Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art

. 2021 Feb 27 ; 13 (5) : . [epub] 20210227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33673680

Grantová podpora
838171 H2020 Marie Skłodowska-Curie Actions
SEV- 2016-0686 Ministerio de Economía, Industria y Competitividad, Gobierno de España
CZ.02.2.69/0.0/0.0/20_079/0017045 Ministerstvo Školství, Mládeže a Tělovýchovy
753293 H2020 Marie Skłodowska-Curie Actions

Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.

Zobrazit více v PubMed

Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862;15:161–163. doi: 10.1039/JS8621500161. DOI

De Surville R., Jozefowicz M., Yu L.T., Pepichon J., Buvet R. Electrochemical chains using protolytic organic semiconductors. Electrochim. Acta. 1968;13:1451–1458. doi: 10.1016/0013-4686(68)80071-4. DOI

Diaz A.F., Logan J.A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 1980;111:111–114. doi: 10.1016/S0022-0728(80)80081-7. DOI

MacDiarmid A.G., Epstein A.J. Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc. 1989;88:317. doi: 10.1039/dc9898800317. DOI

Macdiarmid A.G., Chiang J.C., Richter A.F., Epstein A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987;18:285–290. doi: 10.1016/0379-6779(87)90893-9. DOI

Chiang J.-C., MacDiarmid A.G. ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 1986;13:193–205. doi: 10.1016/0379-6779(86)90070-6. DOI

Wu K., Xu S.-z., Zhou X.-j., Wu H.-x. Graphene quantum dots enhanced electrochemical performance of polypyrrole as supercapacitor electrode. J. Electrochem. 2013;19:361–370.

Xu K., Zhang Q., Hao Z., Tang Y., Wang H., Liu J., Yan H. Integrated electrochromic supercapacitors with visual energy levels boosted by coating onto carbon nanotube conductive networks. Sol. Energy Mater. Sol. Cells. 2020:206. doi: 10.1016/j.solmat.2019.110330. DOI

Ben J., Song Z., Liu X., Lu W., Li X. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Nanoscale Res. Lett. 2020:15. doi: 10.1186/s11671-020-03379-w. PubMed DOI PMC

Kazemi F., Naghib S.M., Zare Y., Rhee K.Y. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. Polym. Rev. 2020:1–45. doi: 10.1080/15583724.2020.1858871. DOI

Hu L., Tu J., Jiao S., Hou J., Zhu H., Fray D.J. In situ electrochemical polymerization of a nanorod-PANI–Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 2012;14:15652–15656. doi: 10.1039/c2cp42192e. PubMed DOI

Moayeri A., Ajji A. Fabrication of polyaniline/poly (ethylene oxide)/non-covalently functionalized graphene nanofibers via electrospinning. Synth. Met. 2015;200:7–15. doi: 10.1016/j.synthmet.2014.12.020. DOI

Chauhan N.P.S., Mozafari M. Fundamentals and Emerging Applications of Polyaniline. Elsevier; Amsterdam, The Netherlands: 2019. Synthetic route of PANI (II): Enzymatic method; pp. 43–65. DOI

Chauhan N.P.S., Milan P.B., Kargozar S., Mozafari M. Fundamentals and Emerging Applications of Polyaniline. Elsevier; Amsterdam, The Netherlands: 2019. Synthetic route of PANI (III): Ultrasound-assisted polymerization; pp. 67–89. DOI

Zarrintaj P., Saeb M.R. Fundamentals and Emerging Applications of Polyaniline. Elsevier; Amsterdam, The Netherlands: 2019. Synthetic route of polyaniline (IV): Irradiation path; pp. 91–103. DOI

Dalmolin C., Canobre S.C., Biaggio S.R., Rocha-Filho R.C., Bocchi N. Electropolymerization of polyaniline on high surface area carbon substrates. J. Electroanal. Chem. 2005;578:9–15. doi: 10.1016/j.jelechem.2004.12.011. DOI

Chen W.C., Wen T.C., Gopalan A. Negative capacitance for polyaniline: An analysis via electrochemical impedance spectroscopy. Synth. Met. 2002;128:179–189. doi: 10.1016/S0379-6779(01)00667-1. DOI

Plesu N., Kellenberger A., Mihali M., Vaszilcsin N. Effect of temperature on the electrochemical synthesis and properties of polyaniline films. J. Non-Cryst. Solids. 2010;356:1081–1088. doi: 10.1016/j.jnoncrysol.2010.01.011. DOI

Korent A., Soderžnik K.Ž., Šturm S., Rožman K.Ž. A Correlative Study of Polyaniline Electropolymerization and its Electrochromic Behavior. J. Electrochem. Soc. 2020;167:106504. doi: 10.1149/1945-7111/ab9929. DOI

Kaitsuka Y., Goto H. UV Light Induces Dedoping of Polyaniline. Polymers. 2016;8:34. doi: 10.3390/polym8020034. PubMed DOI PMC

Rannou P., Pron A., Nechtschein M. UV-vis-NIR studies of new PANI/dopant/solvent associations with metallic-like behaviour. Synth. Met. 1999;101:827–828. doi: 10.1016/S0379-6779(98)01229-6. DOI

Ibrahim K.A. Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab. J. Chem. 2017;10:S2668–S2674. doi: 10.1016/j.arabjc.2013.10.010. DOI

Karaoğlan N., Bindal C. Synthesis and optical characterization of benzene sulfonic acid doped polyaniline. Eng. Sci. Technol. Int. J. 2018;21:1152–1158. doi: 10.1016/j.jestch.2018.09.010. DOI

Šeděnková I., Trchová M., Stejskal J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies. Polym. Degrad. Stab. 2008;93:2147–2157. doi: 10.1016/j.polymdegradstab.2008.08.007. DOI

Yang D., Lu W., Goering R., Mattes B.R. Investigation of polyaniline processibility using GPC/UV-vis analysis. Synth. Met. 2009;159:666–674. doi: 10.1016/j.synthmet.2008.12.013. DOI

Bláha M., Marek F., Morávkova Z., Svoboda J., Brus J., Dybal J., Prokes J., Varga M., Stejskal J. Role of p-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline. ACS Omega. 2019;4:7128–7139. doi: 10.1021/acsomega.9b00542. PubMed DOI PMC

Angeli A., Pieroni A. Sopra un nuovo modo di formazione del nero di pirrolo. Gazz. Chim. Ital. 1919;1:154–158.

Dall’ Olio A., Dascola G., Varacca V., Bocchi V. Résonance paramagnétique électronique et conductivité d’un noir d’oxypyrrol électrolitique. CR. Acad. Sci. Paris. 1968;267:433.

