Thiophene-Based Trimers and Their Bioapplications: An Overview

. 2021 Jun 16 ; 13 (12) : . [epub] 20210616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34208624

Grantová podpora
838171 H2020 Marie Skłodowska-Curie Actions
CZ.02.2.69/0.0/0.0/20_079/0017045 H2020 Marie Skłodowska-Curie Actions

Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.

Zobrazit více v PubMed

MacDiarmid A.G., Epstein A.J. Conducting Polymers: Past, Present and Future…. MRS Proc. 1993;328:133. doi: 10.1557/PROC-328-133. DOI

Mantione D., del Agua I., Sanchez-Sanchez A., Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers. 2017;9:354. doi: 10.3390/polym9080354. PubMed DOI PMC

Namsheer K., Rout C.S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659–5697. doi: 10.1039/D0RA07800J. PubMed DOI PMC

Malliaras G., Abidian M.R. Organic Bioelectronic Materials and Devices. Adv. Mater. 2015;27:7492. doi: 10.1002/adma.201504783. PubMed DOI PMC

Gómez I.J., Vázquez Sulleiro M., Mantione D., Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers. 2021;13:745. doi: 10.3390/polym13050745. PubMed DOI PMC

Döbbelin M., Marcilla R., Pozo-Gonzalo C., Mecerreyes D. Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. J. Mater. Chem. 2010;20:7613–7622. doi: 10.1039/c0jm00114g. DOI

Elschner A., Kirchmeyer S., Lovenich W., Merker U., Reuter K. PEDOT. CRC Press; Boca Raton, FL, USA: 2010.

Kaloni T.P., Giesbrecht P.K., Schreckenbach G., Freund M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017;29:10248–10283. doi: 10.1021/acs.chemmater.7b03035. DOI

Steinkopf W., Leitsmann R., Hofmann K.H. Studien in der Thiophenreihe. LVII. Über α-Polythienyle. Justus Liebig’s Ann. Chem. 1941;546:180–199. doi: 10.1002/jlac.19415460112. DOI

Buerle P., Becher J., Lau J., Mark P. Electronic Materials: The Oligomer Approach. Wiley-VCH Verlag GmbH; Weinheim, Germany: 1998. Sulfur-Containing Oligomers; pp. 105–233.

Zechmeister L., Sease J.W. A Blue-fluorescing Compound, Terthienyl, Isolated from Marigolds. J. Am. Chem. Soc. 1947;69:273–275. doi: 10.1021/ja01194a032. PubMed DOI

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Gau S.C., MacDiarmid A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977;39:1098–1101. doi: 10.1103/PhysRevLett.39.1098. DOI

Tamao K., Sumitani K., Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 1972;94:4374–4376. doi: 10.1021/ja00767a075. DOI

Yamamoto T., Sanechika K., Yamamoto A. Preparation of thermostable and electric-conducting poly(2,5-thienylene) J. Polym. Sci. Polym. Lett. Ed. 1980;18:9–12. doi: 10.1002/pol.1980.130180103. DOI

Lin J.W.-P., Dudek L.P. Synthesis and properties of poly(2,5-thienylene) J. Polym. Sci. Polym. Chem. Ed. 1980;18:2869–2873. doi: 10.1002/pol.1980.170180910. DOI

Cunningham D.D., Laguren-Davidson L., Mark H.B., Van Pham C., Zimmer H. Synthesis of oligomeric 2,5-thienylenes; their U.V. spectra and oxidation potentials. J. Chem. Soc. Chem. Commun. 1987:1021–1023. doi: 10.1039/c39870001021. DOI

Roncali J., Giffard M., Frère P., Jubault M., Gorgues A. Extensively conjugated tetrathiafulvalene (TTF) π-electron donors with oligothiophenes spacer groups. J. Chem. Soc. Chem. Commun. 1993:689–691. doi: 10.1039/C39930000689. DOI

Li Z.H., Wong M.S., Fukutani H., Tao Y. Full Emission Color Tuning in Bis-Dipolar Diphenylamino-Endcapped Oligoarylfluorenes. Chem. Mater. 2005;17:5032–5040. doi: 10.1021/cm051163v. DOI

Yin B., Jiang C., Wang Y., La M., Liu P., Deng W. Synthesis and electrochromic properties of oligothiophene derivatives. Synth. Met. 2010;160:432–435. doi: 10.1016/j.synthmet.2009.11.025. DOI

Li Y., Li Z., Wang C., Li H., Lu H., Xu B., Tian W. Novel low-bandgap oligothiophene-based donor-acceptor alternating conjugated copolymers: Synthesis, properties, and photovoltaic applications. J. Polym. Sci. Part A Polym. Chem. 2010;48:2765–2776. doi: 10.1002/pola.24025. DOI

Guan L., Wang J., Huang J., Jiang C., La M., Liu P., Deng W. Synthesis and Photovoltaic Properties of Donor–Acceptor Oligothiophene Derivatives Possessing Mesogenic Properties. Synth. Commun. 2011;41:3662–3670. doi: 10.1080/00397911.2010.519845. DOI

Yu J., Shen T.-L., Weng W.-H., Huang Y.-C., Huang C.-I., Su W.-F., Rwei S.-P., Ho K.-C., Wang L. Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells. Adv. Energy Mater. 2012;2:245–252. doi: 10.1002/aenm.201100581. DOI

Chen Y., Li C., Zhang P., Li Y., Yang X., Chen L., Tu Y. Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties. Org. Electron. 2013;14:1424–1434. doi: 10.1016/j.orgel.2013.02.038. DOI

Grübel M., Meister S., Schulze U., Raftopoulos K.N., Baumer F., Papadakis C.M., Nilges T., Rieger B. Synthesis of Diisocyanate-Containing Thiophenes and Their Use in PDMS-Based Segmented Polymers. Macromol. Chem. Phys. 2016;217:59–71. doi: 10.1002/macp.201500289. DOI

Crisp G.T. Palladium Mediated Formation of Bithiophenes. Synth. Commun. 1989;19:307–316. doi: 10.1080/00397918908050983. DOI

Chantarak S., Liu F., Emrick T., Russell T.P. Solvent-Assisted Orientation of Poly(3-hexylthiophene)-Functionalized CdSe Nanorods Under an Electric Field. Macromol. Chem. Phys. 2014;215:1647–1653. doi: 10.1002/macp.201400188. DOI

Kamal M.R., Al-taweel S.A., El-abadelah M.M., Abu Ajaj K.M. SYNTHESIS OF α-THIOPHENE OLIGOMERS VIA ORGANOTIN COMPOUNDS. Phosphorus. Sulfur. Silicon Relat. Elem. 1997;126:65–74. doi: 10.1080/10426509708043546. DOI

Ahn S., Yabumoto K., Jeong Y., Akagi K. Low bandgap poly(thienylenemethine) derivatives bearing terarylene moieties in the side chains. Polym. Chem. 2014;5:6977–6989. doi: 10.1039/C4PY00849A. DOI

Amna B., Siddiqi H.M., Hassan A., Ozturk T. Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems. RSC Adv. 2020;10:4322–4396. doi: 10.1039/C9RA09712K. PubMed DOI PMC

Lightowler S., Hird M. Monodisperse Aromatic Oligomers of Defined Structure and Large Size through Selective and Sequential Suzuki Palladium-Catalyzed Cross-Coupling Reactions. Chem. Mater. 2005;17:5538–5549. doi: 10.1021/cm0512068. DOI

Yu M., Lynch V., Pagenkopf B.L. Intramolecular Cyclopropanation of Glycals: Studies toward the Synthesis of Canadensolide, Sporothriolide, and Xylobovide. Org. Lett. 2001;3:2563–2566. doi: 10.1021/ol016239h. PubMed DOI

Hassan Omar O., Babudri F., Farinola G.M., Naso F., Operamolla A., Pedone A. Synthesis of d-glucose and l-phenylalanine substituted phenylene–thiophene oligomers. Tetrahedron. 2011;67:486–494. doi: 10.1016/j.tet.2010.11.004. DOI

Gronowitz S., Peters D. Convenient synthesis of various terheterocyclic compounds by Pd(0)-catalyzed coupling reactions. Heterocycles. 1990;30:645–658. doi: 10.3987/COM-89-S90. DOI

Melucci M., Barbarella G., Sotgiu G. Solvent-Free, Microwave-Assisted Synthesis of Thiophene Oligomers via Suzuki Coupling. J. Org. Chem. 2002;67:8877–8884. doi: 10.1021/jo026269d. PubMed DOI

Alesi S., Di Maria F., Melucci M., Macquarrie D.J., Luque R., Barbarella G. Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem. 2008;10:517. doi: 10.1039/b718776a. DOI

DiMaria F., Barbarella G. Facilitated synthesis of functional oligothiophenes for application in thin film devices and live cell imaging. J. Sulfur Chem. 2013;34:627–637. doi: 10.1080/17415993.2013.807810. DOI

Beny J.P., Dhawan S.N., Kagan J., Sundlass S. Synthesis of 3,2′:5′,3″-terthiophene and other terthiophenes by the thiophenecarboxaldehyde.fwdarw. ethynylthiophene.fwdarw. dithienylbutadiyne route. J. Org. Chem. 1982;47:2201–2204. doi: 10.1021/jo00132a047. DOI

Kagan J., Perrine M.D. A Side Reaction in the Synthesis of 2-Ethynylthiophene from 2-Thiophenecarboxaldehyde by the Corey Procedure and an Inproved Synthesis of 2,2′:5′,2″-Terthiophene. Heterocycles. 1986;24:365. doi: 10.3987/R-1986-02-0365. DOI

Carpita A., Rossi R., Veracini C.A. Synthesis and 13C nmr characterization of some π-excessive heteropolyaromatic compounds. Tetrahedron. 1985;41:1919–1929. doi: 10.1016/S0040-4020(01)96555-X. DOI

Chen Z., Wu P., Cong R., Xu N., Tan Y., Tan C., Jiang Y. Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging. ACS Appl. Mater. Interfaces. 2016;8:3567–3574. doi: 10.1021/acsami.5b06935. PubMed DOI

Press D.J., Gendy C., Pasalkar S., Schechtel S., Heyne B., Sutherland T.C. Synthesis of Tetrathia–Oligothiophene Macrocycles. ACS Omega. 2019;4:3405–3408. doi: 10.1021/acsomega.8b03444. PubMed DOI PMC

Zheng Q., Hua R., Jiang J., Zhang L. A general approach to arylated furans, pyrroles, and thiophenes. Tetrahedron. 2014;70:8252–8256. doi: 10.1016/j.tet.2014.09.025. DOI

Zhang G., Yi H., Chen H., Bian C., Liu C., Lei A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaO t Bu. Org. Lett. 2014;16:6156–6159. doi: 10.1021/ol503015b. PubMed DOI

Urselmann D., Antovic D., Müller T.J.J. Pseudo five-component synthesis of 2,5-di(hetero)arylthiophenes via a one-pot Sonogashira–Glaser cyclization sequence. Beilstein J. Org. Chem. 2011;7:1499–1503. doi: 10.3762/bjoc.7.174. PubMed DOI PMC

Wynberg H., Metselaar J. A Convenient Route To Polythiophenes. Synth. Commun. 1984;14:1–9. doi: 10.1080/00397918408060857. DOI

Merz A., Ellinger F. Convenient Synthesis of α-Terthienyl and α-Quinquethienyl via a Friedel-Crafts Route. Synthesis (Stuttgart) 1991;1991:462–464. doi: 10.1055/s-1991-26494. DOI

Asano T., Ito S., Saito N., Hatakeda K. A Simple Synthesis of 2,2′,5′,2″-Terthienyl. Heterocycles. 1977;6:317. doi: 10.3987/R-1977-03-0317. DOI

Nakayama J., Nakamura Y., Murabayashi S., Hoshino M. Preparation of a-Quinque- and a-Septithiophenes and Their Positional Isomers. Heterocycles. 1987;26:939. doi: 10.3987/R-1987-04-0939. DOI

Sørensen A.R., Overgaard L., Johannsen I. Reactivity of 2,5-dithienyl-pyrroles and thiophenes. Synth. Met. 1993;55:1626–1631. doi: 10.1016/0379-6779(93)90296-9. DOI

Zaitsev K.V., Lam K., Poleshchuk O.K., Kuz’mina L.G., Churakov A.V. Oligothienyl catenated germanes and silanes: synthesis, structure, and properties. Dalt. Trans. 2018;47:5431–5444. doi: 10.1039/C8DT00256H. PubMed DOI

Shridhar D.R., Jogibhukta M., Rao P.S., Handa V.K. An Improved Method for the Preparation of 2,5-Disubstituted Thiophenes. Synthesis. 1982;1982:1061–1062. doi: 10.1055/s-1982-30065. DOI

Ben-Haida A., Hodge P. Polymer-supported syntheses of thiophene-containing compounds using a new type of traceless linker. Org. Biomol. Chem. 2012;10:1754. doi: 10.1039/c2ob06714e. PubMed DOI

Leriche P., Aillerie D., Roquet S., Allain M., Cravino A., Frère P., Roncali J. 3D-conjugated systems based on oligothiophenes and phosphorus nodes. Org. Biomol. Chem. 2008;6:3202. doi: 10.1039/b806169f. PubMed DOI

Khan M.S., Al-Suti M.K., Shah H.H., Al-Humaimi S., Al-Battashi F.R., Bjernemose J.K., Male L., Raithby P.R., Zhang N., Köhler A., et al. Synthesis and characterization of platinum(ii) di-ynes and poly-ynes incorporating ethylenedioxythiophene (EDOT) spacers in the backbone. Dalt. Trans. 2011;40:10174. doi: 10.1039/c1dt11010a. PubMed DOI

Goto H. Electrochemical Polymerization in crystal-preparation of polybithiophene with crystal order. J. Polym. Sci. Part A Polym. Chem. 2012;50:622–628. doi: 10.1002/pola.25071. DOI

Li Y., Shu Q., Du Q., Dai Y., Zhao S., Zhang J., Li L., Chen K. Surface Modification for Improving the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Inorganic Lead Halide Perovskite Quantum Dots. ACS Appl. Mater. Interfaces. 2020;12:451–460. doi: 10.1021/acsami.9b14365. PubMed DOI

Chen K., Deng X., Dodekatos G., Tüysüz H. Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. J. Am. Chem. Soc. 2017;139:12267–12273. doi: 10.1021/jacs.7b06413. PubMed DOI

Goto H. Circular Dichroism of Bipolarons in a Chiroptically Active Conjugated Polymer. J. Macromol. Sci. Part B. 2016;55:471–482. doi: 10.1080/00222348.2016.1168560. DOI

Goto H. Vortex fibril structure and chiroptical electrochromic effect of optically active poly(3,4-ethylenedioxythiophene) (PEDOT*) prepared by chiral transcription electrochemical polymerisation in cholesteric liquid crystal. J. Mater. Chem. 2009;19:4914. doi: 10.1039/b818993e. DOI

Jaafari A., Ouzeau V., Ely M., Rodriguez F., Chane-ching K., Yassar A., Aaron J.J. Synthesis and optical properties of novel 1,3-propanedione bearing oligothiophene substituents. Synth. Met. 2004;147:183–189. doi: 10.1016/j.synthmet.2004.10.002. DOI

Zanardi C., Zanfrognini B., Morandi S., Terzi F., Pigani L., Pasquali L., Seeber R. Synthesis, spectroscopic and electrochemical characterization of Co(II)-terpyridine based metallopolymer. Electrochim. Acta. 2018;260:314–323. doi: 10.1016/j.electacta.2017.12.095. DOI

Invernale M.A., Pendergraph S.A., Yavuz M.S., Ombaba M., Sotzing G.A. Conjugated polymers atypically prepared in water. J. Polym. Sci. Part A Polym. Chem. 2010;48:2024–2031. doi: 10.1002/pola.23972. PubMed DOI PMC

Pardieu E., Saad A., Dallery L., Garnier F., Vedrine C., Hauquier F., Dalko P., Pernelle C. Synthesis and characterization of β-substituted 3,4-ethylenedioxy terthiophene monomers for conducting polymer applications. Synth. Met. 2013;171:23–31. doi: 10.1016/j.synthmet.2013.03.012. DOI

Ji L., Edkins R.M., Sewell L.J., Beeby A., Batsanov A.S., Fucke K., Drafz M., Howard J.A.K., Moutounet O., Ibersiene F., et al. Experimental and Theoretical Studies of Quadrupolar Oligothiophene-Cored Chromophores Containing Dimesitylboryl Moieties as π-Accepting End-Groups: Syntheses, Structures, Fluorescence, and One- and Two-Photon Absorption. Chem. Eur. J. 2014;20:13618–13635. doi: 10.1002/chem.201402273. PubMed DOI

Imae I., Imabayashi S., Komaguchi K., Tan Z., Ooyama Y., Harima Y. Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Adv. 2014;4:2501–2508. doi: 10.1039/C3RA44129F. DOI

Imae I., Korai K., Ooyama Y., Komaguchi K., Harima Y. Synthesis of novel dyes having EDOT-containing oligothiophenes as π-linker for panchromatic dye-sensitized solar cells. Synth. Met. 2015;207:65–71. doi: 10.1016/j.synthmet.2015.06.009. DOI

Shen L., Liu P., Liu C., Jiang Q., Xu J., Duan X., Du Y., Jiang F. Advances in Efficient Polymerization of Solid-State Trithiophenes for Organic Thermoelectric Thin-Film. ACS Appl. Polym. Mater. 2020;2:376–384. doi: 10.1021/acsapm.9b00842. DOI

Imae I., Sagawa H., Mashima T., Komaguchi K., Ooyama Y., Harima Y., Imae I., Sagawa H., Mashima T., Komaguchi K., et al. Synthesis of Soluble Polythiophene Partially Containing 3,4-Ethylenedioxythiophene and 3-Hexylthiophene by Polycondensation. Open J. Polym. Chem. 2014;04:83–93. doi: 10.4236/ojpchem.2014.43010. DOI

Turbiez M., Frère P., Allain M., Videlot C., Ackermann J., Roncali J. Design of Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated Oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) Building Block. Chem. Eur. J. 2005;11:3742–3752. doi: 10.1002/chem.200401058. PubMed DOI

Abdiryim T., Jamal R., Zhao C., Awut T., Nurulla I. Structure and properties of solid-state synthesized poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene) Synth. Met. 2010;160:325–332. doi: 10.1016/j.synthmet.2009.10.033. DOI

Borghese A., Geldhof G., Antoine L. Direct C–H arylation of 3-methoxythiophene catalyzed by Pd. Application to a more efficient synthesis of π-alkoxy-oligothiophene derivatives. Tetrahedron Lett. 2006;47:9249–9252. doi: 10.1016/j.tetlet.2006.10.130. DOI

Sease J.W., Zechmeister L. Chromatographic and Spectral Characteristics of Some Polythienyls. J. Am. Chem. Soc. 1947;69:270–273. doi: 10.1021/ja01194a031. PubMed DOI

Uhlenbroek J.H., Bijloo J.D. Investigations on nematicides: III. Polythienyls and related compounds. Recl. Trav. Chim. Pays-Bas. 1960;79:1181–1196. doi: 10.1002/recl.19600791113. DOI

Luo T.-M.H., Legoff E. Facile Synthesis of α-Polythienyls via 1,4-Diketones. J. Chin. Chem. Soc. 1992;39:325–332. doi: 10.1002/jccs.199200056. DOI

Tao T., Qian H.F., Zhang K., Geng J., Huang W. Functionalized oligothiophene-based heterocyclic aromatic fluorescent compounds with various donor-acceptor spacers and adjustable electronic properties: A theoretical and experimental perspective. Tetrahedron. 2013;69:7290–7299. doi: 10.1016/j.tet.2013.06.087. DOI

Tamao K., Kodama S., Nakajima I., Kumada M., Minato A., Suzuki K. Nickel-phosphine complex-catalyzed Grignard coupling-II. Grignard coupling of heterocyclic compounds. Tetrahedron. 1982;38:3347–3354. doi: 10.1016/0040-4020(82)80117-8. DOI

