoring of i-NOS concentrations with an immunosensor: The inhibitory effect of endocrine disruptors on i-NOS release. Biosens. Bioelectron. 2012;32:278–282. doi: 10.1016/j.bios.2011.11.027. PubMed DOI
Koh W.-C.A., Chandra P., Kim D.-M., Shim Y.-B. Electropolymerized Self-Assembled Layer on Gold Nanoparticles: Detection of Inducible Nitric Oxide Synthase in Neuronal Cell Culture. Anal. Chem. 2011;83:6177–6183. doi: 10.1021/ac2006558. PubMed DOI
Kim M.-Y., Naveen M.H., Gurudatt N.G., Shim Y.-B. Detection of Nitric Oxide from Living Cells Using Polymeric Zinc Organic Framework-Derived Zinc Oxide Composite with Conducting Polymer. Small. 2017;13 doi: 10.1002/smll.201700502. PubMed DOI
Abdelwahab A.A., Shim Y.-B. Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sens. Actuators, B. 2014;201:51–58. doi: 10.1016/j.snb.2014.05.004. DOI
Noh H.-B., Gurudatt N.G., Won M.-S., Shim Y.-B. Analysis of Phthalate Esters in Mammalian Cell Culture Using a Microfluidic Channel Coupled with an Electrochemical Sensor. Anal. Chem. 2015;87:7069–7077. doi: 10.1021/acs.analchem.5b00358. PubMed DOI
Pernites R.B., Santos C.M., Maldonado M., Ponnapati R.R., Rodrigues D.F., Advincula R.C. Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chem. Mater. 2012;24:870–880. doi: 10.1021/cm2007044. DOI
Quigley A.F., Wagner K., Kita M., Gilmore K.J., Higgins M.J., Breukers R.D., Moulton S.E., Clark G.M., Penington A.J., Wallace G.G., et al. In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. Biomater. Sci. 2013;1:983–995. doi: 10.1039/c3bm60059a. PubMed DOI
Stevenson G., Moulton S.E., Innis P.C., Wallace G.G. Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. Synth. Met. 2010;160:1107–1114. doi: 10.1016/j.synthmet.2010.02.035. DOI
Margalith I., Suter C., Ballmer B., Schwarz P., Tiberi C., Sonati T., Falsig J., Nystroem S., Hammarstroem P., Aslund A., et al. Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates. J. Biol. Chem. 2012;287:18872–18887. doi: 10.1074/jbc.M112.355958. PubMed DOI PMC