Gardini G.P. The Oxidation of Monocyclic Pyrroles. Adv. Heterocycl. Chem. 1973;15:67–98. doi: 10.1016/S0065-2725(08)60432-8. DOI

Diaz A.F., Kanazawa K.K., Gardini G.P. Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Commun. 1979:635–636. doi: 10.1039/c39790000635. DOI

Jain R., Jadon N., Pawaiya A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. Trends Anal. Chem. 2017;97:363–373. doi: 10.1016/j.trac.2017.10.009. DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Vernitskaya V.V., Efimov O.N. Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 1997;66:443–457. doi: 10.1070/RC1997v066n05ABEH000261. DOI

Maksymiuk K. Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors. Electroanalysis. 2006;18:1537–1551. doi: 10.1002/elan.200603573. DOI

Watanabe A., Tanaka M., Tanaka J. Electrical and Optical Properties of a Stable Synthetic Metallic Polymer: Polypyrrole. Bull. Chem. Soc. Jpn. 1981;54:2278–2281. doi: 10.1246/bcsj.54.2278. DOI

Biswas S., Drzal L.T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 2010;22:5667–5671. doi: 10.1021/cm101132g. DOI

Zhou X., Ma P., Wang A., Yu C., Qian T., Wu S., Shen J. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens. Bioelectron. 2015;64:404–410. doi: 10.1016/j.bios.2014.09.038. PubMed DOI

Bao L., Yao J., Zhao S., Lu Y., Su Y., Chen L., Zhao C., Wu F. Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium-Sulfur Battery with Ultrahigh Volumetric Capacity. ACS Sustain. Chem. Eng. 2020;8:5648–5661. doi: 10.1021/acssuschemeng.0c00243. DOI

Lee J.H., Jang Y.J., Kim D.W., Cheruku R., Thogiti S., Ahn K.-S., Kim J.H. Application of polypyrrole/sodium dodecyl sulfate/carbon nanotube counter electrode for solid-state dye-sensitized solar cells and dye-sensitized solar cells. Chem. Pap. 2019;73:2749–2755. doi: 10.1007/s11696-019-00827-5. DOI

Duan D., Yang H., Ding Y., Li L., Ma G. A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochim. Acta. 2019;302:137–144. doi: 10.1016/j.electacta.2019.02.028. DOI

Deshmukh K., Ahamed M.B., Deshmukh R.R., Pasha S.K., Bhagat P.R., Chidambaram K. Biopolymer Composites in Electronics. Elsevier; Amsterdam, The Netherlands: 2017. Biopolymer Composites with High Dielectric Performance: Interface Engineering; pp. 27–128. DOI

Truong V.T., Ennis B.C., Forsyth M. Ion exchange, anisotropic structure and thermal stability of polypyrrole films. Synth. Met. 1995;69:479–480. doi: 10.1016/0379-6779(94)02534-6. DOI

Toshima N., Hara S. Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 1995;20:155–183. doi: 10.1016/0079-6700(94)00029-2. DOI

Rapi S., Bocchi V., Gardini G.P. Conducting polypyrrole by chemical synthesis in water. Synth. Met. 1988;24:217–221. doi: 10.1016/0379-6779(88)90259-7. DOI

Kang E.T., Neoh K.G., Ong Y.K., Tan K.L., Tan B.T.G. X-ray Photoelectron Spectroscopic Studies of Polypyrrole Synthesized with Oxidative Fe(III) Salts. Macromolecules. 1991;24:2822–2828. doi: 10.1021/ma00010a028. DOI

Qi G., Huang L., Wang H. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. Chem. Commun. 2012;48:8246–8248. doi: 10.1039/c2cc33889k. PubMed DOI

Bloor D., Monkman A.P., Stevens G.C., Cheung K.M., Pugh S. Structure-Property Relationships in Conductive Polymers. Mol. Cryst. Liq. Cryst. 1990;187:231–239. doi: 10.1080/00268949008036047. DOI

Beck F., Oberst M. Electrocatalytic deposition and transformation of polypyrrole layers. Synth. Met. 1989;28:43–50. doi: 10.1016/0379-6779(89)90497-9. DOI

Debiemme-Chouvy C., Tran T.T.M. An insight into the overoxidation of polypyrrole materials. Electrochem. Commun. 2008;10:947–950. doi: 10.1016/j.elecom.2008.04.024. DOI

Shiigi H., Kishimoto M., Yakabe H., Deore B., Nagaoka T. Highly Selective Molecularly Imprinted Overoxidized Polypyrrole Colloids: One-Step Preparation Technique. Anal. Sci. 2002;18:41–44. doi: 10.2116/analsci.18.41. PubMed DOI

Chen X., Yu N., Zhang L., Liu Z., Wang Z., Chen Z. Synthesis of polypyrrole nanoparticles for constructing full-polymer UV/NIR-shielding film. RSC Adv. 2015;5:96888–96895. doi: 10.1039/C5RA20164K. DOI

Song M.K., Kim Y.T., Kim B.S., Kim J., Char K., Rhee H.W. Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth. Met. 2004;141:315–319. doi: 10.1016/j.synthmet.2003.07.015. DOI

Omastová M., Mičušík M. Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chem. Pap. 2012;66:392–414. doi: 10.2478/s11696-011-0120-4. DOI

Liang Y., Goh J.C.-H. Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity. 2020;2:101–119. doi: 10.1089/bioe.2020.0010. PubMed DOI PMC

Chougule M.A., Pawar S.G., Godse P.R., Mulik R.N., Sen S., Patil V.B. Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanosci. Lett. 2011;1:6–10. doi: 10.4236/snl.2011.11002. DOI

Trchová M., Stejskal J. Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI

Bufon C.C.B., Vollmer J., Heinzel T., Espindola P., John H., Heinze J. Relationship between chain length, disorder, and resistivity in polypyrrole films. J. Phys. Chem. B. 2005;109:19191–19199. doi: 10.1021/jp053516j. PubMed DOI

Zotti G., Martina S., Wegner G., Schlüter A.D.D. Well-defined pyrrole oligomers: Electrochemical and UV/vis studies. Adv. Mater. 1992;4:798–801. doi: 10.1002/adma.19920041206. DOI

Brédas J.L., Silbey R., Boudreaux D.S., Chance R.R. Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems: Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole. J. Am. Chem. Soc. 1983;105:6555–6559. doi: 10.1021/ja00360a004. DOI

Mondal S., Sangaranarayanan V.M. A novel, rapid synthetic protocol for controllable sizes, conductivities and monomer units of soluble polypyrrole. Eur. Polym. J. 2015;71:596–611. doi: 10.1016/j.eurpolymj.2015.08.027. DOI

Texidó R., Anguera G., Colominas S., Borrós S., Sánchez-García D. Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability. Polymers. 2019;11:1068. doi: 10.3390/polym11061068. PubMed DOI PMC

Andriukonis E., Ramanaviciene A., Ramanavicius A. Synthesis of Polypyrrole Induced by [Fe(CN)6]3− and Redox Cycling of [Fe(CN)6]4−/[Fe(CN)6]3−. Polymers. 2018;10:749. doi: 10.3390/polym10070749. PubMed DOI PMC