Roncali J., Gorgues A., Jubault M. Effects of Substitution of the Median Thiophene Ring on the Electrodeposition and Structure of Poly(terthienyls) Chem. Mater. 1993;5:1456–1464. doi: 10.1021/cm00034a015. DOI

Van Pham C., Burkhardt A., Shabana R., Cunningham D.D., Mark H.B., Zimmer H. A convenient synthesis of 2, 5-thienylene oligomers; some of their spectroscopic and electrochemical properties. Phosphorus. Sulfur. Silicon Relat. Elem. 1989;46:153–168. doi: 10.1080/10426508909412061. DOI

Gronowitz S., Hörnfeldt A.B., Galal A., Mark H.B. Synthesis of mixed oligomeric heteroarylenes containing furan, thiophene, and selenophene rings; their uv spectra and oxidation potentials. Phosphorus. Sulfur. Silicon Relat. Elem. 1989;42:171–176. doi: 10.1080/10426508908054892. DOI

Delabouglise D., Hmyene M., Horowitz G., Yassar A., Garnier F. Electrochemical coupling of dialkylated sexithiophene. Adv. Mater. 1992;4:107–110. doi: 10.1002/adma.19920040210. DOI

Bäuerle P., Pfau F., Schlupp H., Würthner F., Gaudl K.-U., Caro M.B., Fischer P. Synthesis and structural characterization of alkyl oligothiophenes—The first isomerically pure dialkylsexithiophene. J. Chem. Soc. Perkin Trans. 1993;3:489–494. doi: 10.1039/P29930000489. DOI

Ten Hoeve W., Wynberg H. Substituted 2 2′:5′,2″:5″,2‴5‴,2″″:5″″,2″‴5″‴2″″″:5″″″,2″″‴:5‴‴′:5‴‴″,2″″″″′,2′′′′′′′′′′-Undecithiophenes: The Longest Characterized Oligothiophenes. J. Am. Chem. Soc. 1991;113:5887–5889. doi: 10.1021/ja00015a067. DOI

Ferraris J.P., Newton M.D. Electrochemical and optical properties of thiophene-alkylheteroaromatic copolymers. Polymer. 1992;33:391–397. doi: 10.1016/0032-3861(92)90999-D. DOI

Andersson M.R., Pei Q., Hjertberg T., Inganäs O., Wennerström O., Österholm J.E. Synthesis of soluble poly(alkylthiophenes) which are thermally stable in the doped state. Synth. Met. 1993;55:1227–1231. doi: 10.1016/0379-6779(93)90229-P. DOI

Li W., Han Y., Li B., Liu C., Bo Z. Tris[tri(2-thienyl)phosphine]palladium as the catalyst precursor for thiophene-based Suzuki-Miyaura crosscoupling and polycondensation. J. Polym. Sci. Part A Polym. Chem. 2008;46:4556–4563. doi: 10.1002/pola.22792. DOI

Gohier F., Frère P., Roncali J. 3-Fluoro-4-hexylthiophene as a Building Block for Tuning the Electronic Properties of Conjugated Polythiophenes. J. Org. Chem. 2013;78:1497–1503. doi: 10.1021/jo302571u. PubMed DOI

Qiu Y., Mohin J., Tsai C.-H., Tristram-Nagle S., Gil R.R., Kowalewski T., Noonan K.J.T. Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene) Macromol. Rapid Commun. 2015;36:840–844. doi: 10.1002/marc.201500030. PubMed DOI

Gallazzi M.C., Castellani L., Marin R.A., Zerbi G. Regiodefined substituted poly(2,5-thienylene)s. J. Polym. Sci. Part A Polym. Chem. 1993;31:3339–3349. doi: 10.1002/pola.1993.080311322. DOI

Olinga T., Destri S., Porzio W., Selva A. Synthesis and characterization of 3-hexyl multi-substituted α,ω-diformyl-α-oligothiophenes (n = 3, 6, 8) Macromol. Chem. Phys. 1997;198:1091–1107. doi: 10.1002/macp.1997.021980413. DOI

Jones C.L., Higgins S.J. Symmetrical alkyl-substituted oligothiophenes as ligands: Complexation of the [(η-C5H5)Ru]+ moiety by hexyl-substituted ter-, quater- and quinque-thiophenes. J. Mater. Chem. 1999;9:865–874. doi: 10.1039/a809623f. DOI

Yang C., Abley M., Holdcroft S. Regioregular di(2′-(thienyl))furan- and di(2′-thienyl)benzene-based polymers: Steric and heavy-atom effects on the luminescence of conjugated systems. Macromolecules. 1999;32:6889–6891. doi: 10.1021/ma990937o. DOI

Kokubo H., Yamamoto T. Organometallic Syntheses of Head-to-Head Poly(3-hexylthiophene) and a Related Polymer With a Spacing Non-Substituted Thiophene Unit. Colloidal Solutions of the Polymers. Macromol. Chem. Phys. 2001;202:1031–1034. doi: 10.1002/1521-3935(20010401)202:7<1031::AID-MACP1031>3.0.CO;2-C. DOI

Diaz-Quijada G.A., Weinberg N., Holdcroft S., Mario Pinto B. Conformational analysis of oligothiophenes and oligo(thienyl)furans by use of a combined molecular dynamics/NMR spectroscopic protocol. J. Phys. Chem. A. 2002;106:1277–1285. doi: 10.1021/jp011784l. DOI

Saravanan C., Liu C.L., Chang Y.M., Lu J.D., Hsieh Y.J., Rwei S.P., Wang L. Fulleropyrrolidines bearing π-conjugated moiety for polymer solar cells: Contribution of the chromophoric substituent on C60 to the photocurrent. ACS Appl. Mater. Interfaces. 2012;4:6133–6141. doi: 10.1021/am301773t. PubMed DOI

XIA P.F., Lu J., Kwok C.H., Fukutani H., Wong M.S., Tao Y. Synthesis and properties of monodisperse multi-triarylamine-substituted oligothiophenes and 4,7-bis(2′-oligothienyl)-2,1,3-benzothiadiazoles for organic solar cell applications. J. Polym. Sci. Part A Polym. Chem. 2009;47:137–148. doi: 10.1002/pola.23131. DOI

Zhang H., Chen Z.E., Hu J., Hong Y. Novel metal-free organic dyes containing linear planar 11,12-dihydroindolo[2,3-a]carbazole donor for dye-sensitized solar cells: Effects of π spacer and alkyl chain. Dyes Pigments. 2019;164:213–221. doi: 10.1016/j.dyepig.2019.01.033. DOI

Ghosh T., Gopal A., Saeki A., Seki S., Nair V.C. P/n-Polarity of thiophene oligomers in photovoltaic cells: Role of molecular vs. supramolecular properties. Phys. Chem. Chem. Phys. 2015;17:10630–10639. doi: 10.1039/C5CP01044F. PubMed DOI

Gao X., Zhang Y., Fang C., Cai X., Hu B., Tu G. Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline. Org. Electron. 2017;46:276–282. doi: 10.1016/j.orgel.2017.04.002. DOI

Diaz-Quijada G.A., Weinberg N., Holdcroft S., Pinto B.M. Investigation of barriers to conformational interchange in oligothiophenes and oligo(thienyl)furans. J. Phys. Chem. A. 2002;106:1266–1276. doi: 10.1021/jp011783t. DOI

Luo T.-M.H., Chen L.-H. Synthesis of 2,5 -Bis(4-methyl-2-thienyl)thiophene and 2,5-Bis(4-methyl-2-thienyl)pyrrole. J. Chin. Chem. Soc. 1995;42:589–591. doi: 10.1002/jccs.199500079. DOI

Reddinger J.L., Reynolds J.R. Site Specific Electropolymerization To Form Transition-Metal-Containing, Electroactive Polythiophenes. Chem. Mater. 1998;10:1236–1243. doi: 10.1021/cm970574b. DOI

Belkessam F., Mohand A., Soulé J.-F., Elias A., Doucet H. Palladium-catalyzed 2,5-diheteroarylation of 2,5-dibromothiophene derivatives. Beilstein J. Org. Chem. 2014;10:2912–2919. doi: 10.3762/bjoc.10.309. PubMed DOI PMC

Araki K., Endo H., Masuda G., Ogawa T. Bridging Nanogap Electrodes by In Situ Electropolymerization of a Bis(terthiophenylphenanthroline)ruthenium Complex. Chem. Eur. J. 2004;10:3331–3340. doi: 10.1002/chem.200400063. PubMed DOI

Krömer J., Bäuerle P. Homologous series of regioregular alkylsubstituted oligothiophenes up to an 11-mer. Tetrahedron. 2001;57:3785–3794. doi: 10.1016/S0040-4020(01)00254-X. DOI

Wang C., Benz M.E., LeGoff E., Schindler J.L., Allbritton-Thomas J., Kannewurf C.R., Kanatzidis M.G. Studies on Conjugated Polymers: Preparation, Spectroscopic, and Charge-Transport Properties of a New Soluble Polythiophene Derivative: Poly(3′,4′dibutyl-2,2′:5′2″-terthiophene) Chem. Mater. 1994;6:401–411. doi: 10.1021/cm00040a012. DOI

Horne J.C., Blanchard G.J., LeGoff E. Rotational Isomerization Barriers of Thiophene Oligomers in the Ground and First Excited Electronic States. A 1H NMR and Fluorescence Lifetime Investigation. J. Am. Chem. Soc. 1995;117:9551–9558. doi: 10.1021/ja00142a025. DOI

Nakayama J., Ting Y., Sugihara Y., Ishii A. Synthesis of highly congested bi- and terthiophenes; 3,4,3′,′-tetra-tert-butylbithiophene and 3′,4′-di-tert-butyl-2,2′:5′,2″-terthiophene. Heterocycles. 1997;44:75–80. doi: 10.3987/COM-96-S11. DOI

Henderson P.T., Collard D.M. Thiophene: Alkylthiophene Copolymers from Substituted Dialkyloligothiophenes. Chem. Mater. 1995;7:1879–1889. doi: 10.1021/cm00058a019. DOI

Li J., Wang X., Du S., Tong J., Zhang P., Guo P., Yang C., Xia Y. A two-dimension medium band gap conjugated polymer based on 5,10-bis(alkylthien-2-yl)dithieno[3,2-d:3′,2′-d′]benzo[1,2-b:4,5-b′]dithiophene: Synthesis and photovoltaic application. J. Macromol. Sci. Part A Pure Appl. Chem. 2016;53:538–545. doi: 10.1080/10601325.2016.1201749. DOI

Huang W., Meng H., Yu W.L., Pei J., Chen Z.K., Lai Y.H. A novel series of p-N diblock light-emitting copolymers based on oligothiophenes and 1,4-Bis(oxadiazolyl)-2,5-dialkyloxybenzene. Macromolecules. 1999;32:118–126. doi: 10.1021/ma9813237. DOI

Meng H., Huang W. Novel photoluminescent polymers containing oligothiophene and m-phenylene-1,3,4-oxadiazole moieties: Synthesis and spectroscopic and electrochemical studies. J. Org. Chem. 2000;65:3894–3901. doi: 10.1021/jo991359c. PubMed DOI

Liu P., Shirota Y., Osada Y. A novel class of low-molecular-weight organic gels based on terthiophene. Polym. Adv. Technol. 2000;11:512–517. doi: 10.1002/1099-1581(200008/12)11:8/12<512::AID-PAT997>3.0.CO;2-L. DOI

Yan W., Zhang Q., Qin Q., Ye S., Lin Y., Liu Z., Bian Z., Chen Y., Huang C. Design, synthesis and photophysical properties of A-D-A-D-A small molecules for photovoltaic application. Dyes Pigments. 2015;121:99–108. doi: 10.1016/j.dyepig.2015.05.009. DOI

Pandolfi F., Rocco D., Mattiello L. Synthesis and characterization of new D-π-A and A-π-D-π-A type oligothiophene derivatives. Org. Biomol. Chem. 2019;17:3018–3025. doi: 10.1039/C8OB03077D. PubMed DOI

Jeon C.W., Kang S.H., Yun H.J., An T.K., Cha H., Park C.E., Kim Y.H. Synthesis and characterization of poly(dialkylterthiophene-bithiophene) and poly(dialkylterthiophene-thienothiophene) for organic thin film transistors and organic photovoltaic cells. Synth. Met. 2013;185–186:159–166. doi: 10.1016/j.synthmet.2013.10.007. DOI

Song H.G., Kim Y.J., Lee J.S., Kim Y.H., Park C.E., Kwon S.K. Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing. ACS Appl. Mater. Interfaces. 2016;8:34353–34359. doi: 10.1021/acsami.6b11297. PubMed DOI

Pokrop R., Verilhac J.M., Gasior A., Wielgus I., Zagorska M., Travers J.P., Pron A. Effect of molecular weight on electronic, electrochemical and spectroelectrochemical properties of poly(3,3″-dioctyl-2,2′5′,2″-terthiophene) J. Mater. Chem. 2006;16:3099–3106. doi: 10.1039/B605504D. DOI

Tang A., Zhan C., Yao J. Series of Quinoidal Methyl-Dioxocyano-Pyridine Based π-Extended Narrow-Bandgap Oligomers for Solution-Processed Small-Molecule Organic Solar Cells. Chem. Mater. 2015;27:4719–4730. doi: 10.1021/acs.chemmater.5b01350. DOI

Ie Y., Hirose T., Aso Y. Synthesis, properties, and FET performance of rectangular oligothiophene. J. Mater. Chem. 2009;19:8169–8175. doi: 10.1039/b912744e. DOI

Effenberger F., Grube G. Synthesis of Oligothienylfullerenes. Synthesis. 1998;1998:1372–1379. doi: 10.1055/s-1998-6090. DOI

Andreani F., Salatelli E., Lanzi M. Novel poly(3,3″- and 3′,4′-dialkyl-2,2′:5′,2″-terthiophene)s by chemical oxidative synthesis: Evidence for a new step towards the optimization of this process. Polymer. 1996;37:661–665. doi: 10.1016/0032-3861(96)83153-3. DOI

Amir E., Sivanandan K., Cochran J.E., Cowart J.J., Ku S.-Y., Seo J.H., Chabinyc M.L., Hawker C.J. Synthesis and characterization of soluble low-bandgap oligothiophene-[all]- S,S -dioxides-based conjugated oligomers and polymers. J. Polym. Sci. Part A Polym. Chem. 2011;49:1933–1941. doi: 10.1002/pola.24641. DOI

Speros J.C., Martinez H., Paulsen B.D., White S.P., Bonifas A.D., Goff P.C., Frisbie C.D., Hillmyer M.A. Effects of olefin content and alkyl chain placement on optoelectronic and morphological properties in poly(thienylene vinylenes) Macromolecules. 2013;46:5184–5194. doi: 10.1021/ma4009115. DOI

Ciofalo M., Ponterini G. Generation of singlet oxygen by 2,2′:5′,2″-terthiophene and some of its derivatives. J. Photochem. Photobiol. A Chem. 1994;83:1–6. doi: 10.1016/1010-6030(94)03802-3. DOI

Bricaud Q., Cravino A., Leriche P., Roncali J. Terthiophene-cyanovinylene π-conjugated polymers as donor material for organic solar cells. Synth. Met. 2009;159:2534–2538. doi: 10.1016/j.synthmet.2009.09.002. DOI

Lundin P.M., Giri G., Bao Z. A comparison of the properties of two structurally equivalent but regiochemically different mono-alkylated polybithiophenes prepared through AABB-type stille polycondensation. J. Polym. Sci. Part A Polym. Chem. 2013;51:908–915. doi: 10.1002/pola.26448. DOI

Somanathan N., Radhakrishnan S., Mukundan T., Schmidt H.W. Studies on 3-(2-Ethylhexyl)thiophene Polymers. Macromol. Mater. Eng. 2002;287:236–242. doi: 10.1002/1439-2054(20020401)287:4<236::AID-MAME236>3.0.CO;2-J. DOI

Wang H.J., Tzeng J.Y., Chou C.W., Huang C.Y., Lee R.H., Jeng R.J. Novel polythiophene derivatives functionalized with conjugated side-chain pendants comprising triphenylamine/carbazole moieties for photovoltaic cell applications. Polym. Chem. 2013;4:506–519. doi: 10.1039/C2PY20477K. DOI

Lee W.H., Son S.K., Kim K., Lee S.K., Shin W.S., Moon S.J., Kang I.N. Synthesis and characterization of new selenophene-based donor-acceptor low-bandgap polymers for organic photovoltaic cells. Macromolecules. 2012;45:1303–1312. doi: 10.1021/ma2020112. DOI

Andreani F., Angiolini L., Caretta D., Salatelli E. Synthesis and polymerization of 3,3″-di[(S)-(+)-2-methylbutyl]-2,2′:5′,2″-terthiophene: A new monomer precursor to chiral regioregular poly(thiophene) J. Mater. Chem. 1998;8:1109–1111. doi: 10.1039/a801593g. DOI

Barbarell G., Zambianchi M., Bongini A., Antolini L. Conformational chirality of oligothiophenes in the solid state. X-Ray structure of 3,4?,4?-trimethyl-2,2?:5?,2?-terthiophene. Adv. Mater. 1994;6:561–564. doi: 10.1002/adma.19940060706. DOI

Rossi R., Carpita A., Ciofalo M., Houben J.L. ChemInform Abstract: Synthesis and Characterization of 2,2′:5′,2′′-Terthiophene Derivatives of Possible Therapeutic Use. ChemInform. 2010;22 doi: 10.1002/chin.199118142. DOI

Martinez F., Neculqueo G. Synthesis and polymerization of 3-octylsubstituted thiophene, bithiophene and terthiophene. Int. J. Polym. Mater. Polym. Biomater. 1999;44:265–274. doi: 10.1080/00914039908009698. DOI

Wu C.G., Lai C.Y., Hsiao N.L. Molecular engineering leading to better processability of conjugated chromophores: The optical properties of new soluble copolymers containing alternative oligo-octylthiophene and oligo-methylene blocks. Eur. Polym. J. 2009;45:879–887. doi: 10.1016/j.eurpolymj.2008.11.037. DOI

Bidan G., De Nicola A., Enée V., Guillerez S. Synthesis and UV-Visible Properties of Soluble Regioregular Oligo(3-octylthiophenes), Monomer to Hexamer. Chem. Mater. 1998;10:1052–1058. doi: 10.1021/cm9706558. DOI

Leone A.K., Souther K.D., Vitek A.K., LaPointe A.M., Coates G.W., Zimmerman P.M., McNeil A.J. Mechanistic Insight into Thiophene Catalyst-Transfer Polymerization Mediated by Nickel Diimine Catalysts. Macromolecules. 2017;50:9121–9127. doi: 10.1021/acs.macromol.7b02271. DOI

Gondo S., Goto Y., Era M. Preparation of Regioregular Alkylthiophene Oligomers and Their Optical Properties. Mol. Cryst. Liq. Cryst. 2007;470:353–358. doi: 10.1080/15421400701503600. DOI

Beryozkina T., Senkovskyy V., Kaul E., Kiriy A. Kumada catalyst-transfer poly condensation of thiophene-based oligomers: Robustness of a chain-growth mechanism. Macromolecules. 2008;41:7817–7823. doi: 10.1021/ma801660x. DOI

Barbarella G., Bongini A., Zambianchi M. Regiochemistry and Conformation of Poly(3-hexylthiophene) via the Synthesis and the Spectroscopic Characterization of the Model Configurational Triads. Macromolecules. 1994;27:3039–3045. doi: 10.1021/ma00089a022. DOI

Li J.C., Lee S.H., Hahn Y.B., Kim K.J., Zong K., Lee Y.S. Synthesis and characterization of triphenylamine-3-hexylthiophene oligomer hybrids: A triphenylamine core carrying three terthiophene branches and triphenylamine end-capped quaterthiophene. Synth. Met. 2008;158:150–156. doi: 10.1016/j.synthmet.2008.01.002. DOI

Corriu R.J.P., Masse J.P. Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J. Chem. Soc. Chem. Commun. 1972:144a. doi: 10.1039/c3972000144a. DOI