Armour M., Davies A.G., Upadhyay J., Wassermann A. Colored electrically conducting polymers from furan, pyrrole, and thiophene. J. Polym. Sci. Part A-1 Polym. Chem. 1967;5:1527–1538. doi: 10.1002/pol.1967.150050704. DOI

Tourillon G., Garnier F. New electrochemically generated organic conducting polymers. J. Electroanal. Chem. Interfacial Electrochem. 1982;135:173–178. doi: 10.1016/0022-0728(82)90015-8. DOI

McCullough R.D., Lowe R.D., Gu H.B., Yoshino K., Wudl F., Spinelli D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes) J. Chem. Soc. Chem. Commun. 1992;24:70. doi: 10.1039/c39920000070. DOI

Chen T.A., Rieke R.D. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: Nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992;114:10087–10088. doi: 10.1021/ja00051a066. DOI

Guillerez S., Bidan G. New convenient synthesis of highly regioregular poly(3-octylthiophene) based on the Suzuki coupling reaction. Synth. Met. 1998;93:123–126. doi: 10.1016/S0379-6779(97)04102-7. DOI

Wegener P., Feldhues M., Litterer H. Process for the Preparaton of Thiophene Ethers. Eur. Pat. Appl. 328984. 1988

Feldhues M., Kämpf G., Mecklenburg T. Highly Soluble Electrically Conductive Polymers. Eur. Pat. Appl. 328983. 1988

Kämpf G., Feldhues M. Electrically Conductive Coating Composition, Method for Its Manufacture and Its Use. Eur. Pat. Appl. 292905. 1987

Feldhues M., Mecklenburg T., Wegener P., Kämpf G. Soluble Electrically Conductive Polymers, Method of Producing Them and Their Use. Eur. Pat. Appl. 257573. 1987

Feldhues M., Kämpf G., Mecklenburg T. Modified Electrical Conductive Polymers. Eur. Pat. Appl. 313998. 1987

Kämpf G., Feldhues M. Electrically Conducting Coating Compound, Process for Its Preparation and Its Use/Electrically Conductive Polymers and Their Production. Eur. Pat. Appl. 328981/328982. 1988

Heywang G., Jonas F. Poly(alkylenedioxythiophene)s—New, very stable conducting polymers. Adv. Mater. 1992;4:116–118. doi: 10.1002/adma.19920040213. DOI

Mantione D., del Agua I., Sanchez-Sanchez A., Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers. 2017;9:354. doi: 10.3390/polym9080354. PubMed DOI PMC

Ha Y.H., Nikolov N., Pollack S.K., Mastrangelo J., Martin B.D., Shashidhar R. Towards a Transparent, Highly Conductive Poly(3,4-ethylenedioxythiophene) Adv. Funct. Mater. 2004;14:615–622. doi: 10.1002/adfm.200305059. DOI

Kirchmeyer S., Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) J. Mater. Chem. 2005;15:2077. doi: 10.1039/b417803n. DOI

Zhang X., Lee J.-S., Lee G.S., Cha D.-K., Kim M.J., Yang D.J., Manohar S.K. Chemical Synthesis of PEDOT Nanotubes. Macromolecules. 2006;39:470–472. doi: 10.1021/ma051975c. DOI

Snaith H.J., Kenrick H., Chiesa M., Friend R.H. Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT:PSS’. Polymer. 2005;46:2573–2578. doi: 10.1016/j.polymer.2005.01.077. DOI

Wailes E.M., MacNeill C.M., McCabe E., Levi-Polyachenko N.H. Shaping PEDOT nanoparticles for use in 3D tissue phantoms. J. Appl. Polym. Sci. 2016:133. doi: 10.1002/app.43378. DOI

Xia Y., Ouyang J. Significant different conductivities of the two grades of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and clevios PH1000, arising from different molecular weights. ACS Appl. Mater. Interfaces. 2012;4:4131–4140. doi: 10.1021/am300881m. PubMed DOI

Mantione D., Del Agua I., Schaafsma W., Diez-Garcia J., Castro B., Sardon H., Mecerreyes D. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Macromol. Biosci. 2016;16:1227–1238. doi: 10.1002/mabi.201600059. PubMed DOI

Kim S., Sanyoto B., Park W.-T., Kim S., Mandal S., Lim J.-C., Noh Y.-Y., Kim J.-H. Purification of PEDOT:PSS by Ultrafiltration for Highly Conductive Transparent Electrode of All-Printed Organic Devices. Adv. Mater. 2016;28:10149–10154. doi: 10.1002/adma.201603313. PubMed DOI

Cho H., Cho W., Kim Y., Lee J.G., Kim J.H. Influence of residual sodium ions on the structure and properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) RSC Adv. 2018;8:29044–29050. doi: 10.1039/C8RA05150J. PubMed DOI PMC

Yoo D., Kim J., Kim J.H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014;7:717–730. doi: 10.1007/s12274-014-0433-z. DOI

Wijeratne K., Vagin M., Brooke R., Crispin X. Poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) electrodes in thermogalvanic cells. J. Mater. Chem. A. 2017;5:19619–19625. doi: 10.1039/C7TA04891B. PubMed DOI PMC

Chen S., Petsagkourakis I., Spampinato N., Kuang C., Liu X., Brooke R., Kang E.S.H., Fahlman M., Crispin X., Pavlopoulou E., et al. Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films. J. Mater. Chem. A. 2020;8:18726–18734. doi: 10.1039/D0TA06031C. DOI

Petsagkourakis I., Kim N., Tybrandt K., Zozoulenko I., Crispin X. Poly(3,4-ethylenedioxythiophene): Chemical Synthesis, Transport Properties, and Thermoelectric Devices. Adv. Electron. Mater. 2019;5:1800918. doi: 10.1002/aelm.201800918. DOI

Seki Y., Takahashi M., Takashiri M. Effects of different electrolytes and film thicknesses on structural and thermoelectric properties of electropolymerized poly(3,4-ethylenedioxythiophene) films. RSC Adv. 2019;9:15957–15965. doi: 10.1039/C9RA02310K. PubMed DOI PMC

Massonnet N., Carella A., Jaudouin O., Rannou P., Laval G., Celle C., Simonato J.-P.P. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J. Mater. Chem. C. 2014;2:1278–1283. doi: 10.1039/C3TC31674B. DOI

Koromilas N.D., Lainioti G.C., Oikonomou E.K., Bokias G., Kallitsis J.K. Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. Eur. Polym. J. 2014;54:39–51. doi: 10.1016/j.eurpolymj.2014.02.009. DOI

Sriprachuabwong C., Karuwan C., Wisitsorrat A., Phokharatkul D., Lomas T., Sritongkham P., Tuantranont A. Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 2012;22:5478–5485. doi: 10.1039/c2jm14005e. DOI

Langford E.G., Shaughnessy K.D., Devore T.C., Lawrence D., Constantin C. Analysis of PEDOT:PSS Films after Sulfuric Acid Treatment on Silicon and Fused Silica using FT-IR and UV-VIS. MRS Adv. 2016;1:465–469. doi: 10.1557/adv.2016.177. DOI

Naithani S., Schaubroeck D., Vercammen Y., Mandamparambil R., Yakimets I., Van Vaeck L., Van Steenberge G. Excimer laser patterning of PEDOT:PSS thin-films on flexible barrier foils: A surface analysis study. Appl. Surf. Sci. 2013;280:504–511. doi: 10.1016/j.apsusc.2013.05.018. DOI

Casado N., Hernández G., Veloso A., Devaraj S., Mecerreyes D., Armand M. PEDOT Radical Polymer with Synergetic Redox and Electrical Properties. ACS Macro Lett. 2016;5:59–64. doi: 10.1021/acsmacrolett.5b00811. PubMed DOI PMC

Kumar A., Reynolds J.R. Soluble alkyl-substituted poly(ethylenedioxythiophenes) as electrochromic materials. Macromolecules. 1996;29:7629–7630. doi: 10.1021/ma960879w. DOI

Chayer M., Faïd K., Leclerc M. Highly Conducting Water-Soluble Polythiophene Derivatives. Chem. Mater. 1997;9:2902–2905. doi: 10.1021/cm970238v. DOI

Schottland P., Fichet O., Teyssié D., Chevrot C. Langmuir-Blodgett films of an alkoxy derivative of poly(3,4-ethylenedioxythiophene) Synth. Met. 1999;101:7–8. doi: 10.1016/S0379-6779(98)00546-3. DOI

Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene. Nature. 1985;318:162–163. doi: 10.1038/318162a0. DOI

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI

Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi: 10.1038/363603a0. DOI

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI

Sun Y.-P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI

Baker S.N., Baker G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Li X., Rui M., Song J., Shen Z., Zeng H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015;25:4929–4947. doi: 10.1002/adfm.201501250. DOI

Zheng X.T., Ananthanarayanan A., Luo K.Q., Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small. 2015;11:1620–1636. doi: 10.1002/smll.201402648. PubMed DOI

Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Cayuela A., Soriano M.L., Carrillo-Carrión C., Valcárcel M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016;52:1311–1326. doi: 10.1039/C5CC07754K. PubMed DOI

Liu J., Bi H., Cesar Morais P., Zhang X., Zhang F., Hu L. Room-temperature magnetism in carbon dots and enhanced ferromagnetism in carbon dots-polyaniline nanocomposite. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-017-01350-x. PubMed DOI PMC

Feast W.J. Handbook of Conducting Polymers. CRC Press; New York, NY, USA: 1986. Synthesis of conducting polymers; pp. 1–43.

Pal A., Sk M.P., Chattopadhyay A. Conducting Carbon Dot-Polypyrrole Nanocomposite for Sensitive Detection of Picric acid. ACS Appl. Mater. Interfaces. 2016;8:5758–5762. doi: 10.1021/acsami.5b11572. PubMed DOI

Moorthy M., Kumar V.B., Porat Z.E., Gedanken A. Novel polymerization of aniline and pyrrole by carbon dots. New J. Chem. 2018;42:535–540. doi: 10.1039/C7NJ03389C. DOI

Chen L., Guo C.X., Zhang Q., Lei Y., Xie J., Ee S., Guai G., Song Q., Li C.M. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 2013;5:2047–2052. doi: 10.1021/am302938a. PubMed DOI

Dinari M., Momeni M.M., Goudarzirad M. Nanocomposite films of polyaniline/graphene quantum dots and its supercapacitor properties. Surf. Eng. 2016;32:535–540. doi: 10.1080/02670844.2015.1108047. DOI

Xie Y., Du H. Electrochemical capacitance of a carbon quantum dots-polypyrrole/titania nanotube hybrid. RSC Adv. 2015;5:89689–89697. doi: 10.1039/C5RA16538E. DOI

Punrat E., Maksuk C., Chuanuwatanakul S., Wonsawat W., Chailapakul O. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta. 2016;150:198–205. doi: 10.1016/j.talanta.2015.12.016. PubMed DOI

Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50:4738–4743. doi: 10.1016/j.carbon.2012.06.002. DOI

Devadas B., Imae T. Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustain. Chem. Eng. 2018;6:127–134. doi: 10.1021/acssuschemeng.7b01858. DOI

Alaş M.O., Güngör A., Genç R., Erdem E. Feeling the power: Robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale. 2019;11:12804–12816. doi: 10.1039/C9NR03544C. PubMed DOI

Kepić D.P., Marković Z.M., Jovanović S.P., Peruško D.B., Budimir M.D., Holclajtner-Antunović I.D., Pavlović V.B., Todorović Marković B.M. Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots. Synth. Met. 2014;198:150–154. doi: 10.1016/j.synthmet.2014.10.017. DOI

Li H., Yuan J., Zha L., Wang L., Chen H., Che J. Soft conducting polymer hydrogels in situ doped by sulfonated graphene quantum dots for enhanced electrochemical activity. J. Mater. Sci. Mater. Electron. 2020;31:2153–2161. doi: 10.1007/s10854-019-02739-2. DOI

Zhou Y., Sharma S.K., Peng Z., Leblanc R.M. Polymers in Carbon Dots: A Review. Polymers. 2017;9:67. doi: 10.3390/polym9020067. PubMed DOI PMC

Du F.P., Cao N.N., Zhang Y.F., Fu P., Wu Y.G., Lin Z.D., Shi R., Amini A., Cheng C. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-24632-4. PubMed DOI PMC

Lim H.C., Min S.H., Lee E., Jang J., Kim S.H., Hong J.I. Self-assembled Poly(3,4-ethylene dioxythiophene):Poly(styrenesulfonate)/Graphene quantum dot organogels for efficient charge transport in photovoltaic devices. ACS Appl. Mater. Interfaces. 2015;7:11069–11073. doi: 10.1021/acsami.5b02434. PubMed DOI

Oh W.K., Kwon O.S., Jang J. Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing. Polym. Rev. 2013;53:407–442. doi: 10.1080/15583724.2013.805771. DOI

Nezakati T., Seifalian A., Tan A., Seifalian A.M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018;14:6766–6843. doi: 10.1021/acs.chemrev.6b00275. PubMed DOI

Zhao Z., Xie Y. Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J. Power Sour. 2017;337:54–64. doi: 10.1016/j.jpowsour.2016.10.110. DOI

Kausar A. Polymer/carbon-based quantum dot nanocomposite: Forthcoming materials for technical application. J. Macromol. Sci. Part A. 2019;56:341–356. doi: 10.1080/10601325.2019.1578614. DOI

O’Regan B., Grätzel M. A low-cost, high-efficiency solar cell based on dy-sensitized colloidad TiO2 films. Nature. 1991;353:737–740.