Higuchi H., Nakayama T., Koyama H., Ojima J., Wada T., Sasabe H. Synthesis and Properties of α,ω-Disubstituted Oligo(3-hexylthiophene)s and Oligothienoquinonoids in Head-to-head Orientation. Bull. Chem. Soc. Jpn. 1995;68:2363–2377. doi: 10.1246/bcsj.68.2363. DOI

Tanaka S., Tamba S., Tanaka D., Sugie A., Mori A. Synthesis of well-defined head-to-tail-type oligothiophenes by regioselective deprotonation of 3-substituted thiophenes and nickel-catalyzed cross-coupling reaction. J. Am. Chem. Soc. 2011;133:16734–16737. doi: 10.1021/ja205953g. PubMed DOI

Kim Y., Park H., Abdilla A., Yun H., Han J., Stein G.E., Hawker C.J., Kim B.J. Chain-Length-Dependent Self-Assembly Behaviors of Discrete Conjugated Oligo(3-hexylthiophene) Chem. Mater. 2020 doi: 10.1021/acs.chemmater.0c00869. DOI

Tanaka S., Tanaka D., Tatsuta G., Murakami K., Tamba S., Sugie A., Mori A. Concise Synthesis of Well-Defined Linear and Branched Oligothiophenes with Nickel-Catalyzed Regiocontrolled Cross-Coupling of 3-Substituted Thiophenes by Catalytically Generated Magnesium Amide. Chem. Eur. J. 2013;19:1658–1665. doi: 10.1002/chem.201203331. PubMed DOI

Yagai S., Suzuki M., Lin X., Gushiken M., Noguchi T., Karatsu T., Kitamura A., Saeki A., Seki S., Kikkawa Y., et al. Supramolecular Engineering of Oligothiophene Nanorods without Insulators: Hierarchical Association of Rosettes and Photovoltaic Properties. Chem. Eur. J. 2014;20:16128–16137. doi: 10.1002/chem.201404428. PubMed DOI

Liu J.T., Hase H., Taylor S., Salzmann I., Forgione P. Approaching the Integer-Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross-Coupling. Angew. Chem. Int. Ed. 2020;59:7146–7153. doi: 10.1002/anie.201914458. PubMed DOI

Collis G.E., Burrell A.K., Blandford E.J., Officer D.L. A modular procedure for the synthesis of functionalised β-substituted terthiophene monomers for conducting polymer applications. Tetrahedron. 2007;63:11141–11152. doi: 10.1016/j.tet.2007.08.022. DOI

Kagan J., Liu H. 3′-Vinyl-2,2′:5′,2″-terthiophene: Synthesis, polymerization and copolymerization with styrene. Synth. Met. 1996;82:75–81. doi: 10.1016/S0379-6779(97)80013-6. DOI

Inaoka S., Collard D.M. Chemical and electrochemical polymerization of 3-alkylthiophenes on self-assembled monolayers of oligothiophene-substituted alkylsilanes. Langmuir. 1999;15:3752–3758. doi: 10.1021/la981330o. DOI

Kim D.H., Kim J.-H., Kim T.H., Kang D.M., Kim Y.H., Shim Y.-B., Shin S.C. Polyterthiophene Appended by Organomolybdenum Sulfide Cluster: Electrochemical Synthesis and Electrochemical Properties of Poly[Mo2(μ-C5H5)2{μ-η2:η2-SC(R)C S[C4HS(C4H3S-2)2-2,5]}2]s. Chem. Mater. 2003;15:825–827. doi: 10.1021/cm025630+. DOI

Yamazaki T., Murata Y., Komatsu K., Furukawa K., Morita M., Maruyama N., Yamao T., Fujita S. Synthesis and electrolytic polymerization of the ethylenedioxy-substituted terthiophene-fullerene dyad. Org. Lett. 2004;6:4865–4868. doi: 10.1021/ol048081h. PubMed DOI

Volz W., Vob J. A mild and simple synthesis of benzo[c]thiophenes and 4,7-di-hydrobenzo[c]thiophenes. Synth. 1990;1990:670–674. doi: 10.1055/s-1990-26976. DOI

Manca P., Pilo M.I., Casu G., Gladiali S., Sanna G., Scanu R., Spano N., Zucca A., Zanardi C., Bagnis D., et al. A new terpyridine tethered polythiophene: Electrosynthesis and characterization. J. Polym. Sci. Part A Polym. Chem. 2011;49:3513–3523. doi: 10.1002/pola.24786. DOI

Han A., Bai J., Murata Y., Komatsu K. Synthesis and characterization of the fullerene-terthiophene dyads. Heteroat. Chem. 2011;22:72–78. doi: 10.1002/hc.20659. DOI

Mitsudo K., Sato H., Yamasaki A., Kamimoto N., Goto J., Mandai H., Suga S. Synthesis and Properties of Ethene-Bridged Terthiophenes. Org. Lett. 2015;17:4858–4861. doi: 10.1021/acs.orglett.5b02417. PubMed DOI

Sordello F., Minero C., Viscardi G., Quagliotto P. Highly Photoactive Polythiophenes Obtained by Electrochemical Synthesis from Bipyridine-Containing Terthiophenes. Energies. 2019;12:341. doi: 10.3390/en12030341. DOI

Quagliotto P., Prosperini S., Viscardi G. Improved Synthesis of a Terthiophene-Based Monomeric Ligand That Forms a Highly Active Polymer for the Carbon Dioxide Reduction. Lett. Org. Chem. 2017;14 doi: 10.2174/1570178614666170503122330. DOI

Kim D.H., Kang B.S., Lim S.M., Bark K.M., Kim B.G., Shiro M., Shim Y.B., Shin S.C. Polyterthiophene-bearing pendant organomolybdenum complexes: Electropolymerization of erythro-[Mo2(μ-C5H5)2(CO) 4{μ-η2:η2-C(R)≡C[C 4HS(C4H3S-2)2-2,5]}] J. Chem. Soc. Dalt. Trans. 1998:1893–1898. doi: 10.1039/a800390d. DOI

Cao Y., Wolf M.O., Patrick B.O. A terthiophene-containing alkynylplatinum terpyridine pacman complex: Controllable folding/unfolding modulated by weak intermolecular interactions. Inorg. Chem. 2013;52:5636–5638. doi: 10.1021/ic400338v. PubMed DOI

Kuchison A.M., Wolf M.O., Patrick B.O. Photophysical properties and electropolymerization of gold complexes of 3,3″-diethynyl-2,2′:5′,2″-terthiophene. Inorg. Chem. 2010;49:8802–8812. doi: 10.1021/ic100961w. PubMed DOI

Wagner P., Partridge A.C., Jolley K.W., Officer D.L. Facile synthesis of acetylene-substituted terthiophenes. Tetrahedron Lett. 2007;48:6245–6248. doi: 10.1016/j.tetlet.2007.07.032. DOI

Cheng H., Djukic B., Jenkins H.A., Gorelsky S.I., Lemaire M.T. Iron(II) complexes containing thiophene-substituted “bispicen” ligands—Spin-crossover, ligand rearrangements, and ferromagnetic interactions. Can. J. Chem. 2010;88:954–963. doi: 10.1139/V10-086. DOI

Xiao Z., Ye G., Liu Y., Chen S., Peng Q., Zuo Q., Ding L. Pushing Fullerene Absorption into the Near-IR Region by Conjugately Fusing Oligothiophenes. Angew. Chem. Int. Ed. 2012;51:9038–9041. doi: 10.1002/anie.201203981. PubMed DOI

Sharma G.D., Mikroyannidis J.A., Roy M.S., Thomas K.R.J., Ball R.J., Kurchania R. Dithienylthienothiadiazole-based organic dye containing two cyanoacrylic acid anchoring units for dye-sensitized solar cells. RSC Adv. 2012;2:11457. doi: 10.1039/c2ra21718j. DOI

Wang Z., Gao Z., Feng Y., Liu Y., Yang B., Liu D., Lv Y., Lu P., Ma Y. Highly π-extended polymers based on phenanthro-pyrazine: Synthesis, characterization, theoretical calculation and photovoltaic properties. Polymer. 2013;54:6191–6199. doi: 10.1016/j.polymer.2013.09.015. DOI

Schwiderski R.L., Rasmussen S.C. Synthesis and Characterization of Thieno[3,4- b ]pyrazine-Based Terthienyls: Tunable Precursors for Low Band Gap Conjugated Materials. J. Org. Chem. 2013;78:5453–5462. doi: 10.1021/jo400577q. PubMed DOI

Sen C.P., Shrestha R.G., Shrestha L.K., Ariga K., Valiyaveettil S. Low-Band-Gap BODIPY Conjugated Copolymers for Sensing Volatile Organic Compounds. Chem. Eur. J. 2015;21:17344–17354. doi: 10.1002/chem.201502939. PubMed DOI

Xu X., Wang C., Bäcke O., James D.I., Bini K., Olsson E., Andersson M.R., Fahlman M., Wang E. Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. Polym. Chem. 2015;6:4624–4633. doi: 10.1039/C5PY00394F. DOI

Abdulahi B.A., Li X., Mone M., Kiros B., Genene Z., Qiao S., Yang R., Wang E., Mammo W. Structural engineering of pyrrolo[3,4- f ]benzotriazole-5,7(2 H,6 H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12% J. Mater. Chem. A. 2019;7:19522–19530. doi: 10.1039/C9TA06385D. DOI

Wang W., Guo H., Jones R.A. Synthesis and electropolymerization of N-heterocyclic carbene complexes of Pd(ii) and Pt(ii) from an emissive imidazolium salt with a terthiophene backbone. Dalt. Trans. 2019;48:14440–14449. doi: 10.1039/C9DT03363G. PubMed DOI

Freese T., Lücke A.-L., Schmidt C.A.S., Polamo M., Nieger M., Namyslo J.C., Schmidt A. Anionic N-heterocyclic carbenes derived from sydnone imines such as molsidomine. Trapping reactions with selenium, palladium, and gold. Tetrahedron. 2017;73:5350–5357. doi: 10.1016/j.tet.2017.07.032. DOI

Mikroyannidis J.A.A., Tsagkournos D.V.V., Balraju P., Sharma G.D.D. Efficient bulk heterojunction solar cells using an alternating phenylenevinylene copolymer with dithenyl(thienothiadiazole) segments as donor and PCBM or modified PCBM as acceptor. Sol. Energy Mater. Sol. Cells. 2011;95:3025–3035. doi: 10.1016/j.solmat.2011.06.025. DOI

Yen W.-C., Pal B., Yang J.-S., Hung Y.-C., Lin S.-T., Chao C.-Y., Su W.-F. Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative. J. Polym. Sci. Part A Polym. Chem. 2009;47:5044–5056. doi: 10.1002/pola.23557. DOI

Lepeltier M., Lukoyanova O., Jacobson A., Jeeva S., Perepichka D.F. New azaborine-thiophene heteroacenes. Chem. Commun. 2010;46:7007. doi: 10.1039/c0cc01963a. PubMed DOI

Li P., Fenwick O., Yilmaz S., Breusov D., Caruana D.J., Allard S., Scherf U., Cacialli F. Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chem. Commun. 2011;47:8820. doi: 10.1039/c1cc12752g. PubMed DOI

Zoombelt A.P., Fonrodona M., Turbiez M.G.R., Wienk M.M., Janssen R.A.J.R.A.J. Synthesis and photovoltaic performance of a series of small band gap polymers. J. Mater. Chem. 2009;19:5336. doi: 10.1039/b821979f. DOI

Xia Y., Luo J., Deng X., Li X., Li D., Zhu X., Yang W., Cao Y. Novel Random Low-Band-Gap Fluorene-Based Copolymers for Deep Red/Near Infrared Light-Emitting Diodes and Bulk Heterojunction Photovoltaic Cells. Macromol. Chem. Phys. 2006;207:511–520. doi: 10.1002/macp.200500517. DOI

Huber J., Jung C., Mecking S. Nanoparticles of Low Optical Band Gap Conjugated Polymers. Macromolecules. 2012;45:7799–7805. doi: 10.1021/ma3013459. DOI

Jeong J., Kumar R.S., Naveen M., Son Y.-A. Synthesis and characterization of triphenylamine-based polymers and their application towards solid-state electrochromic cells. RSC Adv. 2016;6:78984–78993. doi: 10.1039/C6RA12112H. DOI

Zoombelt A.P., Leenen M.A.M., Fonrodona M., Nicolas Y., Wienk M.M., Janssen R.A.J. The influence of side chains on solubility and photovoltaic performance of dithiophene–thienopyrazine small band gap copolymers. Polymer. 2009;50:4564–4570. doi: 10.1016/j.polymer.2009.07.028. DOI

Beaupré S., Breton A.-C., Dumas J., Leclerc M. Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chem. Mater. 2009;21:1504–1513. doi: 10.1021/cm802941e. DOI

Lai Y.-Y., Cheng Y.-J., Chen C.-H., Cheng S.-W., Cao F.-Y., Hsu C.-S. Synthesis, photophysical and photovoltaic properties of a new class of two-dimensional conjugated polymers containing donor–acceptor chromophores as pendant groups. Polym. Chem. 2013;4:3333. doi: 10.1039/c3py00168g. DOI

Cimrová V., Kmínek I., Pavlačková P., Výprachtický D., Cimrova V., Kminek I., Pavlackova P., Vyprachticky D. Low-bandgap donor-acceptor copolymers with 4,6-bis(3′-(2-ethylhexyl)thien-2′-yl)thieno[3,4-c][1,2,5]thiadiazole: synthesis, optical, electrochemical, and photovoltaic properties. J. Polym. Sci. Part A Polym. Chem. 2011;49:3426–3436. doi: 10.1002/pola.24780. DOI

Arrechea-Marcos I., de Echegaray P., Mancheño M.J., Ruiz Delgado M.C., Ramos M.M., Quintana J.A., Villalvilla J.M., Díaz-García M.A., López Navarrete J.T., Ponce Ortiz R., et al. Molecular aggregation of naphthalimide organic semiconductors assisted by amphiphilic and lipophilic interactions: a joint theoretical and experimental study. Phys. Chem. Chem. Phys. 2017;19:6206–6215. doi: 10.1039/C6CP06819G. PubMed DOI

Hwang Y.-J., Kim F.S., Xin H., Jenekhe S.A. New Thienothiadiazole-Based Conjugated Copolymers for Electronics and Optoelectronics. Macromolecules. 2012;45:3732–3739. doi: 10.1021/ma3000797. DOI

Mondal R., Becerril H.A., Verploegen E., Kim D., Norton J.E., Ko S., Miyaki N., Lee S., Toney M.F., Brédas J.-L., et al. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. J. Mater. Chem. 2010;20:5823. doi: 10.1039/c0jm00903b. DOI

Verolet Q., Soleimanpour S., Fujisawa K., Dal Molin M., Sakai N., Matile S. Design and Synthesis of Mixed Oligomers with Thiophenes, Dithienothiophene S, S -Dioxides, Thieno[3,4]pyrazines and 2,1,3-Benzothiadiazoles: Flipper Screening for Mechanosensitive Systems. ChemistryOpen. 2015;4:264–267. doi: 10.1002/open.201402139. PubMed DOI PMC

Steinberger S., Mishra A., Reinold E., Mena-Osteritz E., Mueller H., Uhrich C., Pfeiffer M., Baeuerle P., Müller H., Uhrich C., et al. Synthesis and characterizations of red/near-IR absorbing A–D–A–D–A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. J. Mater. Chem. 2012;22:2701–2712. doi: 10.1039/C2JM13285K. DOI

Kmínek I., Výprachtický D., Kříž J., Dybal J.J., Cimrová V., Kminek I., Vyprachticky D., Kriz J., Dybal J.J., Cimrova V. Low-band gap copolymers containing thienothiadiazole units: Synthesis, optical, and electrochemical properties. J. Polym. Sci. Part A Polym. Chem. 2010;48:2743–2756. doi: 10.1002/pola.24022. DOI

Zotti G., Zecchin S., Schiavon G., Vercelli B., Berlin A. Novel polythiophene regular copolymers from 3′,4′-diamino- and 3′,4′-dinitro-terthiophenes. Electrochim. Acta. 2005;50:1469–1474. doi: 10.1016/j.electacta.2004.10.037. DOI

Soucy-Breau C., Eachern A.M., Leitch L.C., Arnason T., Morand P. Synthesis and characterization of alkyl-, alkenyl-, acyl- and nitrogen-substituted derivatives of the potent phototoxin α-terthiophene. J. Heterocycl. Chem. 1991;28:411–416. doi: 10.1002/jhet.5570280239. DOI

Smith Z.C., Meyer D.M., Simon M.G., Staii C., Shukla D., Thomas S.W. Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. Macromolecules. 2015;48:959–966. doi: 10.1021/ma502289n. DOI

Clarke T.M., Gordon K.C., Chan W.S., Phillips D.L., Wagner P., Officer D.L. Raman Spectroscopy of Short-Lived Terthiophene Radical Cations Generated by Photochemical and Chemical Oxidation. ChemPhysChem. 2006;7:1276–1285. doi: 10.1002/cphc.200500680. PubMed DOI

Mehenni H., Dao L.H.L.H., Mehenni H., Dao L.H.L.H. Synthesis and characterization of novel conducting homopolymers based on amino β-styryl terthiophene. Can. J. Chem. 2008;86:1010–1018. doi: 10.1139/v08-136. DOI

Tarkuc S., Unver E.K., Udum Y.A., Tanyeli C., Toppare L. The effect of changes in π-conjugated terthienyl systems using thienyl and ethylenedioxybenzene functionalized thieno[3,4-b]pyrazine precursors: Multicolored low band gap polymers. Electrochim. Acta. 2010;55:7254–7258. doi: 10.1016/j.electacta.2010.07.017. DOI

Zhang Q.T., Tour J.M. Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers. J. Am. Chem. Soc. 1998;120:5355–5362. doi: 10.1021/ja972373e. DOI

Gotz G., Scheib S., Klose R., Heinze J., Bauerle P. Synthesis and properties of a series of regioregularly amino-substituted oligo- and polythiophenes. Adv. Funct. Mater. 2002;12:723–728. doi: 10.1002/1616-3028(20021016)12:10<723::AID-ADFM723>3.0.CO;2-2. DOI

Peng Q., Liu X., Qin Y., Zhou D., Xu J. Thieno[3,4-b]pyrazine-based low bandgap photovoltaic copolymers: Turning the properties by different aza-heteroaromatic donors. J. Polym. Sci. Part A Polym. Chem. 2011;49:4458–4467. doi: 10.1002/pola.24887. DOI

Herland A., Nilsson K.P.R., Olsson J.D.M., Hammarstroem P., Konradsson P., Inganaes O. Synthesis of a Regioregular Zwitterionic Conjugated Oligoelectrolyte, Usable as an Optical Probe for Detection of Amyloid Fibril Formation at Acidic pH. J. Am. Chem. Soc. 2005;127:2317–2323. doi: 10.1021/ja045835e. PubMed DOI

Ju X., Kong L., Zhao J., Bai G. Synthesis and electrochemical capacitive performance of thieno[3,4-b]pyrazine-based Donor-Acceptor type copolymers used as supercapacitor electrode material. Electrochim. Acta. 2017;238:36–48. doi: 10.1016/j.electacta.2017.04.011. DOI

Zhang Q., Tour J.M. Low Optical Bandgap Polythiophenes by an Alternating Donor/Acceptor Repeat Unit Strategy. J. Am. Chem. Soc. 1997;119:5065–5066. doi: 10.1021/ja9640399. DOI

Schwiderski R.L., Rasmussen S.C. Side chain tuning of frontier orbitals in polymers of thieno[3,4-b]-pyrazine-based terthienyls. Synth. Met. 2014;193:58–63. doi: 10.1016/j.synthmet.2014.03.025. DOI

Vyprachticky D., Kminek I., Pavlackova P., Cimrova V. Syntheses of fluorene/carbazole-thienothiadiazole copolymers for organic photovoltaics. ECS Trans. 2011;33:111–118. doi: 10.1149/1.3553353. DOI

Karthik D., Kumar V., Justin Thomas K.R., Li C.-T., Ho K.-C. Synthesis and characterization of thieno[3,4-d]imidazole-based organic sensitizers for photoelectrochemical cells. Dyes Pigments. 2016;129:60–70. doi: 10.1016/j.dyepig.2016.02.009. DOI

Shen X., Chen S., Xiao Z., Zuo Q., Chen Y., Ding L. Synthesis of thienoselenadiazole-containing conjugated copolymers and their application in polymer solar cells. Polym. J. 2012;44:978–981. doi: 10.1038/pj.2012.33. DOI

Chen C.-L., Lin T.-P., Chen Y.-S., Sun S.-S. Probing receptor-anion interactions by ratiometric chemosensors containing pyrrolecarboxamide interacting sites. Eur. J. Org. Chem. 2007:3999–4010. doi: 10.1002/ejoc.200700294. DOI

Mangeney C., Lacroix J.-C., Chane-Ching K.I., Jouini M., Aeiyach S., Lacaze P.-C. Poly(3′,4′-[bis(N,N’-ethyloxamyl)]terthiophene): A new functionalized conductive polymer with tunable pendent ethyloxamyl substituents. Phys. Chem. Chem. Phys. 1999;1:2755–2760. doi: 10.1039/a808633h. DOI

Mangeney C., Lacroix J.-C., Chane-Ching K.I., Jouini M., Villain F., Ammar S., Jouini N., Lacaze P.-C. Conducting-polymer electrochemical switching as an easy means for control of the molecular properties of grafted transition metal complexes. Chem. Eur. J. 2001;7:5029–5040. doi: 10.1002/1521-3765(20011203)7:23<5029::AID-CHEM5029>3.0.CO;2-#. PubMed DOI

Mehenni H., Dao L.H. Towards the development of a direct electrochemical biodetector of avidin based on the poly(chloro amino-β-styryl terthiophene)-coated glassy carbon electrode. Aust. J. Chem. 2012;65:395–401. doi: 10.1071/CH11397. DOI

Mehenni H. Development of an avidin sensor based on the poly(methoxy amino-β-styryl terthiophene)-coated glassy carbon electrode. Can. J. Chem. 2012;90:271–277. doi: 10.1139/v11-160. DOI

Abdelwahab A.A., Kim D.-M., Halappa N.M., Shim Y.-B. A Selective Catalytic Oxidation of Ascorbic Acid at the Aminopyrimidyl Functionalized-Conductive Polymer Electrode. Electroanalysis. 2013;25:1178–1184. doi: 10.1002/elan.201200650. DOI

Park M.-O., Noh H.-B., Park D.-S., Yoon J.-H., Shim Y.-B. Long-life Heavy Metal Ions Sensor Based on Graphene Oxide-anchored Conducting Polymer. Electroanalysis. 2017;29:514–520. doi: 10.1002/elan.201600494. DOI

Singh R.P. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer. Analyst. 2011;136:1216–1221. doi: 10.1039/c0an00601g. PubMed DOI

Kim D.-M., Shim K.-B., Son J.I., Reddy S.S., Shim Y.-B. Spectroelectrochemical and electrochromic behaviors of newly synthesized poly[3′-(2-aminopyrimidyl)-2,2′:5′,2″-terthiophene] Electrochim. Acta. 2013;104:322–329. doi: 10.1016/j.electacta.2013.04.120. DOI

Chung S., Hwang B.-Y., Naveen M.H., Shim Y.-B. Detection of Rocuronium in Whole Blood Using a Lipid-Bonded Conducting Polymer and Porous Carbon Composite Electrode. Electroanalysis. 2018;30:1425–1431. doi: 10.1002/elan.201800102. DOI

Park M.-O., Seo K.-D., Shim Y.-B., Yoon J.-H., Park D.-S. Chromium(VI) sensor based on catalytic reduction using the nanoporous layer of poly(aminopyrimidyl- terthiophene) and AuNi composite. Sens. Actuators B Chem. 2019;301:127151. doi: 10.1016/j.snb.2019.127151. DOI

Naveen M.H., Noh H.-B., Al Hossain M.S., Kim J.H., Shim Y.-B. Facile potentiostatic preparation of functionalized polyterthiophene-anchored graphene oxide as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A Mater. Energy Sustain. 2015;3:5426–5433. doi: 10.1039/C4TA06774F. DOI

Herland A., Bjoerk P., Nilsson K.P.R., Olsson J.D.M., Asberg P., Konradsson P., Hammarstroem P., Inganaes O. Electroactive luminescent self-assembled bio-organic nanowires: Integration of semiconducting oligoelectrolytes within amyloidogenic proteins. Adv. Mater. 2005;17:1466–1471. doi: 10.1002/adma.200500183. DOI

Demanze F., Cornil J., Garnier F., Horowitz G., Valat P., Yassar A., Lazzaroni R., Brédas J.-L. Tuning of the Electronic and Optical Properties of Oligothiophenes via Cyano Substitution: A Joint Experimental and Theoretical Study. J. Phys. Chem. B. 1997;101:4553–4558. doi: 10.1021/jp970085z. DOI

Yassar A., Demanze F., Fichou D. Synthesis and electrical properties of cyano-substituted oligothiophenes towards n-type organic semiconductors. Opt. Mater. 1999;12:379–382. doi: 10.1016/S0925-3467(99)00044-0. DOI

Hapiot P., Demanze F., Yassar A., Garnier F. Molecular Engineering of Band Level Energies in Oligothiophenes, through Cyano-Substitutions. J. Phys. Chem. 1996;100:8397–8401. doi: 10.1021/jp953226a. DOI

Yassar A., Demanze F., Jaafari A., El Idrissi M., Coupry C. Cyano-Substituted Oligothiophenes: A New Approach to n-Type Organic Semiconductors. Adv. Funct. Mater. 2002;12:699–708. doi: 10.1002/1616-3028(20021016)12:10<699::AID-ADFM699>3.0.CO;2-S. DOI

Hsu D.-T., Lin C.-H. Synthesis of Benzo[c] and Naphtho[c]heterocycle Diesters and Dinitriles via Homoelongation. J. Org. Chem. 2009;74:9180–9187. doi: 10.1021/jo901754w. PubMed DOI

Demeter D., Allain M., Leriche P., Grosu I., Roncali J. Synthesis and electronic properties of terthienyls β-substituted by (thienyl)cyanovinylene groups. Tetrahedron Lett. 2010;51:4117–4120. doi: 10.1016/j.tetlet.2010.05.147. DOI

Schweiger L.F., Ryder K.S., Morris D.G., Glidle A., Cooper J.M. Strategies towards functionalised electronically conducting organic copolymers. J. Mater. Chem. 2000;10:107–114. doi: 10.1039/a904187g. DOI

Pozo-Gonzalo C., Khan T., McDouall J.J.W., Skabara P.J., Roberts D.M., Light M.E., Coles S.J., Hursthouse M.B., Neugebauer H., Cravino A., et al. Synthesis and electropolymerisation of 3′,4′-bis(alkylsulfanyl)terthiophenes and the significance of the fused dithiin ring in 2,5-dithienyl-3,4-ethylenedithiothiophene (DT-EDTT) J. Mater. Chem. 2002;12:500–510. doi: 10.1039/b109017h. DOI

Pozo-Gonzalo C., Roberts D.M.M., Skabara P.J.J. 3,4-Disubstituted terthiophene systems: Synthesis and electropolymerization. Synth. Met. 2001;119:115–116. doi: 10.1016/S0379-6779(00)01077-8. DOI

Amb C.M., Rasmussen S.C. Sterics versus Electronics: Regioselective Cross-Coupling of Polybrominated Thiophenes. Eur. J. Org. Chem. 2008;2008:801–804. doi: 10.1002/ejoc.200701148. DOI

Wang F., Gu H., Swager T.M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008;130:5392–5393. doi: 10.1021/ja710795k. PubMed DOI

Dong B., Li B., Cao Y., Meng X., Yan H., Ge S., Lu Y. Conjugated oligomers with thiophene and indole moieties: Synthesis, photoluminescence and electrochromic performances. Tetrahedron Lett. 2017;58:35–42. doi: 10.1016/j.tetlet.2016.11.090. DOI

Yamaguchi I., Nakahara T. Reactive polythiophenes with zincke salt structure: Synthesis, polymer reactions, and chemical properties. J. Polym. Sci. Part A Polym. Chem. 2012;50:3340–3349. doi: 10.1002/pola.26120. DOI

Schäferling M., Bäuerle P. Porphyrin-functionalized oligo- and polythiophenes. J. Mater. Chem. 2004;14:1132–1141. doi: 10.1039/B313296J. DOI

Bäuerle P., Scheib S. Molecular recognition of alkali-ions by crown-ether-functionalized poly(alkylthiophenes) Adv. Mater. 1993;5:848–853. doi: 10.1002/adma.19930051113. DOI

Quagliotto P., Barbero N., Barolo C., Buscaino R., Carfora P., Prosperini S., Viscardi G. Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes Pigments. 2017;137:468–479. doi: 10.1016/j.dyepig.2016.10.031. DOI

Sun C., Prosperini S., Quagliotto P., Viscardi G., Yoon S.S., Gobetto R., Nervi C. Electrocatalytic reduction of CO2 by thiophene-substituted rhenium(i) complexes and by their polymerized films. Dalt. Trans. 2016;45:14678–14688. doi: 10.1039/C5DT04491J. PubMed DOI

Vélez J.H., Díaz F.R., del Valle M.A., Bernède J.C., East G.A. Synthesis of 3′,4′-disubstituted terthiophenes. Characterization and electropolymerization. I. 3′,4′-dibromo-2,2′:5′,2″-terthiophene in photovoltaic display. J. Appl. Polym. Sci. 2006;102:5314–5321. doi: 10.1002/app.24865. DOI

Nagura K., Saito S., Yusa H., Yamawaki H., Fujihisa H., Sato H., Shimoikeda Y., Yamaguchi S. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 2013;135:10322–10325. doi: 10.1021/ja4055228. PubMed DOI

Rahimi A., Namyslo J.C., Drafz M.H.H., Halm J., Hübner E., Nieger M., Rautzenberg N., Schmidt A. Selective mono- to perarylations of tetrabromothiophene by a cyclobutene-1,2-diylbisimidazolium preligand. J. Org. Chem. 2011;76:7316–7325. doi: 10.1021/jo201317t. PubMed DOI

Tùng Đ.T., Tuân Đ.T., Rasool N., Villinger A., Reinke H., Fischer C., Langer P. Regioselective Palladium(0)-Catalyzed Cross-Coupling Reactions and Metal-Halide Exchange Reactions of Tetrabromothiophene: Optimization, Scope and Limitations. Adv. Synth. Catal. 2009;351:1595–1609. doi: 10.1002/adsc.200900044. DOI

Dang T.T., Rasool N., Dang T.T., Reinke H., Langer P. Synthesis of tetraarylthiophenes by regioselective Suzuki cross-coupling reactions of tetrabromothiophene. Tetrahedron Lett. 2007;48:845–847. doi: 10.1016/j.tetlet.2006.11.152. DOI

Lu K.-M., Li W.-M., Lin P.-Y., Liu K.-T., Liu C.-Y. Direct C-H Arylation as a Chemoselective Single-Step Access to π-Acceptor-π Type Building Blocks. Adv. Synth. Catal. 2017;359:3805–3817. doi: 10.1002/adsc.201700762. DOI

Bilik P., Tanious F., Kumar A., Wilson W.D., Boykin D.W., Colson P., Houssier C., Facompré M., Tardy C., Bailly C. Novel Dications with Unfused Aromatic Systems: Trithiophene and Trifuran Derivatives of Furimidazoline. ChemBioChem. 2001;2:559–569. doi: 10.1002/1439-7633(20010803)2:7/8<559::AID-CBIC559>3.0.CO;2-U. PubMed DOI

Mitsudo K., Shimohara S., Mizoguchi J., Mandai H., Suga S. Synthesis of nitrogen-bridged terthiophenes by tandem Buchwald-Hartwig coupling and their properties. Org. Lett. 2012;14:2702–2705. doi: 10.1021/ol300887t. PubMed DOI

Leitner T.D., Vogt A., Popović D., Mena-Osteritz E., Walzer K., Pfeiffer M., Bäuerle P. Influence of alkyl chain length in S,N-heteropentacenes on the performance of organic solar cells. Mater. Chem. Front. 2018;2:959–968. doi: 10.1039/C7QM00542C. DOI

Lee H., Jo H., Kim D., Biswas S., Sharma G.D., Ko J. The effect of acceptor end groups on the physical and photovoltaic properties of A-π-D-π-A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes Pigments. 2016;129:209–219. doi: 10.1016/j.dyepig.2016.02.029. DOI

Schroeder B.C., Kirkus M., Nielsen C.B., Ashraf R.S., McCulloch I. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics. Macromolecules. 2015;48:5557–5562. doi: 10.1021/acs.macromol.5b00941. DOI

Mishra A., Popovic D., Vogt A., Kast H., Leitner T., Walzer K., Pfeiffer M., Mena-Osteritz E., Bäuerle P. A-D-A-type S, N-Heteropentacenes: Next-Generation Molecular Donor Materials for Efficient Vacuum-Processed Organic Solar Cells. Adv. Mater. 2014;26:7217–7223. doi: 10.1002/adma.201402448. PubMed DOI

Kimura M., Sakai R., Sato S., Fukawa T., Ikehara T., Maeda R., Mihara T. Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers. Adv. Funct. Mater. 2012;22:469–476. doi: 10.1002/adfm.201101953. DOI

Bandini M., Pietrangelo A., Sinisi R., Umani-Ronchi A., Wolf M.O. New Electrochemically Generated Polymeric Pd Complexes as Heterogeneous Catalysts for Suzuki Cross-Coupling Reactions. Eur. J. Org. Chem. 2009;2009:3554–3561. doi: 10.1002/ejoc.200900306. DOI

SATAKE Y., ITO S., FUJIHARA H. Synthesis and Electropolymerization of Terthiophene-modified Gold and Palladium Nanoparticles: Metal Nanoparticle-Polythiophene Composites. J. Japan Soc. Colour Mater. 2005;78:157–163. doi: 10.4011/shikizai1937.78.157. DOI

Michalitsch R., Elkassmi A., Yassar A., Gamier F. A practical synthesis of functionalized alkyl-oligothiophenes for molecular self-assembly. J. Heterocycl. Chem. 2001;38:649–653. doi: 10.1002/jhet.5570380317. DOI

Strover L., Roux C., Malmström J., Pei Y., Williams D.E., Travas-Sejdic J. Switchable surfaces of electroactive polymer brushes grafted from polythiophene ATRP-macroinitiator. Synth. Met. 2012;162:381–390. doi: 10.1016/j.synthmet.2011.12.024. DOI

Foster E.L., De Leon A.C.C., Mangadlao J., Advincula R. Electropolymerized and polymer grafted superhydrophobic, superoleophilic, and hemi-wicking coatings. J. Mater. Chem. 2012;22:11025–11031. doi: 10.1039/c2jm31067h. DOI

Robitaille L., Leclerc M. Synthesis, Characterization, and Langmuir-Blodgett Films of Fluorinated Polythiophenes. Macromolecules. 1994;27:1847–1851. doi: 10.1021/ma00085a028. DOI

Crouch D.J., Sparrowe D., Heeney M., McCulloch I., Skabara P.J. Polyterthiophenes Incorporating 3,4-Difluorothiophene Units: Application in Organic Field-Effect Transistors. Macromol. Chem. Phys. 2010;211:2642–2648. doi: 10.1002/macp.201000363. DOI

Büchner W., Garreau R., Lemaire M., Roncali J., Garnier F. Poly(fhiorinated 3-alkyl thiophene) J. Electroanal. Chem. 1990;277:355–358. doi: 10.1016/0022-0728(90)85115-L. DOI

Facchetti A., Yoon M.H., Stern C.L., Hutchison G.R., Ratner M.A., Marks T.J. Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nTs; n = 2–6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. J. Am. Chem. Soc. 2004;126:13480–13501. doi: 10.1021/ja048988a. PubMed DOI

Le Y., Umemoto Y., Okabe M., Kusunoki T., Nakayama K.I., Pu Y.J., Kido J., Tada H., Aso Y. Electronegative oligothiophenes based on difluorodioxocyclopentene- annelated thiophenes: Synthesis, properties, and n-Type FET performances. Org. Lett. 2008;10:833–836. doi: 10.1021/ol7029678. PubMed DOI

Ie Y., Umemoto Y., Kaneda T., Aso Y. Electronegative oligothiophenes based on a hexafluorocyclopentene-annelated thiophene unit. Org. Lett. 2006;8:5381–5384. doi: 10.1021/ol062238j. PubMed DOI

Ie Y., Umemoto Y., Nitani M., Aso Y. Perfluoroalkyl-annelated conjugated systems toward n-type organic semiconductors. Pure Appl. Chem. 2008;80:589–597. doi: 10.1351/pac200880030589. DOI

Wu T., Boyer J.-C., Barker M., Wilson D., Branda N.R. A “Plug-and-Play” Method to Prepare Water-Soluble Photoresponsive Encapsulated Upconverting Nanoparticles Containing Hydrophobic Molecular Switches. Chem. Mater. 2013;25:2495–2502. doi: 10.1021/cm400802d. DOI

Gronowitz S., Svensson A. On the Ring-Opening of Some 3-Lithiobithienyls and 3′-Lithio-α-terthienyls. Isr. J. Chem. 1986;27:25–28. doi: 10.1002/ijch.198600004. DOI

Zhang Y., Gao X., Li J., Tu G. Highly selective palladium-catalyzed Stille coupling reaction toward chlorine-containing NIR electroluminescent polymers. J. Mater. Chem. C. 2015;3:7463–7468. doi: 10.1039/C5TC01013F. DOI

Imamura K., Hirayama D., Yoshimura H., Takimiya K., Aso Y., Otsubo T. Application of flash vacuum pyrolysis to the synthesis of sulfur-containing heteroaromatic systems. Tetrahedron Lett. 1999;40:2789–2792. doi: 10.1016/S0040-4039(99)00295-6. DOI

Higgins T.B., Mirkin C.A. Model Coordination Complexes for Designing Poly(terthiophene)/Rh(I) Hybrid Materials with Electrochemically Tunable Reactivities. Chem. Mater. 1998;10:1589–1595. doi: 10.1021/cm970765e. DOI

Awaji H., Nakahodo T., Fujihara H. Synthesis of heterosegment-functioned hybrid nanotubes of polythiophene and heterometallic nanoparticles by sequential template-based electropolymerization. Chem. Commun. 2011;47:3547–3549. doi: 10.1039/c0cc04235h. PubMed DOI

Ponnapati R., Felipe M.J., Advincula R. Electropolymerizable Terthiophene-Terminated Poly(aryl ether) Dendrimers with Naphthalene and Perylene Cores. Macromolecules. 2011;44:7530–7537. doi: 10.1021/ma201733a. DOI

Tajima T., Nishihama T., Miyake S., Takahashi N., Takaguchi Y. Synthesis and Properties of (Terthiophene) 4 –Poly(amidoamine)–C 60 Pentad. Bull. Chem. Soc. Jpn. 2015;88:736–745. doi: 10.1246/bcsj.20140283. DOI

Taniguchi N., Nakabayashi K., Harada T., Tajima N., Shizuma M., Fujiki M., Imai Y. Circularly Polarized Luminescence of Chiral Binaphthyl with Achiral Terthiophene Fluorophores. Chem. Lett. 2015;44:598–600. doi: 10.1246/cl.150011. DOI

Mantione D., Istif E., Dufil G., Vallan L., Parker D., Brochon C., Cloutet E., Hadziioannou G., Berggren M., Stavrinidou E., et al. Thiophene-Based Trimers for In Vivo Electronic Functionalization of Tissues. ACS Appl. Electron. Mater. 2020;2:acsaelm.0c00861. doi: 10.1021/acsaelm.0c00861. DOI

Ponnapati R., Felipe M.J., Park J.Y., Vargas J., Advincula R. Terthiophene-Jacketed Poly(benzyl ether) Dendrimers: Sonication Synthesis, Electropolymerization, and Polythiophene Film Formation. Macromolecules. 2010;43:10414–10421. doi: 10.1021/ma1017023. DOI