Boschloo G. Improving the performance of dye-sensitized solar cells. Front. Chem. 2019;7:1–9. doi: 10.3389/fchem.2019.00077. PubMed DOI PMC

Randviir E.P., Brownson D.A., Banks C.E. A decade of graphene research: Production, applications and outlook. Mater. Today. 2014;17:426–432. doi: 10.1016/j.mattod.2014.06.001. DOI

Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI

Morozov S., Novoselov K., Katsnelson M., Schedin F., Elias D., Jaszczak J.A., Geim A. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008;100:016602. doi: 10.1103/PhysRevLett.100.016602. PubMed DOI

Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M., Geim A.K. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI

Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907. doi: 10.1021/nl0731872. PubMed DOI

Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010;5:487. doi: 10.1038/nnano.2010.89. PubMed DOI

Raju A.P.A., Lewis A., Derby B., Young R.J., Kinloch I.A., Zan R., Novoselov K.S. Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy. Adv. Funct. Mater. 2014;24:2865–2874. doi: 10.1002/adfm.201302869. DOI

Yoo J.J., Balakrishnan K., Huang J., Meunier V., Sumpter B.G., Srivastava A., Conway M., Mohana Reddy A.L., Yu J., Vajtai R. Ultrathin planar graphene supercapacitors. Nano Lett. 2011;11:1423–1427. doi: 10.1021/nl200225j. PubMed DOI

Ferrari A.C., Bonaccorso F., Fal’Ko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F.H., Palermo V., Pugno N. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810. PubMed

Patchkovskii S., John S.T., Yurchenko S.N., Zhechkov L., Heine T., Seifert G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA. 2005;102:10439–10444. doi: 10.1073/pnas.0501030102. PubMed DOI PMC

Bianco A., Cheng H.-M., Enoki T., Gogotsi Y., Hurt R.H., Koratkar N., Kyotani T., Monthioux M., Park C.R., Tascon J.M. All in the graphene family–A recommended nomenclature for two-dimensional carbon materials. Carbon. 2013;65:1–6. doi: 10.1016/j.carbon.2013.08.038. DOI

Wick P., Louw-Gaume A.E., Kucki M., Krug H.F., Kostarelos K., Fadeel B., Dawson K.A., Salvati A., Vázquez E., Ballerini L. Classification framework for graphene-based materials. Angew. Chem. Int. Ed. 2014;53:7714–7718. doi: 10.1002/anie.201403335. PubMed DOI

Pumera M. Graphene in biosensing. Mater. Today. 2011;14:308–315. doi: 10.1016/S1369-7021(11)70160-2. DOI

Kim H., Abdala A.A., Macosko C.W. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–9257. doi: 10.1016/j.actbio.2013.08.016. PubMed DOI

Sarno M., Baldino L., Scudieri C., Cardea S., Ciambelli P., Reverchon E. Supercritical CO2 processing to improve the electrochemical properties of graphene oxide. J. Supercrit. Fluids. 2016;118:119–127. doi: 10.1016/j.supflu.2016.08.002. DOI

Du J., Cheng H.M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012;213:1060–1077. doi: 10.1002/macp.201200029. DOI

Potts J.R., Lee S.H., Alam T.M., An J., Stoller M.D., Piner R.D., Ruoff R.S. Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon. 2011;49:2615–2623. doi: 10.1016/j.carbon.2011.02.023. DOI

Yang Y., Li S., Yang W., Yuan W., Xu J., Jiang Y. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl. Mater. Interfaces. 2014;6:13807–13814. doi: 10.1021/am5032456. PubMed DOI

Shi Y., Peng L., Ding Y., Zhao Y., Yu G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015;44:6684–6696. doi: 10.1039/C5CS00362H. PubMed DOI

Park J., Yang X., Wickramasinghe D., Sundhoro M., Orbey N., Chow K.-F., Yan M. Functionalization of pristine graphene for the synthesis of covalent graphene–polyaniline nanocomposite. RSC Adv. 2020;10:26486–26493. doi: 10.1039/D0RA03579C. PubMed DOI PMC

Kumari P., Khawas K., Nandy S., Kuila B.K. A supramolecular approach to Polyaniline graphene nanohybrid with three dimensional pillar structures for high performing electrochemical supercapacitor applications. Electrochim. Acta. 2016;190:596–604. doi: 10.1016/j.electacta.2015.12.130. DOI

Zhu Q., Li E., Liu X., Song W., Li Y., Wang X., Liu C. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Prog. Org. Coat. 2020;140:105488. doi: 10.1016/j.porgcoat.2019.105488. DOI

Khan R., Nishina Y. Grafting conductive polymers on graphene oxide through cross-linker: A stepwise approach. J. Mater. Chem. A. 2020;8:13718–13724. doi: 10.1039/D0TA05489E. DOI

Bose S., Kuila T., Uddin M.E., Kim N.H., Lau A.K., Lee J.H. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer. 2010;51:5921–5928. doi: 10.1016/j.polymer.2010.10.014. DOI

Zhang Q., Dong H., Hu W. Electrochemical polymerization for two-dimensional conjugated polymers. J. Mater. Chem. C. 2018;6:10672–10686. doi: 10.1039/C8TC04149K. DOI

Österholm A., Lindfors T., Kauppila J., Damlin P., Kvarnström C. Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim. Acta. 2012;83:463–470. doi: 10.1016/j.electacta.2012.07.121. DOI

Jiang F., Yao Z., Yue R., Du Y., Xu J., Yang P., Wang C. Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. Int. J. Hydrog. Energy. 2012;37:14085–14093. doi: 10.1016/j.ijhydene.2012.04.084. DOI

Luo X., Weaver C.L., Tan S., Cui X.T. Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. J. Mat. Chem. B. 2013;1:1340–1348. doi: 10.1039/c3tb00006k. PubMed DOI PMC

Wang D.-W., Li F., Zhao J., Ren W., Chen Z.-G., Tan J., Wu Z.-S., Gentle I., Lu G.Q., Cheng H.-M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3:1745–1752. doi: 10.1021/nn900297m. PubMed DOI

Sanes J., Sánchez C., Pamies R., Avilés M.-D., Bermúdez M.-D. Extrusion of polymer nanocomposites with graphene and graphene derivative nanofillers: An overview of recent developments. Materials. 2020;13:549. doi: 10.3390/ma13030549. PubMed DOI PMC

Garzón C., Palza H. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Technol. 2014;99:117–123. doi: 10.1016/j.compscitech.2014.05.018. DOI

Zhang H.-B., Zheng W.-G., Yan Q., Yang Y., Wang J.-W., Lu Z.-H., Ji G.-Y., Yu Z.-Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. 2010;51:1191–1196. doi: 10.1016/j.polymer.2010.01.027. DOI

Qiu S., Li W., Zheng W., Zhao H., Wang L. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution. ACS Appl. Mater. Interfaces. 2017;9:34294–34304. doi: 10.1021/acsami.7b08325. PubMed DOI

Subtil E.L., Goncalves J., Lemos H.G., Venancio E.C., Mierzwa J.C., de Souza J.d.S., Alves W., Le-Clech P. Preparation and characterization of a new composite conductive polyethersulfone membrane using polyaniline (PANI) and reduced graphene oxide (rGO) Chem. Eng. J. 2020;390:124612. doi: 10.1016/j.cej.2020.124612. DOI

Yu J., Kan C.-W. Review on fabrication of structurally colored fibers by electrospinning. Fibers. 2018;6:70. doi: 10.3390/fib6040070. DOI

Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI

Barzegar F., Bello A., Fabiane M., Khamlich S., Momodu D., Taghizadeh F., Dangbegnon J., Manyala N. Preparation and characterization of poly (vinyl alcohol)/graphene nanofibers synthesized by electrospinning. J. Phys. Chem. Solids. 2015;77:139–145. doi: 10.1016/j.jpcs.2014.09.015. DOI

Ceretti E., Ginestra P.S., Ghazinejad M., Fiorentino A., Madou M. Electrospinning and characterization of polymer–graphene powder scaffolds. Cirp Ann. 2017;66:233–236. doi: 10.1016/j.cirp.2017.04.122. DOI

Yang W., Ratinac K.R., Ringer S.P., Thordarson P., Gooding J.J., Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010;49:2114–2138. doi: 10.1002/anie.200903463. PubMed DOI

Bao Q., Zhang H., Yang J.x., Wang S., Tang D.Y., Jose R., Ramakrishna S., Lim C.T., Loh K.P. Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010;20:782–791. doi: 10.1002/adfm.200901658. DOI

Song J., Gao H., Zhu G., Cao X., Shi X., Wang Y. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 2015;95:1039–1050. doi: 10.1016/j.carbon.2015.09.011. DOI

Chu C.-Y., Tsai J.-T., Sun C.-L. Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int. J. Hydrog. Energy. 2012;37:13880–13886. doi: 10.1016/j.ijhydene.2012.05.017. DOI

Ma J., Zhou X., Ding S., Liu Z. Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers. RSC Adv. 2017;7:15469–15474. doi: 10.1039/C7RA01670K. DOI

Chang H.-H., Chang C.-K., Tsai Y.-C., Liao C.-S. Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon. 2012;50:2331–2336. doi: 10.1016/j.carbon.2012.01.056. DOI

Yan X., Chen J., Yang J., Xue Q., Miele P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide− polyaniline and graphene− polyaniline hybrid papers. ACS Appl. Mater. Interfaces. 2010;2:2521–2529. doi: 10.1021/am100293r. PubMed DOI

Lyu H. Triple layer tungsten trioxide, graphene, and polyaniline composite films for combined energy storage and electrochromic applications. Polymers. 2020;12:49. doi: 10.3390/polym12010049. PubMed DOI PMC

Tian H.-C., Liu J.-Q., Wei D.-X., Kang X.-Y., Zhang C., Du J.-C., Yang B., Chen X., Zhu H.-Y., NuLi Y.-N. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials. 2014;35:2120–2129. doi: 10.1016/j.biomaterials.2013.11.058. PubMed DOI

Ouyang X., Luo L., Ding Y., Liu B., Xu D. Simultaneous determination of purine and pyrimidine bases in DNA using poly (3, 4-ethylenedioxythiophene)/graphene composite film. J. Electroanal. Chem. 2014;735:51–56. doi: 10.1016/j.jelechem.2014.09.037. DOI

Lei W., Wu L., Huang W., Hao Q., Zhang Y., Xia X. Microwave-assisted synthesis of hemin–graphene/poly (3, 4-ethylenedioxythiophene) nanocomposite for a biomimetic hydrogen peroxide biosensor. J. Mat. Chem. B. 2014;2:4324–4330. doi: 10.1039/C4TB00313F. PubMed DOI

Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Mater. Mater. Sustain. Energy. 2011:129–137. doi: 10.1142/9789814317665_0020. PubMed DOI

Zahid M., Papadopoulou E.L., Athanassiou A., Bayer I.S. Strain-responsive mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Mater. Des. 2017;135:213–222. doi: 10.1016/j.matdes.2017.09.026. DOI

Weaver C.L., LaRosa J.M., Luo X., Cui X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8:1834–1843. doi: 10.1021/nn406223e. PubMed DOI PMC

Byun K.-E., Choi D.S., Kim E., Seo D.H., Yang H., Seo S., Hong S. Graphene–polymer hybrid nanostructure-based bioenergy storage device for real-time control of biological motor activity. ACS Nano. 2011;5:8656–8664. doi: 10.1021/nn202421n. PubMed DOI

Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC

Guo Z., Liao N., Zhang M., Xue W. Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor. Appl. Surf. Sci. 2018;453:336–340. doi: 10.1016/j.apsusc.2018.05.108. DOI

Muthusankar E., Ragupathy D. Graphene/Poly (aniline-co-diphenylamine) nanohybrid for ultrasensitive electrochemical glucose sensor. Nano-Struct. Nano-Objects. 2019;20:100390. doi: 10.1016/j.nanoso.2019.100390. DOI

Chen J., Wang Y., Cao J., Liu Y., Zhou Y., Ouyang J.-H., Jia D. Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl. Mater. Interfaces. 2017;9:19831–19842. doi: 10.1021/acsami.7b03786. PubMed DOI

Lei W., Si W., Xu Y., Gu Z., Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim. Acta. 2014;181:707–722. doi: 10.1007/s00604-014-1160-6. DOI

Kinloch I.A., Suhr J., Lou J., Young R.J., Ajayan P.M. Composites with carbon nanotubes and graphene: An outlook. Science. 2018;362:547–553. doi: 10.1126/science.aat7439. PubMed DOI

Hamada N., Sawada S.-i., Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992;68:1579–1581. doi: 10.1103/PhysRevLett.68.1579. PubMed DOI

Mintmire J.W., Dunlap B.I., White C.T. Are fullerene tubules metallic? Phys. Rev. Lett. 1992;68:631–634. doi: 10.1103/PhysRevLett.68.631. PubMed DOI

Walker B.W., Lara R.P., Mogadam E., Yu C.H., Kimball W., Annabi N. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 2019;92:135–157. doi: 10.1016/j.progpolymsci.2019.02.007. PubMed DOI PMC

Yu Y., Luo Y., Wu H., Jiang K., Li Q., Fan S., Li J., Wang J. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale. 2018;10:19972–19978. doi: 10.1039/C8NR05241G. PubMed DOI

Senokos E., Ou Y., Torres J.J., Sket F., González C., Marcilla R., Vilatela J.J. Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves. Sci. Rep. 2018;8:3407. doi: 10.1038/s41598-018-21829-5. PubMed DOI PMC