Melucci M., Dionigi C., Lanzani G., Viola I., Gigli G., Barbarella G. Shaping Thiophene Oligomers into Fluorescent Nanobeads Forming Two-Dimensionally Patterned Assemblies by the Capillary Effect. Macromolecules. 2005;38:10050–10054. doi: 10.1021/ma051602b. DOI

Mouffouk F., Brown S.J., Demetriou A.M., Higgins S.J., Nichols R.J., Rajapakse R.M.G., Reeman S. Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. J. Mater. Chem. 2005;15:1186–1196. doi: 10.1039/b413974g. DOI

Grande C.D., Tria M.C., Jiang G., Ponnapati R., Advincula R. Surface-Grafted Polymers from Electropolymerized Polythiophene RAFT Agent. Macromolecules. 2011;44:966–975. doi: 10.1021/ma102065u. DOI

Zanardi C., Scanu R., Pigani L., Pilo M.I., Sanna G., Seeber R., Spano N., Terzi F., Zucca A. Synthesis and electrochemical polymerisation of 3′-functionalised terthiophenes. Electrochemical and spectroelectrochemical characterisation. Electrochim. Acta. 2006;51:4859–4864. doi: 10.1016/j.electacta.2006.01.025. DOI

Saha S., Baker G.L. Surface-tethered conjugated polymers created via the grafting-from approach. J. Appl. Polym. Sci. 2015;132:41363/1–41363/9. doi: 10.1002/app.41363. DOI

Xu W.-C., Zhou Q., Ashendel C.L., Chang C.-T., Chang C.-J. Novel protein kinase C inhibitors: synthesis and PKC inhibition of β-substituted polythiophene derivatives. Bioorg. Med. Chem. Lett. 1999;9:2279–2282. doi: 10.1016/S0960-894X(99)00375-3. PubMed DOI

Spires J.B., Peng H., Williams D., Travas-Sejdic J. An improved terthiophene conducting polymer for DNA-sensing. Electrochim. Acta. 2011;58:134–141. doi: 10.1016/j.electacta.2011.09.016. DOI

Janeliunas D., Eelkema R., Nieto-Ortega B., Ramirez Aguilar F.J., Lopez Navarrete J.T., van der Mee L., Stuart M.C.A., Casado J., van Esch J.H. Designing new symmetrical facial oligothiophene amphiphiles. Org. Biomol. Chem. 2013;11:8435–8442. doi: 10.1039/c3ob41645c. PubMed DOI

van Rijn P., Savenije T.J., Stuart M.C.A., van Esch J.H. Amphiphilic conjugated thiophenes for self-assembling antenna systems in water. Chem. Commun. 2009:2163–2165. doi: 10.1039/b823268g. PubMed DOI

Liu C.-Y., Chong H., Lin H.-A., Yamashita Y., Zhang B., Huang K., Hashizume D., Yu H. Palladium-catalyzed direct C–H arylations of dioxythiophenes bearing reactive functional groups: a step-economical approach for functional π-conjugated oligoarenes. Org. Biomol. Chem. 2015;13:8505–8511. doi: 10.1039/C5OB00705D. PubMed DOI

Miller L.L., Yu Y. Synthesis of β-Methoxy, Methyl-Capped α-Oligothiophenes. J. Org. Chem. 1995;60:6813–6819. doi: 10.1021/jo00126a034. DOI

Torsi L., Tafuri A., Cioffi N., Gallazzi M.C., Sassella A., Sabbatini L., Zambonin P.G. Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens. Actuators B Chem. 2003;93:257–262. doi: 10.1016/S0925-4005(03)00172-2. DOI

Rodriguez-Alba E., Ortiz-Palacios J., Morales-Espinoza E.G., Vonlanthen M., Valderrama B.X., Rivera E. Synthesis, characterization and optical properties of novel oligothiophenes bearing pyrene units attached via well defined oligo(ethylene glycol) spacers. Synth. Met. 2015;206:92–105. doi: 10.1016/j.synthmet.2015.05.007. DOI

Rodriguez-Alba E., Ortiz-Palacios J., Vonlanthen M., Rojas-Montoya S.M., Porcu P., Ruiu A., Rivera E. Design of novel well-defined oligothiophenes bearing donor-acceptor groups (pyrene-porphyrin): Synthesis, characterization, optical properties and energy transfer. J. Mol. Struct. 2019;1183:28–36. doi: 10.1016/j.molstruc.2019.01.078. DOI

Zotti G., Marin R.A., Gallazzi M.C. Electrochemical Polymerization of Mixed Alkyl-AlkoxyBithiophenes and -terthiophenes. Substitution-Driven Polymerization from Thiophene Hexamers to Long-Chain Polymers. Chem. Mater. 1997;9:2945–2950. doi: 10.1021/cm970295o. DOI

Girotto E.M., Casalbore-Miceli G., Camaioni N., de Paoli M.A., Fichera A.M., Belobrzeckaja L., Gallazzi M.C. Effect of the synthesis temperature and the length of alkyl substituents on photoelectrical properties of polyterthiophenes. J. Mater. Chem. 2001;11:1072–1076. doi: 10.1039/b008479o. DOI

Arbizzani C., Gallazzi M.C., Mastragostino M., Rossi M., Soavi F. Capacitance and cycling stability of poly(alkoxythiophene) derivative electrodes. Electrochem. Commun. 2001;3:16–19. doi: 10.1016/S1388-2481(00)00139-9. DOI

Gambhir S., Wagner K., Officer D.L. Towards functionalized terthiophene-based polymers. Synth. Met. 2005;154:117–120. doi: 10.1016/j.synthmet.2005.07.030. DOI

Santos M.J.L., Girotto E.M., Nogueira A.F. Photoelectrochemical properties of poly(terthiophene) films modified with a fullerene derivative. Thin Solid Films. 2006;515:2644–2649. doi: 10.1016/j.tsf.2006.04.021. DOI

Wang C.Y., Tsekouras G., Wagner P., Gambhir S., Too C.O., Officer D., Wallace G.G. Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synth. Met. 2010;160:76–82. doi: 10.1016/j.synthmet.2009.10.001. DOI

Czichy M., Wagner P., Lapkowski M., Officer D.L. Effect of π-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C60. J. Electroanal. Chem. 2016;772:103–109. doi: 10.1016/j.jelechem.2016.04.009. DOI

Gallazzi M.C., Toscano F., Paganuzzi D., Bertarelli C., Farina A., Zotti G. Polythiophenes with unusual electrical and optical properties based on donor acceptor alternance strategy. Macromol. Chem. Phys. 2001;202:2074–2085. doi: 10.1002/1521-3935(20010601)202:10<2074::AID-MACP2074>3.0.CO;2-9. DOI

Mares D., Romagnoli C., Rossi R., Carpita A., Ciofalo M., Bruni A. Antifungal activity of some 2,2′:5′,2″-terthiophene derivatives. Mycoses. 1994;37:377–383. doi: 10.1111/myc.1994.37.9-10.377. PubMed DOI

Rossi R., Carpita A., Ciofalo M., Lippolis V. Selective and efficient syntheses of phototoxic 2,2′:5′,2″-terthiophene derivatives bearing a functional substituent in the 3′- or the 5-position. Tetrahedron. 1991;47:8443–8460. doi: 10.1016/S0040-4020(01)96185-X. DOI

Abdiryim T., Jamal R., Ubul A., Nurulla I. Solid-state synthesis of poly(3′,4′-dimethoxy-2,2′:5′,2″-terthiophene): Comparison with poly(terthiophene) and poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene) Molecules. 2012;17:8647–8660. doi: 10.3390/molecules17078647. PubMed DOI PMC

Yigit D., Aykan M., Guellue M. Substituent effect on supercapacitive performances of conducting polymer-based redox electrodes: Poly(3′,4′-bis(alkyloxy) 2,2’:5’,2’’-terthiophene) derivatives. J. Polym. Sci. Part A Polym. Chem. 2018;56:480–495. doi: 10.1002/pola.28927. DOI

Lisak G., Wagner K., Wagner P., Barnsley J.E., Gordon K.C., Bobacka J., Wallace G.G., Ivaska A., Officer D.L. A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synth. Met. 2016;219:101–108. doi: 10.1016/j.synthmet.2016.05.016. DOI

Van Rijn P., Janeliunas D., Brizard A.M., Stuart M.C.A., Koper G.J.M., Eelkema R., van Esch J.H. Self-assembly behaviour of conjugated terthiophene surfactants in water. New J. Chem. 2011;35:558–567. doi: 10.1039/C0NJ00760A. DOI

Umeda R., Awaji H., Nakahodo T., Fujihara H. Nanotube Composites Consisting of Metal Nanoparticles and Polythiophene from Electropolymerization of Terthiophene-Functionalized Metal (Au, Pd) Nanoparticles. J. Am. Chem. Soc. 2008;130:3240–3241. doi: 10.1021/ja7114212. PubMed DOI

Lee J.U., Huh J., Kim K.H., Park C., Jo W.H. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol) Carbon N. Y. 2007;45:1051–1057. doi: 10.1016/j.carbon.2006.12.017. DOI

Wang Y., Partridge A., Wu Y. Comparison of a carboxylated terthiophene surface with carboxymethylated dextran layer for surface plasmon resonance detection of progesterone. Anal. Biochem. 2016;508:46–49. doi: 10.1016/j.ab.2016.05.027. PubMed DOI

Wang Y., Partridge A., Wu Y. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta. 2019;198:350–357. doi: 10.1016/j.talanta.2019.02.035. PubMed DOI

Grant D.K., Jolley K.W., Officer D.L., Gordon K.C., Clarke T.M. Towards functionalized poly(terthiophenes): Regioselective synthesis of oligoether-substituted bis(styryl)sexithiophenes. Org. Biomol. Chem. 2005;3:2008–2015. doi: 10.1039/b502791h. PubMed DOI

Demeter D., Blanchard P., Allain M., Grosu I., Roncali J. Synthesis and Metal Cation Complexing Properties of Crown-Annelated Terthiophenes Containing 3,4-Ethylenedioxythiophene. J. Org. Chem. 2007;72:5285–5290. doi: 10.1021/jo070699s. PubMed DOI

Yamamoto T., Omote M., Miyazaki Y., Kashiwazaki A., Lee B.-L., Kanbara T., Osakada K., Inoue T., Kubota K. Poly(thiophene-2,5-diyl)s with a Crown Ethereal Subunit. Preparation, Optical Properties, and n-Doped State Stabilized against Air. Macromolecules. 1997;30:7158–7165. doi: 10.1021/ma9708104. DOI

Berlin A., Zotti G., Zecchin S., Schiavon G. EQCM analysis of the alkali metal ion coordination properties of novel poly(thiophene)s 3,4-functionalized with crown-ether moieties. Synth. Met. 2002;131:149–160. doi: 10.1016/S0379-6779(02)00176-5. DOI

Baeuerle P., Scheib S. Synthesis and characterization of thiophenes, oligothiophenes and polythiophenes with crown ether units in direct π-conjugation. Acta Polym. 1995;46:124–129. doi: 10.1002/actp.1995.010460204. DOI

Lukovskaya E.V., Bobyleva A.A., Fedorova O.A., Fedorov Y.V., Anisimov A.V., Didane Y., Brisset H., Fages F. Novel crown-containing 3-styryl derivatives of oligothiophenes: synthesis, structure, and optical and electrochemical characteristics. Russ. Chem. Bull. 2009;58:1509–1515. doi: 10.1007/s11172-009-0203-3. DOI

Reddinger J.L., Reynolds J.R. A Novel Polymeric Metallomacrocycle Sensor Capable of Dual-Ion Cocomplexation. Chem. Mater. 1998;10:3–5. doi: 10.1021/cm9705000. DOI

Goldoni F., Antolini L., Pourtois G., Schenning A.P.H.J., Janssen R.A.J., Lazzaroni R., Bredas J.-L., Meijer E.W. Effect of ion coordination on the conformational and electronic structure of 3,4-bis(alkylthio)thiophenes. Eur. J. Inorg. Chem. 2001:821–828. doi: 10.1002/1099-0682(200103)2001:3<821::AID-EJIC821>3.0.CO;2-A. DOI

Faye D., Duong T.H., Vieitez I., Gohier F.F., Brisset H., Frere P., Briand J.-F.J.-F., Leriche P., Bressy C., Frère P., et al. Electroactive polyacrylates bearing linear conjugated systems based on EDOT moieties. Polymer. 2017;117:17–24. doi: 10.1016/j.polymer.2017.04.015. DOI

Barbarella G., Zambianchi M., Di Toro R., Colonna M.J., Iarossi D., Goldoni F., Bongini A. Regioselective Oligomerization of 3-(Alkylsulfanyl)Thiophenes with Ferric Chloride. J. Org. Chem. 1996;61:8285–8292. doi: 10.1021/jo960982j. PubMed DOI

Rossi R., Ciofalo M., Carpita A., Ponterini G. Singlet-triplet intersystem crossing in 2,2’:5’,2’’-terthiophene and some of its derivatives. J. Photochem. Photobiol. A Chem. 1993;70:59–67. doi: 10.1016/1010-6030(93)80009-X. DOI

Spencer H.J., Skabara P.J., Giles M., McCulloch I., Coles S.J., Hursthouse M.B. The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT-EDOT copolymers. J. Mater. Chem. 2005;15:4783–4792. doi: 10.1039/b511075k. DOI

Skabara P.J., Serebryakov I.M., Roberts D.M., Perepichka I.F., Coles S.J., Hursthouse M.B. Novel Terthiophene and Bis(thienyl)furan Derivatives as Precursors to Highly Electroactive Polymers. J. Org. Chem. 1999;64:6418–6424. doi: 10.1021/jo990198+. DOI

Skabara P.J., Berridge R., Serebryakov I.M., Kanibolotsky A.L., Kanibolotskaya L., Gordeyev S., Perepichka I.F., Sariciftci N.S., Winder C. cFluorene functionalised sexithiophenes-utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. J. Mater. Chem. 2007;17:1055–1062. doi: 10.1039/B609858D. DOI

Berridge R., Skabara P.J., Pozo-Gonzalo C., Kanibolotsky A., Lohr J., McDouall J.J.W., McInnes E.J.L., Wolowska J., Winder C., Sariciftci N.S., et al. Incorporation of Fused Tetrathiafulvalenes (TTFs) into Polythiophene Architectures: Varying the Electroactive Dominance of the TTF Species in Hybrid Systems. J. Phys. Chem. B. 2006;110:3140–3152. doi: 10.1021/jp057256h. PubMed DOI

Skabara P.J., Roberts D.M., Serebryakov I.M., Pozo-Gonzalo C. The development of an electropolymerizable unit for TTF-thiophene fused monomers. Chem. Commun. 2000:1005–1006. doi: 10.1039/b001943g. DOI

Skabara P.J., Serebryakov I.M., Perepichka I.F., Sariciftci N.S., Neugebauer H., Cravino A. Toward Controlled Donor-Acceptor Interactions in Noncomposite Polymeric Materials: Synthesis and Characterization of a Novel Polythiophene Incorporating π-Conjugated 1,3-Dithiole-2-ylidenefluorene Units as Strong D-A Components. Macromolecules. 2001;34:2232–2241. doi: 10.1021/ma0015931. DOI

Berridge R., Wright S.P., Skabara P.J., Dyer A., Steckler T., Argun A.A., Reynolds J.R., Harrington R.W., Clegg W. Electrochromic properties of a fast switching, dual colour polythiophene bearing non-planar dithiinoquinoxaline units. J. Mater. Chem. 2007;17:225–231. doi: 10.1039/B613879A. DOI

Forgie J.C., Kanibolotsky A.L., Skabara P.J., Coles S.J., Hursthouse M.B., Harrington R.W., Clegg W. Electrochemical, Spectroelectrochemical, and Comparative Studies of Novel Organic Conjugated Monomers and Polymers Featuring the Redox-Active Unit Tetrathianaphthalene. Macromolecules. 2009;42:2570–2580. doi: 10.1021/ma900010n. DOI

Ie Y., Yoshimura A., Takeuchi D., Osakada K., Aso Y. Synthesis and properties of polymer having electronegative terthiophene pendants based on cyclopenta[c]thiophene. Chem. Lett. 2011;40:1039–1040. doi: 10.1246/cl.2011.1039. DOI

Endou M., Ie Y., Aso Y. Encapsulated oligothiophenes having electron-affinity characteristics. Chem. Commun. 2012;48:540–542. doi: 10.1039/C1CC14994F. PubMed DOI

Qian D., Ye L., Zhang M., Liang Y., Li L., Huang Y., Guo X., Zhang S., Tan Z., Hou J. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules. 2012;45:9611–9617. doi: 10.1021/ma301900h. DOI

Qian D., Ma W., Li Z., Guo X., Zhang S., Ye L., Ade H., Tan Z., Hou J. Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content. J. Am. Chem. Soc. 2013;135:8464–8467. doi: 10.1021/ja402971d. PubMed DOI

Bin H., Xiao L., Liu Y., Shen P., Li Y. Effects of donor unit and π-bridge on photovoltaic properties of D-A copolymers based on benzo[1,2-b:4,5-c’]-dithiophene-4,8-dione acceptor unit. J. Polym. Sci. Part A Polym. Chem. 2014;52:1929–1940. doi: 10.1002/pola.27209. DOI

Zhang G., Guo J., Zhang J., Li W., Wang X., Lu H., Qiu L. Benzodithiophenedione and diketopyrrolopyrrole based conjugated copolymers for organic thin-film transistors by structure modulation. Dyes Pigments. 2016;126:20–28. doi: 10.1016/j.dyepig.2015.10.047. DOI

Liu T., Meng D., Cai Y., Sun X., Li Y., Huo L., Liu F., Wang Z., Russell T.P., Sun Y. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Adv. Sci. 2016;3 doi: 10.1002/advs.201600117. PubMed DOI PMC

Huang X., Weng K., Huo L., Fan B., Yang C., Sun X., Sun Y. Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. J. Mater. Chem. C Mater. Opt. Electron. Devices. 2016;4:9052–9059. doi: 10.1039/C6TC02915A. DOI

Li Z., Weng K., Chen A., Sun X., Wei D., Yu M., Huo L., Sun Y. Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor-Acceptor-Based Copolymers. Macromol. Rapid Commun. 2018;39 doi: 10.1002/marc.201700547. PubMed DOI

Rehman T., Liu Z.-X., Lau T.-K., Yu Z., Shi M., Lu X., Li C.-Z., Chen H. Influence of Bridging Groups on the Photovoltaic Properties of Wide-Bandgap Poly(BDTT-alt-BDD)s. ACS Appl. Mater. Interfaces. 2019;11:1394–1401. doi: 10.1021/acsami.8b16628. PubMed DOI

Lopes Graca J.F., Chane-Ching K.I., Yassar A. A new polymer based on a conjugated terthiophene-β-diketone ligand: Electrochemical study and structural aspects. Electrochim. Acta. 2005;50:1475–1480. doi: 10.1016/j.electacta.2004.10.013. DOI

Fuse S., Asai Y., Sugiyama S., Matsumura K., Maitani M.M., Wada Y., Ogomi Y., Hayase S., Kaiho T., Takahashi T. Synthesis of EDOT-containing organic dyes via one-pot, four-component Suzuki–Miyaura coupling and the evaluation of their photovoltaic properties. Tetrahedron. 2014;70:8690–8695. doi: 10.1016/j.tet.2014.09.039. DOI

Istif E., Mantione D., Vallan L., Hadziioannou G., Brochon C., Cloutet E., Pavlopoulou E. Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers. ACS Appl. Mater. Interfaces. 2020;12:8695–8703. doi: 10.1021/acsami.9b21058. PubMed DOI

Wagner K., Crowe L.L., Wagner P., Gambhir S., Partridge A.C., Earles J.C., Clarke T.M., Gordon K.C., Officer D.L. Indanedione-Substituted Poly(terthiophene)s: Processable Conducting Polymers with Intramolecular Charge Transfer Interactions. Macromolecules. 2010;43:3817–3827. doi: 10.1021/ma902782x. DOI

Collis G.E., Burrell A.K., Scott S.M., Officer D.L. Toward Functionalized Conducting Polymers: Synthesis and Characterization of Novel β-(Styryl)terthiophenes. J. Org. Chem. 2003;68:8974–8983. doi: 10.1021/jo034855g. PubMed DOI

Collis G.E., Burrell A.K., Officer D.L. β-Terthiophene aldehyde and phosphonate: Key building blocks for the synthesis of functionalized conducting polymers. Tetrahedron Lett. 2001;42:8733–8735. doi: 10.1016/S0040-4039(01)01894-9. DOI

Liao Z., Wang Y., An Y., Tan Y., Meng X., Wu F., Chen L., Chen Y. Post-Treatment-Free Main Chain Donor and Side Chain Acceptor (D-s-A) Copolymer for Efficient Nonfullerene Solar Cells with a Small Voltage Loss. Macromol. Rapid Commun. 2018;39 doi: 10.1002/marc.201700706. PubMed DOI

Elmas S., Beelders W., Bradley S.J., Kroon R., Laufersky G., Andersson M., Nann T. Platinum Terpyridine Metallopolymer Electrode as Cost-Effective Replacement for Bulk Platinum Catalysts in Oxygen Reduction Reaction and Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2017;5:10206–10214. doi: 10.1021/acssuschemeng.7b02198. DOI

Lee T.-Y., Shim Y.-B., Shin S.C. Simple preparation of terthiophene-3′-carboxylic acid and characterization of its polymer. Synth. Met. 2002;126:105–110. doi: 10.1016/S0379-6779(01)00556-2. DOI

Zanoni M., Coleman S., Fraser K.J., Byrne R., Wagner K., Gambhir S., Officer D.L., Wallace G.G., Diamond D. Physicochemical study of spiropyran-terthiophene derivatives: Photochemistry and thermodynamics. Phys. Chem. Chem. Phys. 2012;14:9112–9120. doi: 10.1039/c2cp41137g. PubMed DOI

McTiernan C.D., Abbas S.A., Chahma M. Organic surface modification using stable conducting materials. New J. Chem. 2012;36:2106–2111. doi: 10.1039/c2nj40366h. DOI

Lee J.Y., Jeong E.-D., Ahn C.W., Lee J.-W. Bioactive conducting scaffolds: Active ester-functionalized polyterthiophene. Synth. Met. 2013;185–186:66–70. doi: 10.1016/j.synthmet.2013.09.044. DOI

Yassar A., Moustrou C., Youssoufi H.K., Samat A., Guglielmetti R., Garnier F. Synthesis and Characterization of Poly(thiophenes) Functionalized by Photochromic Spironaphthoxazine Groups. Macromolecules. 1995;28:4548–4553. doi: 10.1021/ma00117a025. DOI

Jang S.-Y., Sotzing G.A., Marquez M. Intrinsically Conducting Polymer Networks of Poly(thiophene) via Solid-State Oxidative Cross-Linking of a Poly(norbornylene) Containing Terthiophene Moieties. Macromolecules. 2002;35:7293–7300. doi: 10.1021/ma0202484. DOI

Destri S., Porzio W., Meinardi F., Tubino R., Salerno G. Novel Erbium-Substituted Oligothiophene Chelates for Infrared Emission. Macromolecules. 2003;36:273–275. doi: 10.1021/ma025590v. DOI

Destri S., Pasini M., Porzio W., Rizzo F., Dellepiane G., Ottonelli M., Musso G., Meinardi F., Veltri L. New erbium complexes emitting in infrared region based on oligothiophene and thiophenefluorene carboxylate. J. Lumin. 2007;127:601–610. doi: 10.1016/j.jlumin.2007.03.018. DOI

Pokrop R., Pamula K., Deja-Drogomirecka S., Zagorska M., Borysiuk J., Reiss P., Pron A. Electronic, electrochemical, and spectroelectrochemical properties of hybrid materials consisting of carboxylic acid derivatives of oligothiophene and CdSe semiconductor nanocrystals. J. Phys. Chem. C. 2009;113:3487–3493. doi: 10.1021/jp808351h. DOI

Zhang Y., Lu B., Dong L., Sun H., Hu D., Xing H., Duan X., Chen S., Xu J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta. 2016;220:122–129. doi: 10.1016/j.electacta.2016.10.100. DOI

Tiu B.D.B., Pernites R.B., Tiu S.B., Advincula R.C. Detection of aspartame via microsphere-patterned and molecularly imprinted polymer arrays. Colloids Surfaces, A Physicochem. Eng. Asp. 2016;495:149–158. doi: 10.1016/j.colsurfa.2016.01.038. DOI

Peng H., Zhang L., Spires J., Soeller C., Travas-Sejdic J. Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer. 2007;48:3413–3419. doi: 10.1016/j.polymer.2007.04.029. DOI

Spires J.B., Peng H., Williams D., Travas-Sejdic J. The solvent-induced collapse of a redox-active conducting polymer and the consequence on its DNA-sensing ability. J. Electroanal. Chem. 2011;658:1–9. doi: 10.1016/j.jelechem.2011.02.021. DOI

Bruns C.J., Herman D.J., Minuzzo J.B., Lehrman J.A., Stupp S.I. Rationalizing Molecular Design in the Electrodeposition of Anisotropic Lamellar Nanostructures. Chem. Mater. 2013;25:4330–4339. doi: 10.1021/cm402505p. DOI

Baeuerle P., Hiller M., Scheib S., Sokolowski M., Umbach E. Post-polymerization functionalization of conducting polymers. Novel poly(alkylthiophene)s substituted with easily replaceable activated ester groups. Adv. Mater. 1996;8:214–218. doi: 10.1002/adma.19960080305. DOI

Kim D.-M., Yoon J.-H., Won M.-S., Shim Y.-B. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. Electrochim. Acta. 2012;67:201–207. doi: 10.1016/j.electacta.2012.02.033. DOI

Beouch L., Boileau S., Chevrot C., Tran-Van F. Electropolymerization of hydrogen bond supramolecular associations between terthiophene-3-acetic acid and 4,4′-bipyridine. Polym. Int. 2017;66:1389–1394. doi: 10.1002/pi.5389. DOI

Badeva D., Tran-Van F., Beouch L., Chevrot C., Markova I., Racheva T., Froyer G. Embedding and electropolymerization of terthiophene derivatives in porous n-type silicon. Mater. Chem. Phys. 2012;133:592–598. doi: 10.1016/j.matchemphys.2012.01.126. DOI

Boopathi M., Won M.-S., Kim Y.H., Shin S.C., Shim Y.-B. Electrocatalytic Reduction of Molecular Oxygen Using a Poly(terthiophene carboxylic acid) Appended by 1,5-Diaminonaphthalene Copper Complex. J. Electrochem. Soc. 2002;149:E265–E271. doi: 10.1149/1.1482769. DOI

Destri S., Giovanella U., Fazio A., Porzio W., Gabriele B., Zotti G. A new soluble poly(bithiophene)-co-3,4-di(methoxycarbonyl)methyl thiophene for LED. Org. Electron. 2002;3:149–156. doi: 10.1016/S1566-1199(02)00052-6. DOI

Fazio A., Gabriele B., Salerno G., Destri S. Synthesis of 3,4-bis[(methoxycarbonyl)methylthiophene and bis-, ter- and pentathiophenes with alternating 3,4-bis[(methoxycarbonyl)methyl] substituted rings. Tetrahedron. 1999;55:485–502. doi: 10.1016/S0040-4020(98)01047-3. DOI

Atilgan N., Cihaner A., Oenal A.M. Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. React. Funct. Polym. 2010;70:244–250. doi: 10.1016/j.reactfunctpolym.2009.12.006. DOI

Taranekar P., Fulghum T., Baba A., Patton D., Advincula R. Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR. Langmuir. 2007;23:908–917. doi: 10.1021/la061820d. PubMed DOI

Allard S., Braun L., Brehmer M., Zentel R. Oligothiophenes for pattern formation by stamping. Macromol. Chem. Phys. 2003;204:68–75. doi: 10.1002/macp.200290056. DOI

Asil D., Cihaner A., Oenal A.M. Electropolymerization and ion sensitivity of chemiluminescent thienyl systems. Electrochim. Acta. 2009;54:6740–6746. doi: 10.1016/j.electacta.2009.06.053. DOI

Atilgan N., Algi F., Oenal A.M., Cihaner A. Synthesis and properties of a novel redox driven chemiluminescent material built on a terthienyl system. Tetrahedron. 2009;65:5776–5781. doi: 10.1016/j.tet.2009.05.019. DOI

Watson K.J., Wolfe P.S., Nguyen S.T., Zhu J., Mirkin C.A. Norbornenyl-Substituted Thiophenes and Terthiophenes: Novel Doubly Polymerizable Monomers. Macromolecules. 2000;33:4628–4633. doi: 10.1021/ma992035t. DOI

Higgins S.J., Mouffouk F., Brown S.J., Williams D.R., Cossins A.R. An electrogenerated polyterthiophene for binding and sensing polyadenosine-functionalised oligonucleotides. Sens. Actuators B Chem. 2007;122:253–258. doi: 10.1016/j.snb.2006.05.031. DOI

Gelmi A., Zanoni M., Higgins M.J., Gambhir S., Officer D.L., Diamond D., Wallace G.G. Optical switching of protein interactions on photosensitive-electroactive polymers measured by atomic force microscopy. J. Mater. Chem. B Mater. Biol. Med. 2013;1:2162–2168. doi: 10.1039/c3tb00463e. PubMed DOI

Saitou K., Nishiyabu R., Iyoda M., Kubo Y. Gold nanoparticle-templated assembly of oligothiophenes: Preparation and film properties. Tetrahedron. 2011;67:9685–9689. doi: 10.1016/j.tet.2011.10.032. DOI

Maione S., Fabregat G., del Valle L.J., Bendrea A.-D., Cianga L., Cianga I., Estrany F., Aleman C. Effect of the graft ratio on the properties of polythiophene-g-poly(ethylene glycol) J. Polym. Sci. Part B Polym. Phys. 2015;53:239–252. doi: 10.1002/polb.23617. DOI

Sakakibara K., Rosenau T. Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung. 2012;66:9–19. doi: 10.1515/HF.2011.137. DOI

Jiang G., Ponnapati R., Pernites R., Felipe M.J., Advincula R. Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP): Synthesis and Electropolymerization of Terthiophene-Functionalized Olefin Peripheral Dendrons. Macromolecules. 2010;43:10262–10274. doi: 10.1021/ma101746e. DOI

Nicoletta F.P., Chidichimo G., Cupelli D., De Filpo G., De Benedittis M., Gabriele B., Salerno G., Fazio A. Electrochromic polymer-dispersed liquid-crystal film: A new bifunctional device. Adv. Funct. Mater. 2005;15:995–999. doi: 10.1002/adfm.200400403. DOI

Asil D., Cihaner A., Algi F., Oenal A.M. A novel conducting polymer based on terthienyl system bearing strong electron-withdrawing substituents and its electrochromic device application. J. Electroanal. Chem. 2008;618:87–93. doi: 10.1016/j.jelechem.2008.02.027. DOI

McTiernan C.D., Chahma M. Synthesis and characterization of alanine functionalized oligo/polythiophenes. New J. Chem. 2010;34:1417–1423. doi: 10.1039/c0nj00016g. DOI

Kim D.-S., Ahn K.H. Fluorescence “turn-on” sensing of carboxylate anions with oligothiophene-based o-(carboxamido)trifluoroacetophenones. J. Org. Chem. 2008;73:6831–6834. doi: 10.1021/jo801178y. PubMed DOI

McTiernan C.D., Omri K., Chahma M. Chiral Conducting Surfaces via Electrochemical Oxidation of L-Leucine-Oligothiophenes. J. Org. Chem. 2010;75:6096–6103. doi: 10.1021/jo100722v. PubMed DOI

Chahma M., McTiernan C.D., Abbas S.A. Characterization of phenomena occurring at the interface of chiral conducting surfaces. New J. Chem. 2014;38:3379–3385. doi: 10.1039/C4NJ00489B. DOI

Kaewtong C., Niamsa N., Wanno B., Morakot N., Pulpoka B., Tuntulani T. Optical chemosensors for Hg2+ from terthiophene appended rhodamine derivatives: FRET based molecular and in situ hybrid gold nanoparticle sensors. New J. Chem. 2014;38:3831–3839. doi: 10.1039/C4NJ00412D. DOI

Guo H., Liu M., Han Y., Han S., Chen Y. Synthesis and characterization of S,N-heteroacenes by Bischler-Napieralski reaction. Chin. J. Polym. Sci. 2016;34:1319–1329. doi: 10.1007/s10118-016-1846-9. DOI

Guo X., Ortiz R.P., Zheng Y., Kim M.-G., Zhang S., Hu Y., Lu G., Facchetti A., Marks T.J. Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. J. Am. Chem. Soc. 2011;133:13685–13697. doi: 10.1021/ja205398u. PubMed DOI

Najari A., Beaupre S., Berrouard P., Zou Y., Pouliot J.-R., Lepage-Perusse C., Leclerc M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater. 2011;21:718–728. doi: 10.1002/adfm.201001771. DOI

Wen S., Cheng W., Li P., Yao S., Xu B., Li H., Gao Y., Wang Z., Tian W. Synthesis and Photovoltaic Properties of Thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor Copolymers. J. Polym. Sci. Part A Polym. Chem. 2012;50:3758–3766. doi: 10.1002/pola.26164. DOI

Zhang G., Fu Y., Xie Z., Zhang Q. Low bandgap polymers with benzo [1,2-b:4,5-b’] dithiophene and bisthiophene-dioxopyrrolothiophene units for photovoltaic applications. Polymer. 2011;52:415–421. doi: 10.1016/j.polymer.2010.11.022. DOI

Lu Y., Lei Y., Wu B., Xu X., Zhu F., Hu X., Ong B.S., Ng S.C. Synthesis and properties of benzo[c]-, pyrrolo[3,4-c]-, and thieno[3,4-c]-pyrrole-4,6-dione copolymers. New J. Chem. 2015;39:2642–2650. doi: 10.1039/C4NJ01810A. DOI

Zhang Z., Zhou Z., Hu Q., Liu F., Russell T.P., Zhu X. 1,3-Bis(thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Appl. Mater. Interfaces. 2017;9:6213–6219. doi: 10.1021/acsami.6b14572. PubMed DOI

Kim J., Lee W.-H., Park J.B., Hwang D.-H., Kang I.-N. Synthesis and characterization of the fluorinated thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor polymers for organic solar cells. Dyes Pigments. 2019;160:403–409. doi: 10.1016/j.dyepig.2018.08.022. DOI

Sonmez G., Meng H., Wudl F. Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-Infrared Applications. Chem. Mater. 2003;15:4923–4929. doi: 10.1021/cm034115o. DOI

Blanco R., Gomez R., Seoane C., Segura J.L., Mena-Osteritz E., Baeuerle P. An Ambipolar Peryleneamidine Monoimide-Fused Polythiophene with Narrow Band Gap. Org. Lett. 2007;9:2171–2174. doi: 10.1021/ol0706861. PubMed DOI

Raimundo J.-M., Blanchard P., Brisset H., Akoudad S., Roncali J. Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity. Chem. Commun. 2000:939–940. doi: 10.1039/b002369h. DOI

Vangeneugden D.L., Kiebooms R.H.L., Vanderzande D.J.M., Gelan J.M.J. V A general synthetic route towards soluble poly(1,3-dithienylisothianaphthene) derivatives. Synth. Met. 1999;101:120–121. doi: 10.1016/S0379-6779(98)01315-0. DOI

Vangeneugden D., Kiebooms R., Adriaensens P., Vanderzande D., Gelan J., Desmet J., Huyberechts G. “Formal” copolymers based on 1,3-dithienylisothianaphthene derivatives. Promising materials for electronic devices. Acta Polym. 1998;49:687–692. doi: 10.1002/(SICI)1521-4044(199812)49:12<687::AID-APOL687>3.0.CO;2-U. DOI

Kiebooms R., Adriaensens P., Vanderzande D., Gelan J., Swann M.J., Bloor D., Drury C.J., Brooke G.M. Poly(tetrafluorobenzo[c]thiophene). Structure Analysis of Oligomers and Model Compound Based on 1D and 2D NMR Spectroscopy. Macromolecules. 1996;29:5981–5989. doi: 10.1021/ma960311n. DOI

Yamamoto K., Ie Y., Nitani M., Tohnai N., Kakiuchi F., Zhang K., Pisula W., Asadi K., Blom P.W.M., Aso Y. Oligothiophene quinoids containing a benzo[c]thiophene unit for the stabilization of the quinoidal electronic structure. J. Mater. Chem. C Mater. Opt. Electron. Devices. 2018;6:7493–7500. doi: 10.1039/C8TC01802B. DOI

Kiebooms R., Hoogmartens I., Adriaensens P., Vanderzande D., Gelan J. Low-Band-Gap Conjugated Polymers. Improved Model Compounds for the Structural Analysis of Poly(isothianaphthene) Macromolecules. 1995;28:4961–4969. doi: 10.1021/ma00118a025. DOI

Hoogmartens I., Adriaensens P., Carleer R., Vanderzande D., Martens H., Gelan J. An investigation into the electronic structure of poly(isothianaphthene) Synth. Met. 1992;51:219–228. doi: 10.1016/0379-6779(92)90274-M. DOI

Kawabata K., Takeguchi M., Goto H. Optical Activity of Heteroaromatic Conjugated Polymer Films Prepared by Asymmetric Electrochemical Polymerization in Cholesteric Liquid Crystals: Structural Function for Chiral Induction. Macromolecules. 2013;46:2078–2091. doi: 10.1021/ma400302j. DOI

Musmanni S., Ferraris J.P. Preparation and characterization of conducting polymers based on 1,3-di(2-thienyl)benzo[c]thiophene. J. Chem. Soc. Chem. Commun. 1993:172–174. doi: 10.1039/c39930000172. DOI

D’Auria M., Guarnaccio A., Racioppi R., Santagata A., Teghil R. Synthesis and photophysical properties of some dithienylbenzo[c]thiophene derivatives. Heterocycles. 2015;91:313–331. doi: 10.3987/COM-14-13145. DOI

Baeuerle P., Goetz G., Emerle P., Port H. Synthesis and characterization of new annulated terheterocycles. Adv. Mater. 1992;4:564–568. doi: 10.1002/adma.19920040907. DOI

Lakshmikantham M.V., Lorcy D., Scordilis-Kelley C., Wu X.L., Parakka J.P., Metzger R.M., Cava M.P. Poly(naphtho[2,3-c]thiophene-alt-bithiophene): a novel low band gap polymer. Adv. Mater. 1993;5:723–726. doi: 10.1002/adma.19930051007. DOI

Qin Y., Kim J.Y., Frisbie C.D., Hillmyer M.A. Distannylated Isothianaphthene: A Versatile Building Block for Low Bandgap Conjugated Polymers. Macromolecules. 2008;41:5563–5570. doi: 10.1021/ma8011575. DOI

Clement J.A., Mohanakrishnan A.K. Synthesis and characterization of naphth-annelated thiophene analogs. Tetrahedron. 2010;66:2340–2350. doi: 10.1016/j.tet.2010.01.111. DOI

Raj M.R., Anandan S. Donor conjugated polymers-based on alkyl chain substituted oligobenzo[c]thiophene derivatives with well-balanced energy levels for bulk heterojunction solar cells. RSC Adv. 2013;3:14595–14608. doi: 10.1039/c3ra41518j. DOI

Lorcy D., Cava M.P. Poly(isothianaphthene-bithiophene): a new regularly structured polythiophene analog. Adv. Mater. 1992;4:562–564. doi: 10.1002/adma.19920040906. DOI

Wu Y., Jing Y., Guo X., Zhang S., Zhang M., Huo L., Hou J. A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polym. Chem. 2013;4:536–541. doi: 10.1039/C2PY20674A. DOI