Breuer O., Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004;25:630–645. doi: 10.1002/pc.20058. DOI

Tkalya E.E., Ghislandi M., de With G., Koning C.E. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 2012;17:225–232. doi: 10.1016/j.cocis.2012.03.001. DOI

Alegret N., Dominguez-Alfaro A., González-Domínguez J.M., Arnaiz B., Cossío U., Bosi S., Vázquez E., Ramos-Cabrer P., Mecerreyes D., Prato M. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Appl. Mater. Interfaces. 2018;10:43904–43914. doi: 10.1021/acsami.8b16462. PubMed DOI

Dominguez-Alfaro A., Alegret N., Arnaiz B., González-Domínguez J.M., Martin-Pacheco A., Cossío U., Porcarelli L., Bosi S., Vázquez E., Mecerreyes D., et al. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2020;6:1269–1278. doi: 10.1021/acsbiomaterials.9b01316. PubMed DOI

Wang Q., Yao Q., Chang J., Chen L. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 2012;22:17612–17618. doi: 10.1039/c2jm32750c. DOI

Dominguez-Alfaro A., Gómez I.J., Alegret N., Mecerreyes D., Prato M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers. 2021;13:436. doi: 10.3390/polym13030436. PubMed DOI PMC

Dominguez-Alfaro A., Alegret N., Arnaiz B., Salsamendi M., Mecerreyes D., Prato M. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Appl. Mater. Interfaces. 2020 doi: 10.1021/acsami.0c16645. PubMed DOI

Mahdavi M., Baniassadi M., Baghani M., Dadmun M., Tehrani M. 3D reconstruction of carbon nanotube networks from neutron scattering experiments. Nanotechnology. 2015:26. doi: 10.1088/0957-4484/26/38/385704. PubMed DOI

Goshi N., Castagnola E., Vomero M., Gueli C., Cea C., Zucchini E., Bjanes D., Maggiolini E., Moritz C., Kassegne S., et al. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. J. Micromech. Microeng. 2018;28:12. doi: 10.1088/1361-6439/aab061. DOI

Wang Q., Liang X., Zhang D., Miao M. A multifunctional supercapacitor based on 2D nanosheets on a flexible carbon nanotube film. Dalton Trans. 2020;49:9312–9321. doi: 10.1039/D0DT01691H. PubMed DOI

Markose K.K., Jasna M., Subha P.P., Antony A., Jayaraj M.K. Performance enhancement of organic/Si solar cell using CNT embedded hole selective layer. Sol. Energy. 2020;211:158–166. doi: 10.1016/j.solener.2020.09.024. DOI

Tian Y., Wang T., Geng H.-Z., Etihraj A.S., Gu Z.-Z., Jing L.-C., Yuan X.-T., Zhao H., Wen J.-G., Xu Z.-H. Improved resistance stability of transparent conducting films prepared by PEDOT: PSS hybrid CNTs treated by a two-step method. Mater. Res. Express. 2019:6. doi: 10.1088/2053-1591/ab46ea. DOI

Du Y., Shi Y., Meng Q., Shen S.Z. Preparation and thermoelectric properties of flexible SWCNT/PEDOT:PSS composite film. Synth. Met. 2020:261. doi: 10.1016/j.synthmet.2020.116318. DOI

Chung S.-H., Kim D.H., Kim H., Kim H., Jeong S.W. Thermoelectric properties of PEDOT: PSS and acid-treated SWCNT composite films. Mater. Today Commun. 2020:23. doi: 10.1016/j.mtcomm.2019.100867. DOI

Lee T., Kwon W., Park M. Highly conductive, transparent and metal-free electrodes with a PEDOT:PSS/SWNT bilayer for high-performance organic thin film transistors. Org. Electron. 2019;67:26–33. doi: 10.1016/j.orgel.2019.01.008. DOI

Zhao H., Geng W., Cao W.-W., Wen J.-G., Wang T., Tian Y., Jing L.-C., Yuan X.-T., Zhu Z.-R., Geng H.-Z. Highly stable and conductive PEDOT:PSS/GO-SWCNT bilayer transparent conductive films. New J. Chem. 2020;44:780–790. doi: 10.1039/C9NJ04414K. DOI

Xu L., Xu J., Yang Y., Mao X., He X., Yang W., Zhao Y., Zhou Y. A flexible fabric electrode with hierarchical carbon-polymer composite for functional supercapacitors. J. Mater. Sci. Mater. Electron. 2018;29:2322–2330. doi: 10.1007/s10854-017-8149-y. DOI

Chang Z.-H., Feng D.-Y., Huang Z.-H., Liu X.-X. Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chem. Eng. J. 2018;337:552–559. doi: 10.1016/j.cej.2017.12.095. DOI

Wang T., Jing L.-C., Zhu Q., Ethiraj A.S., Fan X., Liu H., Tian Y., Zhu Z., Meng Z., Geng H.-Z. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters. J. Colloid Interface Sci. 2020;577:300–310. doi: 10.1016/j.jcis.2020.05.084. PubMed DOI

Gu Z.-Z., Tian Y., Geng H.-Z., Rhen D.S., Ethiraj A.S., Zhang X., Jing L.-C., Wang T., Xu Z.-H., Yuan X.-T. Highly conductive sandwich-structured CNT/PEDOT:PSS/CNT transparent conductive films for OLED electrodes. Appl. Nanosci. 2019;9:1971–1979. doi: 10.1007/s13204-019-01006-4. DOI

Kizildag N., Ucar N. Electrospinning—Material, Techniques, and Biomedical Applications. Intech Open; London, UK: 2016. Electrospinning Functional Polyacrylonitrile Nanofibers with Polyaniline, Carbon Nanotubes, and Silver Nitrate as Additives; pp. 25–43. DOI

Im J.S., Yun J., Kim J.G., Bae T.-S., Lee Y.-S. The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. Appl. Surf. Sci. 2012;258:2219–2225. doi: 10.1016/j.apsusc.2011.08.017. DOI

Manesh K.M., Kim H.T., Santhosh P., Gopalan A.I., Lee K.P. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens. Bioelectron. 2008;23:771–779. doi: 10.1016/j.bios.2007.08.016. PubMed DOI

Su Z., Ding J., Wei G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv. 2014;4:52598–52610. doi: 10.1039/C4RA07848A. DOI

Ayutsede J., Gandhi M., Sukigara S., Ye H., Hsu C.M., Gogotsi Y., Ko F. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules. 2006;7:208–214. doi: 10.1021/bm0505888. PubMed DOI

Lewitus D.Y., Landers J., Branch J.R., Smith K.L., Callegari G., Kohn J., Neimark A.V. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv. Funct. Mater. 2011;21:2624–2632. doi: 10.1002/adfm.201002429. PubMed DOI PMC