Paulussen H., Vanderzande D., Gelan J. The synthesis of methoxy substituted model compounds for structural analysis of poly(isothianaphthene) derivatives. Synth. Met. 1995;69:569–570. doi: 10.1016/0379-6779(94)02572-G. DOI

Tuennermann M., Rehsies P., Floerke U., Bauer M. A Straightforward Synthesis to Novel 1,10-Phenanthrolines with Fused Thiophene Structure. Synlett. 2018;29:2638–2642. doi: 10.1055/s-0037-1611022. DOI

Karsten B.P., Viani L., Gierschner J., Cornil J., Janssen R.A.J. An Oligomer Study on Small Band Gap Polymers. J. Phys. Chem. A. 2008;112:10764–10773. doi: 10.1021/jp805817c. PubMed DOI

Perzon E., Wang X., Zhang F., Mammo W., Delgado J.L., de la Cruz P., Inganaes O., Langa F., Andersson M.R. Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. Synth. Met. 2005;154:53–56. doi: 10.1016/j.synthmet.2005.07.011. DOI

Mak C.S.K., Leung Q.Y., Chan W.K., Djurisic A.B. Optically tunable intramolecular charge transfer dyes for vacuum deposited bulk heterojunction solar cells. Nanotechnology. 2008;19:424008/1–424008/8. doi: 10.1088/0957-4484/19/42/424008. PubMed DOI

Petersen M.H., Gevorgyan S.A., Krebs F.C. Thermocleavable Low Band Gap Polymers and Solar Cells Therefrom with Remarkable Stability toward Oxygen. Macromolecules. 2008;41:8986–8994. doi: 10.1021/ma801932a. DOI

Yue W., Larsen-Olsen T.T., Hu X., Shi M., Chen H., Hinge M., Fojan P., Krebs F.C., Yu D. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers. J. Mater. Chem. A Mater. Energy Sustain. 2013;1:1785–1793. doi: 10.1039/C2TA00695B. DOI

Sonmez G., Sonmez H.B., Shen C.K.F., Jost R.W., Rubin Y., Wudl F. A Processable Green Polymeric Electrochromic. Macromolecules. 2005;38:669–675. doi: 10.1021/ma0484173. DOI

Keshtov M.L., Godovsky D.Y., Khokhlov A.R., Mizobe T., Fujita H., Goto E., Hiyoshi J., Nakamura S., Kawauchi S., Higashihara T., et al. Synthesis and photovoltaic properties of thieno[3,4-b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-d]imidazole-containing conjugated polymers. J. Polym. Sci. Part A Polym. Chem. 2015;53:1067–1075. doi: 10.1002/pola.27570. DOI

Zhang Y., Kong L., Du H., Zhao J., Xie Y. Three novel donor-acceptor type electrochromic polymers containing 2,3-bis(5-methylfuran-2-yl)thieno[3,4-b]pyrazine acceptor and different thiophene donors: Low-band-gap, neutral green-colored, fast-switching materials. J. Electroanal. Chem. 2018;830–831:7–19. doi: 10.1016/j.jelechem.2018.10.020. DOI

Mak C.S.K., Cheung W.K., Leung Q.Y., Chan W.K. Conjugated Copolymers Containing Low Bandgap Rhenium(I) Complexes. Macromol. Rapid Commun. 2010;31:875–882. doi: 10.1002/marc.200900890. PubMed DOI

Mak C.S.K., Leung Q.Y., Li C.H., Chan W.K. Tuning the electronic properties of conjugated polymer by tethering low-bandgap rhenium(I) complex on the main chain. J. Polym. Sci. Part A Polym. Chem. 2010;48:2311–2319. doi: 10.1002/pola.23996. DOI

Esmer E.N., Tarkuc S., Udum Y.A., Toppare L. Near infrared electrochromic polymers based on phenazine moieties. Mater. Chem. Phys. 2011;131:519–524. doi: 10.1016/j.matchemphys.2011.10.014. DOI

de Echegaray P., Mancheno M.J., Arrechea-Marcos I., Juarez R., Lopez-Espejo G., Lopez Navarrete J.T., Ramos M.M., Seoane C., Ortiz R.P., Segura J.L. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors. J. Org. Chem. 2016;81:11256–11267. doi: 10.1021/acs.joc.6b02214. PubMed DOI

Keshtov M.L., Kuklin S.A., Konstantinov I.O., Peregudov A.S., Muranov A.V., Khokhlov A.R. New monomer based on thienopyrazine with fluorocarbazole substituents as a promising building block for organic electronics. Dokl. Chem. 2017;472:25–29. doi: 10.1134/S0012500817020033. DOI

Sonmez G., Shen C.K.F., Rubin Y., Wudl F. The unusual effect of bandgap lowering by C60 on a conjugated polymer. Adv. Mater. 2005;17:897–900. doi: 10.1002/adma.200306494. DOI

Zhang L., Lo K.C., Chan W.K. A new route to the synthesis of near-infrared absorbing pyrazinopyrazine bridged dyes with intramolecular charge transfer character. Chem. Commun. 2014;50:4245–4247. doi: 10.1039/c4cc01084a. PubMed DOI

Mikroyannidis J.A., Tsagkournos D.V., Sharma S.S., Vijay Y.K., Sharma G.D. Synthesis and application of low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units for bulk heterojunction solar cells. J. Mater. Chem. 2011;21:4679–4688. doi: 10.1039/c0jm03436c. DOI

Shao J., Wang G., Wang K., Yang C., Wang M. Direct arylation polycondensation for efficient synthesis of narrow-bandgap alternating D–A copolymers consisting of naphthalene diimide as an acceptor. Polym. Chem. 2015;6:6836–6844. doi: 10.1039/C5PY00595G. DOI

Gao J., He D., Zhang W., Xiao Z., Zuo Q., Shi Z., Ding L. Synthesis, characterization and photovoltaic properties of conjugated copolymers based on 2-alkyl-thieno[3,4-b]imidazole. Synth. Met. 2012;162:1694–1700. doi: 10.1016/j.synthmet.2012.07.001. DOI

Shi Z., Neo W.T., Lin T.T., Zhou H., Xu J. Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. RSC Adv. 2015;5:96328–96335. doi: 10.1039/C5RA19956E. DOI

Lee G.B., Kim R., Cha H.-J., Park C.E., Kim J.H., Kim Y.-H. New donor-acceptor copolymer containing dialkoxy naphthalene and carbonylated thieno[3,4-b]thiophene for OTFT and OPV. Macromol. Res. 2014;22:569–573. doi: 10.1007/s13233-014-2068-z. DOI

Chen L., Cai S., Wang X., Chen Y. Novel Donor-Acceptor Copolymers Based on Dithienosilole and Ketone Modified Thieno[3,4-b]thiophene for Photovoltaic Application. Chin. J. Chem. 2013;31:1455–1462. doi: 10.1002/cjoc.201300562. DOI

Huang Y., Guo X., Liu F., Huo L., Chen Y., Russell T.P., Han C.C., Li Y., Hou J. Improving the Ordering and Photovoltaic Properties by Extending π-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure. Adv. Mater. 2012;24:3383–3389. doi: 10.1002/adma.201200995. PubMed DOI

Al-Taweel S.A., Al-Saraierh H.F. Synthesis of thiophene oligomers via organotin compounds. Phosphorus Sulfur Silicon Relat. Elem. 1999;155:47–57. doi: 10.1080/10426509908044969. DOI

Truong M.A., Fukuta S., Koganezawa T., Shoji Y., Ueda M., Higashihara T. Synthesis, characterization, and application to polymer solar cells of polythiophene derivatives with ester- or ketone-substituted phenyl side groups. J. Polym. Sci. Part A Polym. Chem. 2015;53:875–887. doi: 10.1002/pola.27513. DOI

Seol H., Shin S.C., Shim Y.-B. Trace analysis of Al (III) ions based on the redox current of a conducting polymer. Electroanalysis. 2004;16:2051–2057. doi: 10.1002/elan.200403058. DOI

Dragonetti C., Righetto S., Roberto D., Valore A., Benincori T., Sannicolo F., Angelis F., Fantacci S. Cationic cyclometallated iridium(III) complexes with substituted 1,10-phenanthrolines: The role of the cyclometallated moiety on this new class of complexes with interesting luminescent and second order non linear optical properties. J. Mater. Sci. Mater. Electron. 2009;20:460–464. doi: 10.1007/s10854-008-9670-9. DOI

Noh H.-B., Won M.-S., Hwang J., Kwon N.-H., Shin S.C., Shim Y.-B. Conjugated polymers and an iron complex as electrocatalytic materials for an enzyme-based biofuel cell. Biosens. Bioelectron. 2010;25:1735–1741. doi: 10.1016/j.bios.2009.12.020. PubMed DOI

Noh H.-B., Shim Y.-B. Catalytic activity of polymerized self-assembled artificial enzyme nanoparticles: Applications to microfluidic channel-glucose biofuel cells and sensors. J. Mater. Chem. A Mater. Energy Sustain. 2016;4:2720–2728. doi: 10.1039/C5TA08823B. DOI

Tovar J.D., Swager T.M. Cofacially constrained organic semiconductors. J. Polym. Sci. Part A Polym. Chem. 2003;41:3693–3702. doi: 10.1002/pola.10970. DOI

Mitschke U., Bauerle P. Synthesis, characterization, and electrogenerated chemiluminescence of phenyl-substituted, phenyl-annulated, and spirofluorenyl-bridged oligothiophenes. J. Chem. Soc. Perkin Trans. 1. 2001:740–753. doi: 10.1039/b006553f. DOI

Briehn C.A., Kirschbaum T., Baeuerle P. Polymer-Supported Synthesis of Regioregular Head-to-Tail-Coupled Oligo(3-arylthiophene)s Utilizing a Traceless Silyl Linker. J. Org. Chem. 2000;65:352–359. doi: 10.1021/jo991188b. PubMed DOI

Olejnik E., Herzog-Ronen C., Eichen Y., Ehrenfreund E. Recombination kinetics of polarons in films of alkylator-sensing co-polymers. Synth. Met. 2009;159:1024–1027. doi: 10.1016/j.synthmet.2009.01.026. DOI

Dinsdale D.R., Lough A.J., Lemaire M.T. Structure and magnetic properties of an unusual homoleptic iron(III) thiocyanate dimer. Dalt. Trans. 2015;44:11077–11082. doi: 10.1039/C5DT00743G. PubMed DOI

Zhao B., Liu D., Peng L., Li H., Shen P., Xiang N., Liu Y., Tan S. Effect of oxadiazole side chains based on alternating fluorene-thiophene copolymers for photovoltaic cells. Eur. Polym. J. 2009;45:2079–2086. doi: 10.1016/j.eurpolymj.2009.03.018. DOI

Huang M.H., Tian Z.F., Huang H. Synthesis and photovoltaic properties of poly(p-phenylenevinylene) derivatives modified by thiophene derivatives. Adv. Mater. Res. 2013;643:13–16. doi: 10.4028/www.scientific.net/AMR.643.13. DOI

Nagarjuna G., Yurt S., Jadhav K.G., Venkataraman D. Impact of Pendant 1,2,3-Triazole on the Synthesis and Properties of Thiophene-Based Polymers. Macromolecules. 2010;43:8045–8050. doi: 10.1021/ma101657e. DOI

Algi F., Cihaner A. A novel terthienyl based polymer electrochrome with peripheral BODIPY. Polymer. 2012;53:3469–3475. doi: 10.1016/j.polymer.2012.06.007. DOI

Clarke T.M., Gordon K.C., Wagner P., Officer D.L. Modulation of Electronic Properties in Neutral and Oxidized Oligothiophenes Substituted with Conjugated Polyaromatic Hydrocarbons. J. Phys. Chem. A. 2007;111:2385–2397. doi: 10.1021/jp066922r. PubMed DOI

Wagner P., Officer D.L. Structural and electronic properties of substituted terthiophenes. Synth. Met. 2005;154:325–328. doi: 10.1016/j.synthmet.2005.07.082. DOI

Chen D., Zhao Y., Zhong C., Yu G., Liu Y., Qin J. Two-dimensional copolymers with D-A type side chains for organic thin-film transistors: synthesis and properties. Polym. Chem. 2011;2:2842–2849. doi: 10.1039/c1py00331c. DOI

Clarke T.M., Gordon K.C., Officer D.L., Grant D.K. The effect of oxidation on the structure of styryl-substituted sexithiophenes: A resonance Raman spectroscopy and density functional theory study. J. Chem. Phys. 2006;124:164501/1–164501/11. doi: 10.1063/1.2185095. PubMed DOI

Grant D.K., Officer D.L. Towards processable polyether-functionalized poly(3′-styrylterthiophenes) Synth. Met. 2005;154:93–96. doi: 10.1016/j.synthmet.2005.07.016. DOI

Cutler C.A., Burrell A.K., Collis G.E., Dastoor P.C., Officer D.L., Too C.O., Wallace G.G. Photoelectrochemical cells based on polymers and copolymers from terthiophene and nitrostyrylterthiophene. Synth. Met. 2001;123:225–237. doi: 10.1016/S0379-6779(01)00294-6. DOI

Loire G., Schouteeten S., Andrioletti B., Prim D., Tranchier J.-P., Rose-Munch F., Rose E., Persoons A. Oligothiophene-substituted arenetricarbonylchromium complexes. Comptes Rendus Chim. 2003;6:223–230. doi: 10.1016/S1631-0748(03)00036-5. DOI

Kuo C.-Y., Huang Y.-C., Hsiow C.-Y., Yang Y.-W., Huang C.-I., Rwei S.-P., Wang H.-L., Wang L. Effect of Side-Chain Architecture on the Optical and Crystalline Properties of Two-Dimensional Polythiophenes. Macromolecules. 2013;46:5985–5997. doi: 10.1021/ma4007945. DOI

Mei S., Wu F., Huang Y., Zhao B., Tan S. Synthesis and photovoltaic properties of the copolymers based on 3-ethylrhodanine side group. Eur. Polym. J. 2015;67:31–39. doi: 10.1016/j.eurpolymj.2015.03.049. DOI

Chen J., Burrell A.K., Collis G.E., Officer D.L., Swiegers G.F., Too C.O., Wallace G.G. Preparation, characterization and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. Electrochim. Acta. 2002;47:2715–2724. doi: 10.1016/S0013-4686(02)00136-6. DOI

O’Sullivan T.J., Djukic B., Dube P.A., Lemaire M.T. A conducting metallopolymer featuring valence tautomerism. Chem. Commun. 2009:1903–1905. doi: 10.1039/b818952h. PubMed DOI

Manca P., Pilo M.I., Sanna G., Bergamini G., Ceroni P., Boaretto R., Caramori S. Heteroleptic Ru(II)-terpyridine complex and its metal-containing conducting polymer: Synthesis and characterization. Synth. Met. 2015;200:109–116. doi: 10.1016/j.synthmet.2015.01.002. DOI

Murata Y., Suzuki M., Komatsu K. Synthesis and electropolymerization of fullerene-terthiophene dyads. Org. Biomol. Chem. 2003;1:2624–2625. doi: 10.1039/B306206F. PubMed DOI

Frankevich V.E., Dashtiev M., Zenobi R., Kitagawa T., Lee Y., Murata Y., Yamazaki T., Gao Y., Komatsu K., Oliva J.M. MALDI-Fourier transform mass spectrometric and theoretical studies of donor-acceptor and donor-bridge-acceptor fullerenes. Phys. Chem. Chem. Phys. 2005;7:1036–1042. doi: 10.1039/B414349C. PubMed DOI

Manca P., Pilo M.I., Sanna G., Zucca A., Bergamini G., Ceroni P. Ru2+ complexes comprising terpyridine ligands appended with terthiophene chromophores: Energy transfer and energy reservoir effect. Chem. Commun. 2011;47:3413–3415. doi: 10.1039/c0cc04674d. PubMed DOI

Visy C., Lukkari J., Kankare J. Electrochemically Polymerized Terthiophene Derivatives Carrying Aromatic Substituents. Macromolecules. 1994;27:3322–3329. doi: 10.1021/ma00090a028. DOI

Amir E., Rozen S. Synthesis of [all]-S,S-Dioxide Oligothiophenes Using HOF⋅CH3CN. Angew. Chemie Int. Ed. 2005;44:7374–7378. doi: 10.1002/anie.200501681. PubMed DOI

Miller R.W., Dodge N.J., Dyer A.M., Fortner-Buczala E.M., Whalley A.C. A one-pot method for the preparation of 2,5-diarylthiophene-1-oxides from arylacetylenes. Tetrahedron Lett. 2016;57:1860–1862. doi: 10.1016/j.tetlet.2016.03.051. DOI

Tsai C.-H., Chirdon D.N., Maurer A.B., Bernhard S., Noonan K.J.T. Synthesis of Thiophene 1,1-Dioxides and Tuning Their Optoelectronic Properties. Org. Lett. 2013;15:5230–5233. doi: 10.1021/ol4024024. PubMed DOI

Barbarella G., Favaretto L., Sotgiu G., Zambianchi M., Arbizzani C., Bongini A., Mastragostino M. Controlling the Electronic Properties of Polythiophene through the Insertion of Nonaromatic Thienyl S, S -dioxide Units. Chem. Mater. 1999;11:2533–2541. doi: 10.1021/cm990245e. DOI

Leclerc N., Michaud A., Sirois K., Morin J.-F., Leclerc M. Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Adv. Funct. Mater. 2006;16:1694–1704. doi: 10.1002/adfm.200600171. DOI

Melucci M., Frère P., Allain M., Levillain E., Barbarella G., Roncali J. Molecular engineering of hybrid π-conjugated oligomers combining 3,4-ethylenedioxythiophene (EDOT) and thiophene-S,S-dioxide units. Tetrahedron. 2007;63:9774–9783. doi: 10.1016/j.tet.2007.07.006. DOI

Barbarella G., Favaretto L., Sotgiu G., Zambianchi M., Bongini A., Arbizzani C., Mastragostino M., Anni M., Gigli G., Cingolani R. Tuning Solid-State Photoluminescence Frequencies and Efficiencies of Oligomers Containing One Central Thiophene- S, S -dioxide Unit. J. Am. Chem. Soc. 2000;122:11971–11978. doi: 10.1021/ja002037p. DOI

Anni M., Gigli G., Paladini V., Cingolani R., Barbarella G., Favaretto L., Sotgiu G., Zambianchi M. Color engineering by modified oligothiophene blends. Appl. Phys. Lett. 2000;77:2458–2460. doi: 10.1063/1.1314886. DOI

Berlin A., Zotti G., Zecchin S., Schiavon G., Cocchi M., Virgili D., Sabatini C. 3,4-Ethylenedioxy-substituted bithiophene-alt-thiophene-S,S-dioxide regular copolymers. Synthesis and conductive, magnetic and luminescence properties. J. Mater. Chem. 2003;13:27–33. doi: 10.1039/b206669f. DOI

Kuchison A.M., Wolf M.O., Patrick B.O. Conjugated ligand-based tribochromic luminescence. Chem. Commun. 2009:7387–7389. doi: 10.1039/b915089g. PubMed DOI

Moore S.A., Davies D.L., Karim M.M., Nagle J.K., Wolf M.O., Patrick B.O. Photophysical behaviour of cyclometalated iridium(iii) complexes with phosphino(terthiophene) ligands. Dalt. Trans. 2013;42:12354–12363. doi: 10.1039/c3dt51320c. PubMed DOI

Moore S.A., Nagle J.K., Wolf M.O., Patrick B.O. Coordination Mode Dependent Excited State Behavior in Group 8 Phosphino(terthiophene) Complexes. Inorg. Chem. 2011;50:5113–5122. doi: 10.1021/ic200392n. PubMed DOI

Clot O., Wolf M.O., Patrick B.O. Electropolymerization of a cyclometalated terthiophene: A hybrid material with a palladium-carbon bond to the backbone. J. Am. Chem. Soc. 2000;122:10456–10457. doi: 10.1021/ja002258v. DOI

Clot O., Wolf M.O., Patrick B.O. Electropolymerization of Pd(II) complexes containing phosphinoterthiophene ligands. J. Am. Chem. Soc. 2001;123:9963–9973. doi: 10.1021/ja016465m. PubMed DOI

Kuchison A.M., Wolf M.O., Patrick B.O. Photophysical and electrochemical properties of Ru(II) complexes containing tridentate bisphosphino-oligothiophene ligands. Dalt. Trans. 2011;40:6912–6921. doi: 10.1039/c1dt10217f. PubMed DOI

Cao Y., Wolf M.O., Patrick B.O. Dual-Emissive Platinum(II) Metallacycles with Thiophene-Containing Bisacetylide Ligands. Inorg. Chem. 2016;55:8985–8993. doi: 10.1021/acs.inorgchem.6b01464. PubMed DOI

Manca P., Scanu R., Zucca A., Sanna G., Spano N., Pilo M.I. Electropolymerization of a Ru(II)-terpyridine complex ethynyl-terthiophene functionalized originating different metallopolymers. Polymer. 2013;54:3504–3509. doi: 10.1016/j.polymer.2013.05.026. DOI

Scanu R., Manca P., Zucca A., Sanna G., Spano N., Seeber R., Zanardi C., Pilo M.I. Homoleptic Ru(II) complex with terpyridine ligands appended with terthiophene moieties: Synthesis, characterization and electropolymerization. Polyhedron. 2013;49:24–28. doi: 10.1016/j.poly.2012.09.056. DOI

Zöllner M.J., Becker E., Jahn U., Kowalsky W., Johannes H.H. New versatile strategy towards zinc(II)-, copper(II)- and cobalt(II)metallated thiophene/porphyrin-hybrids. Eur. J. Org. Chem. 2010:4426–4435. doi: 10.1002/ejoc.200901237. DOI

Zoellner M.J., Fraehmcke J.S., Elstner M., Jahn U., Jones P.G., Becker E., Kowalsky W., Johannes H.-H. A New Synthetic Approach to Thiophene-Nickel(II)porphyrin Hybrid Molecules and their Electrochemical and Computational Investigation. Macromol. Chem. Phys. 2010;211:359–371. doi: 10.1002/macp.200900480. DOI

Collis G.E., Campbell W.M., Officer D.L., Burrell A.K. The design and synthesis of porphyrin/oligiothiophene hybrid monomers. Org. Biomol. Chem. 2005;3:2075–2084. doi: 10.1039/b502517f. PubMed DOI

Nguyen M.T., Jones R.A., Holliday B.J. Direct synthesis of CdSe nanocrystals within a conducting metallopolymer: Toward improving charge transfer in hybrid nanomaterials. Chem. Commun. 2016;52:13112–13115. doi: 10.1039/C6CC07193G. PubMed DOI

Reddinger J.L., Reynolds J.R. Tunable Redox and Optical Properties Using Transition Metal-Complexed Polythiophenes. Macromolecules. 1997;30:673–675. doi: 10.1021/ma961689o. DOI

Kim J.S.J.J., Kang D.M., Shin S.C., Choi M.Y., Kim J.S.J.J., Lee S.S., Kim J.S.J.J. Functional polyterthiophene-appended uranyl-salophen complex: Electropolymerization and ion-selective response for monohydrogen phosphate. Anal. Chim. Acta. 2008;614:85–92. doi: 10.1016/j.aca.2008.03.008. PubMed DOI

Pozo-Gonzalo C., Berridge R., Skabara P.J., Cerrada E., Laguna M., Coles S.J., Hursthouse M.B. A new family of conjugated metallopolymers from electropolymerised bis[(terthiophene)dithiolene] complexes. Chem. Commun. 2002:2408–2409. doi: 10.1039/b206243g. PubMed DOI

Kang B.S., Kim D.H., Jung T.S., Jang E.K., Pak Y., Shin S.C., Park D.S., Shim Y.B. Polyterthiophene appended by transition-metal cluster: Electropolymerization of 3′-[CCo3(CO)9]-5,2′:5′,2″-terthiophene. Synth. Met. 1999;105:9–12. doi: 10.1016/S0379-6779(99)00057-0. DOI

Hyun D., Park D., Shim Y., Chul S. Polyterthiophene p -conjugated by organomolybdenum complex. J. Organomet. Chem. 2000;608:133–138.

Burrell A.K., Chen J., Collis G.E., Grant D.K., Officer D.L., Too C.O., Wallace G.G. Functionalised poly(terthiophenes) Synth. Met. 2003;135–136:97–98. doi: 10.1016/S0379-6779(02)00865-2. DOI

Bäuerle P., Gaudl K.U. New functionalized polythiophenes. Synth. Met. 1991;43:3037–3042. doi: 10.1016/0379-6779(91)91233-Z. DOI

Özenler S., Kaya H., Elmaci N., Yildiz U.H. Transition-Metal-Free Direct C-H Arylation of Thiophene in Aqueous Media via Potassium Peroxymonosulfate. ChemistrySelect. 2019;4:8516–8521. doi: 10.1002/slct.201901508. DOI

Havinga E.E., van Horssen L.W., ten Hoeve W., Wynberg H., Meijer E.W. Self-doped water-soluble conducting polymers. Polym. Bull. 1987;18:277–281. doi: 10.1007/BF00255122. DOI

Dufil G., Parker D., Gerasimov J.Y., Nguyen T.Q., Berggren M., Stavrinidou E. Enzyme-assistedin vivopolymerisation of conjugated oligomer based conductors. J. Mater. Chem. B. 2020;8:4221–4227. doi: 10.1039/D0TB00212G. PubMed DOI

Volkov A.V., Singh S.K., Stavrinidou E., Gabrielsson R., Franco-Gonzalez J.F., Cruce A., Chen W.M., Simon D.T., Berggren M., Zozoulenko I.V. Spectroelectrochemistry and Nature of Charge Carriers in Self-Doped Conducting Polymer. Adv. Electron. Mater. 2017;3:1700096. doi: 10.1002/aelm.201700096. DOI

Stavrinidou E., Gabrielsson R., Nilsson K.P.R., Singh S.K., Franco-Gonzalez J.F., Volkov A.V., Jonsson M.P., Grimoldi A., Elgland M., Zozoulenko I.V., et al. In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proc. Natl. Acad. Sci. 2017;114:2807–2812. doi: 10.1073/pnas.1616456114. PubMed DOI PMC

Fujimoto N., Nakahodo T., Fujihara H. Synthesis of anionic sulfonate-functionalized conducting polymer nanotubes and selective confinement of cationic gold nanoparticles in their inner cavities via electrostatic interaction. Chem. Lett. 2013;42:1394–1396. doi: 10.1246/cl.130692. DOI

Tanaka S., Kumei M. A new polythiophene prepared by the electropolymerization of a branched sexithienyl. J. Chem. Soc. Chem. Commun. 1995:815. doi: 10.1039/c39950000815. DOI

Jeong S., Kong M.S., Kim J.H., Kim K.H., Cho Y., Han Y.S. Synthesis of a thiophene derivative and its effects as an additive on the performance of solar cells. Mol. Cryst. Liq. Cryst. 2019;678:121–130. doi: 10.1080/15421406.2019.1597538. DOI

Moriyama Y., Matsuda K., Tanifuji N., Irie S., Irie M. Electrochemical Cyclization/Cycloreversion Reactions of Diarylethenes. Org. Lett. 2005;7:3315–3318. doi: 10.1021/ol051149o. PubMed DOI

Bolduc A., Lachapelle V., Skene W.G. Snap Together Bonds for Amine Capturing—New Spectroscopic and Amperometric Sensors. Macromol. Symp. 2010;297:87–93. doi: 10.1002/masy.200900065. DOI

Apodaca D.C., Pernites R.B., Ponnapati R.R., Del Mundo F.R., Advincula R.C. Electropolymerized Molecularly Imprinted Polymer Films of a Bis-Terthiophene Dendron: Folic Acid Quartz Crystal Microbalance Sensing. ACS Appl. Mater. Interfaces. 2011;3:191–203. doi: 10.1021/am100805y. PubMed DOI

Park J.Y., Advincula R.C. Electroluminescent Behaviors of Electrochemically Cross-Linkable Poly(benzyl ether) Terthiophene Dendrimers. Macromol. Chem. Phys. 2016;217:1948–1954. doi: 10.1002/macp.201600222. DOI

Postigo A., Bulacio L., Sortino M. Photodynamic inactivation of oropharyngeal Candida strains. Phytomedicine. 2014;21:1424–1431. doi: 10.1016/j.phymed.2014.04.028. PubMed DOI

Postigo A., Funes M., Petenatti E., Bottai H., Pacciaroni A., Sortino M. Antifungal photosensitive activity of Porophyllum obscurum (Spreng.) DC.: Correlation of the chemical composition of the hexane extract with the bioactivity. Photodiagn. Photodyn. Ther. 2017;20:263–272. doi: 10.1016/j.pdpdt.2017.10.023. PubMed DOI

Zhou Z., Ergene C., Lee J.Y., Shirley D.J., Carone B.R., Caputo G.A., Palermo E.F. Sequence and Dispersity Are Determinants of Photodynamic Antibacterial Activity Exerted by Peptidomimetic Oligo(thiophene)s. ACS Appl. Mater. Interfaces. 2019;11:1896–1906. doi: 10.1021/acsami.8b19098. PubMed DOI

Luo Z.-G., Liu Z.-Y., Yang Z.-H. The synthesis and photoactivated cytotoxicity of novel 5-phenyl-3-(2,2′:5′,2″-terthien-5-yl)-4,5-dihydro-1H-pyrazoles. Chin. Chem. Lett. 2014;25:333–336. doi: 10.1016/j.cclet.2013.11.007. DOI

Chen X., Xu H., Wang Y., Hu S., Zhang Z., Zhang Y. Study on active oxygen quantum yield, insecticidal activities and stability of diphenylthiophene. Agric. Sci. China. 2007;6:458–465. doi: 10.1016/S1671-2927(07)60070-4. DOI

Huang Q., Yun X., Rao W., Xiao C. Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl. Pestic. Biochem. Physiol. 2017;137:1–7. doi: 10.1016/j.pestbp.2016.09.006. PubMed DOI

Zhang J., Ahmad S., Wang L.-Y., Han Q., Zhang J.-C., Luo Y.-P. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of Aedes aegypti larvae. Free Radic. Biol. Med. 2019;137:87–98. doi: 10.1016/j.freeradbiomed.2019.04.021. PubMed DOI

Huang Q.-C., Liu Y., Zhan T.-S., Deng Y.-F., He Y. Comparable Susceptibilities of Human 293 Cells and Insect Tn-5B1-4 Cells to Photoactivated α-Terthienyl. J. Agric. Food Chem. 2010;58:2637–2642. doi: 10.1021/jf902204q. PubMed DOI

Weidenhamer J.D., Montgomery T.M., Cipollini D.F., Weston P.A., Mohney B.K. Plant Density and Rhizosphere Chemistry: Does Marigold Root Exudate Composition Respond to Intra- and Interspecific Competition? J. Chem. Ecol. 2019;45:525–533. doi: 10.1007/s10886-019-01073-5. PubMed DOI

Zhao B., Huo J., Zhang J., Zhao B., Liu N., Dong J. Transketolase Is Identified as a Target of Herbicidal Substance α-Terthienyl by Proteomics. Toxins. 2018;10:41. doi: 10.3390/toxins10010041. PubMed DOI PMC

Nakano H., Cantrell C.L., Mamonov L.K., Osbrink W.L.A., Ross S.A. Echinopsacetylenes A and B, New Thiophenes from Echinops transiliensis. Org. Lett. 2011;13:6228–6231. doi: 10.1021/ol202680a. PubMed DOI

Marques M.M.M., Morais S.M., Vieira I.G.P., Vieira M.G.S., Silva A.R.A., de Almeida R.R., Guedes M.I.F. Larvicidal activity of Tagetes erecta against Aedes Aegypti. J. Am. Mosq. Control Assoc. 2011;27:156–158. doi: 10.2987/10-6056.1. PubMed DOI

Faizi S., Fayyaz S., Bano S., Yawar Iqbal E. Isolation of Nematicidal Compounds from Tagetes patula L. Yellow Flowers: Structure-Activity Relationship Studies against Cyst Nematode Heterodera zeae Infective Stage Larvae. J. Agric. Food Chem. 2011;59:9080–9093. doi: 10.1021/jf201611b. PubMed DOI

Liu Y., Man L., Wang X., Ying L. Research on the antimicrobial activity of α-triple thiophene in the marigold. Adv. J. Food Sci. Technol. 2015;7:936–939.

Chow C.-F. Two-photon induced emissive thiophene donor–acceptor systems as molecular probes for in vitro bio-imaging: synthesis, crystal structure, and spectroscopic properties. RSC Adv. 2013;3:18835–18843. doi: 10.1039/c3ra42914h. DOI

Guo Z., Hu T., Sun T., Li T., Chi H., Niu Q. A colorimetric and fluorometric oligothiophene-indenedione-based sensor for rapid and highly sensitive detection of cyanide in real samples and bioimaging in living cells. Dyes Pigments. 2019;163:667–674. doi: 10.1016/j.dyepig.2018.12.057. DOI

Guo Z., Niu Q., Yang Q., Li T., Chi H. Highly selective and sensitive dual-mode sensor for colorimetric and turn-on fluorescent detection of cyanide in water, agro-products and living cells. Anal. Chim. Acta. 2019;1065:113–123. doi: 10.1016/j.aca.2019.03.024. PubMed DOI

Yin P., Niu Q., Yang Q., Lan L., Li T. A new “naked-eye” colorimetric and ratiometric fluorescent sensor for imaging Hg2+ in living cells. Tetrahedron. 2019;75:130687. doi: 10.1016/j.tet.2019.130687. DOI

Liu Q., Mukherjee S., Huang R., Liu K., Liu T., Liu K., Miao R., Peng H., Fang Y., Liu Q. Naphthyl End-Capped Terthiophene-Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring. Chem. Asian J. 2019;14:2751–2758. doi: 10.1002/asia.201900622. PubMed DOI

Akhtar M.H., Hussain K.K., Gurudatt N.G., Chandra P., Shim Y.-B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018;116:108–115. doi: 10.1016/j.bios.2018.05.049. PubMed DOI

Preya U.H., Lee K.-T., Jang D.S., Kim N.-J., Lee J.-Y., Choi J.-H. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress. Chem. Biol. Interact. 2017;272:72–79. doi: 10.1016/j.cbi.2017.05.011. PubMed DOI

Jiang J., Ding C., Li L., Gao C., Jiang Y., Tan C., Hua R. Synthesis and antiproliferative activity of RITA and its analogs. Tetrahedron Lett. 2014;55:6635–6638. doi: 10.1016/j.tetlet.2014.10.074. DOI

Jin W., Shi Q., Hong C., Cheng Y., Ma Z., Qu H. Cytotoxic properties of thiophenes from Echinops grijissi Hance. Phytomedicine. 2008;15:768–774. doi: 10.1016/j.phymed.2007.10.007. PubMed DOI

Kim H.-Y., Kim H.M., Ryu B., Lee J.-S., Choi J.-H., Jang D.S. Constituents of the aerial parts of Eclipta prostrata and their cytotoxicity on human ovarian cancer cells in vitro. Arch. Pharmacal Res. 2015;38:1963–1969. doi: 10.1007/s12272-015-0599-2. PubMed DOI

Saito T.K., Seki M., Tabata H. Self-organized ZnO nanorod with photooxidative cell membrane perforation enables large-scale cell manipulation. Anal. Bioanal. Chem. 2008;391:2513–2519. doi: 10.1007/s00216-008-2226-2. PubMed DOI

Noh H.-B., Revin S.B., Shim Y.-B. Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode. Electrochim. Acta. 2014;139:315–322. doi: 10.1016/j.electacta.2014.07.044. DOI

Jamal R., Liu Y., Abdurexit A., Sawut N., Yan Y., Ali A., Abdiryim T. Electrochemical Sensor for Detection of Paracetamol Based on Pendent Nitrogen Heterocyclic Ring-Functionalized Polyterthiophene Derivatives. ChemistrySelect. 2021;6:4473–4481. doi: 10.1002/slct.202100065. DOI

Jo H., Her J., Lee H., Shim Y.-B., Ban C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta. 2017;165:442–448. doi: 10.1016/j.talanta.2016.12.091. PubMed DOI

Kim D.-M., Shim Y.-B. Disposable Amperometric Glycated Hemoglobin Sensor for the Finger Prick Blood Test. Anal. Chem. 2013;85:6536–6543. doi: 10.1021/ac401411y. PubMed DOI

Noh H.-B., Chandra P., Moon J.O., Shim Y.-B. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials. 2012;33:2600–2607. doi: 10.1016/j.biomaterials.2011.12.026. PubMed DOI

Das D., Kim D.-M., Park D.-S., Shim Y.-B. A Glucose Sensor Based on an Aminophenyl Boronic Acid Bonded Conducting Polymer. Electroanalysis. 2011;23:2036–2041. doi: 10.1002/elan.201100145. DOI

Lee W.-C., Gurudatt N.G., Park D.-S., Kim K.B., Choi C.S., Shim Y.-B. Microneedle array sensor for monitoring glucose in single cell using glucose oxidase-bonded polyterthiophene coated on AuZn oxide layer. Sens. Actuators B Chem. 2020;320:128416. doi: 10.1016/j.snb.2020.128416. DOI

Noh H.-B., Rahman M.A., Yang J.E., Shim Y.-B. Ag(I)-cysteamine complex based electrochemical stripping immunoassay: Ultrasensitive human IgG detection. Biosens. Bioelectron. 2011;26:4429–4435. doi: 10.1016/j.bios.2011.04.058. PubMed DOI

Chandra P., Koh W.C.A., Noh H.-B., Shim Y.-B. In vitro monitoring of i-NOS concentrations with an immunosensor: The inhibitory effect of endocrine disruptors on i-NOS release. Biosens. Bioelectron. 2012;32:278–282. doi: 10.1016/j.bios.2011.11.027. PubMed DOI

Koh W.-C.A., Chandra P., Kim D.-M., Shim Y.-B. Electropolymerized Self-Assembled Layer on Gold Nanoparticles: Detection of Inducible Nitric Oxide Synthase in Neuronal Cell Culture. Anal. Chem. 2011;83:6177–6183. doi: 10.1021/ac2006558. PubMed DOI

Kim M.-Y., Naveen M.H., Gurudatt N.G., Shim Y.-B. Detection of Nitric Oxide from Living Cells Using Polymeric Zinc Organic Framework-Derived Zinc Oxide Composite with Conducting Polymer. Small. 2017;13 doi: 10.1002/smll.201700502. PubMed DOI

Abdelwahab A.A., Shim Y.-B. Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sens. Actuators, B. 2014;201:51–58. doi: 10.1016/j.snb.2014.05.004. DOI

Noh H.-B., Gurudatt N.G., Won M.-S., Shim Y.-B. Analysis of Phthalate Esters in Mammalian Cell Culture Using a Microfluidic Channel Coupled with an Electrochemical Sensor. Anal. Chem. 2015;87:7069–7077. doi: 10.1021/acs.analchem.5b00358. PubMed DOI

Pernites R.B., Santos C.M., Maldonado M., Ponnapati R.R., Rodrigues D.F., Advincula R.C. Tunable Protein and Bacterial Cell Adsorption on Colloidally Templated Superhydrophobic Polythiophene Films. Chem. Mater. 2012;24:870–880. doi: 10.1021/cm2007044. DOI

Quigley A.F., Wagner K., Kita M., Gilmore K.J., Higgins M.J., Breukers R.D., Moulton S.E., Clark G.M., Penington A.J., Wallace G.G., et al. In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. Biomater. Sci. 2013;1:983–995. doi: 10.1039/c3bm60059a. PubMed DOI

Stevenson G., Moulton S.E., Innis P.C., Wallace G.G. Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. Synth. Met. 2010;160:1107–1114. doi: 10.1016/j.synthmet.2010.02.035. DOI

Margalith I., Suter C., Ballmer B., Schwarz P., Tiberi C., Sonati T., Falsig J., Nystroem S., Hammarstroem P., Aslund A., et al. Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates. J. Biol. Chem. 2012;287:18872–18887. doi: 10.1074/jbc.M112.355958. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...