Shao S., Zhou S., Li L., Li J., Luo C., Wang J., Li X., Weng J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials. 2011;32:2821–2833. doi: 10.1016/j.biomaterials.2011.01.051. PubMed DOI

Meng J., Kong H., Han Z., Wang C., Zhu G., Xie S., Xu H. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J. Biomed. Mater. Res. Part A. 2009;88A:105–116. doi: 10.1002/jbm.a.31862. PubMed DOI

Yardimci A.I., Aypek H., Ozturk O., Yilmaz S., Ozcivici E., Mese G., Selamet Y. CNT Incorporated Polyacrilonitrile/Polypyrrole Nanofibers as Keratinocytes Scaffold. J. Biomim. Biomater. Biomed. Eng. 2019;41:69–81. doi: 10.4028/www.scientific.net/JBBBE.41.69. DOI

Roh S.-H. Electricity Generation from Microbial Fuel Cell with Polypyrrole-Coated Carbon Nanofiber Composite. J. Nanosci. Nanotechnol. 2015;15:1700–1703. doi: 10.1166/jnn.2015.9317. PubMed DOI

Jung H.-Y., Roh S.-H. Carbon Nanofiber/Polypyrrole Nanocomposite as Anode Material in Microbial Fuel Cells. J. Nanosci. Nanotechnol. 2017;17:5830–5833. doi: 10.1166/jnn.2017.14149. DOI

Ahmed A., Jia Y., Huang Y., Khoso N.A., Deb H., Fan Q., Shao J. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J. Mater. Sci. Mater. Electron. 2019;30:14007–14021. doi: 10.1007/s10854-019-01751-w. DOI

Hazarika A., Deka B.K., Kim D., Kong K., Park Y.-B., Park H.W. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Sci. Rep. 2017:7. doi: 10.1038/srep40386. PubMed DOI PMC

Zheng X.S., Griffith A.Y., Chang E., Looker M.J., Fisher L.E., Clapsaddle B., Cui X.T. Evaluation of a conducting elastomeric composite material for intramuscular electrode application. Acta Biomater. 2020;103:81–91. doi: 10.1016/j.actbio.2019.12.021. PubMed DOI PMC

Jie W., Song F., Li X., Li W., Wang R., Jiang Y., Zhao L., Fan Z., Wang J., Liu B. Enhancing the proliferation of MC3T3-E1 cells on casein phosphopeptide-biofunctionalized 3D reduced-graphene oxide/polypyrrole scaffolds. RSC Adv. 2017;7:34415–34424. doi: 10.1039/C7RA02146A. DOI

Choi J.S., Park J.S., Kim B., Lee B.-T., Yim J.-H. In Vitro Biocompatibility of Vapour Phase Polymerised Conductive Scaffolds for Cell Lines. Polymer. 2017;124:95–100. doi: 10.1016/j.polymer.2017.07.047. DOI

Ravi M., Paramesh V., Kaviya S.R., Anuradha E., Solomon F.P. 3D Cell Culture Systems: Advantages and Applications. J. Cell. Physiol. 2015;230:16–26. doi: 10.1002/jcp.24683. PubMed DOI

Chen J., Liu B., Gao X., Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018;8:28048–28085. doi: 10.1039/C8RA04205E. PubMed DOI PMC

Gorain B., Choudhury H., Pandey M., Kesharwani P., Abeer M.M., Tekade R.K., Hussain Z. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed. Pharmacother. 2018;104:496–508. doi: 10.1016/j.biopha.2018.05.066. PubMed DOI

Yeo L.Y., Friend J.R. Electrospinning carbon nanotube polymer composite nanofibers. J. Exp. Nanosci. 2006;1:177–209. doi: 10.1080/17458080600670015. DOI

Li Y., Ye D., Liu W., Shi B., Guo R., Pei H., Xie J. A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO(2)/reduced graphene oxide/carbon nanotube for high performance lithium ion batteries. J. Colloid Interface Sci. 2017;493:241–248. doi: 10.1016/j.jcis.2017.01.008. PubMed DOI

Zhang X., Wu S., Deng S., Wu W., Zeng Y., Xia X., Pan G., Tong Y., Lu X. 3D CNTs Networks Enable MnO2 Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn-MnO2 Batteries. Small Methods. 2019:3. doi: 10.1002/smtd.201900525. DOI

Jyothibasu J.P., Kuo D.-W., Lee R.-H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose. 2019;26:4495–4513. doi: 10.1007/s10570-019-02376-2. DOI

Liu J., Wen Y., van Aken P.A., Maier J., Yu Y. In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. J. Mater. Chem. A. 2015;3:5259–5265. doi: 10.1039/C5TA00431D. DOI

Zhang M., Amin K., Cheng M., Yuan H., Mao L., Yan W., Wei Z. A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium-sulfur batteries. Nanoscale. 2018;10:21790–21797. doi: 10.1039/C8NR07964A. PubMed DOI

Wang Y., Pan X., Chen Y., Wen Q., Lin C., Zheng J., Li W., Xu H., Qi L. A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J. Appl. Electrochem. 2020;50:1281–1290. doi: 10.1007/s10800-020-01488-z. DOI

Wu X., Lei Y., Li S., Huang J., Teng L., Chen Z., Lai Y. Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil. J. Hazard. Mater. 2021;403:124090. doi: 10.1016/j.jhazmat.2020.124090. PubMed DOI

Zhao W., Li Y., Wu S., Wang D., Zhao X., Xu F., Zou M., Zhang H., He X., Cao A. Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Appl. Mater. Interfaces. 2016;8:34027–34033. doi: 10.1021/acsami.6b11984. PubMed DOI

Zhang Y., Zhen Z., Zhang Z., Lao J., Wei J., Wang K., Kang F., Zhu H. In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim. Acta. 2015;157:134–141. doi: 10.1016/j.electacta.2015.01.084. DOI

Jiang H., Cai X., Qian Y., Zhang C., Zhou L., Liu W., Li B., Lai L., Huang W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A. 2017;5:23727–23736. doi: 10.1039/C7TA07727K. DOI

Giffney T., Xie M., Sartelet M.C., Aw K. Vapor phase polymerization of PEDOT on silicone rubber as flexible large strain sensor. Aims Mater. Sci. 2015;2:414–424. doi: 10.3934/matersci.2015.4.414. DOI

Iandolo D., Ravichandran A., Liu X., Wen F., Chan J.K., Berggren M., Teoh S.H., Simon D.T. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Adv. Healthc. Mater. 2016;5:1505–1512. doi: 10.1002/adhm.201500874. PubMed DOI

Tenhaeff W.E., Gleason K.K. Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: iCVD and oCVD. Adv. Funct. Mater. 2008;18:979–992. doi: 10.1002/adfm.200701479. DOI

Chang-Jian C.-W., Cho E.-C., Lee K.-C., Huang J.-H., Chen P.-Y., Ho B.-C., Hsiao Y.-S. Thermally conductive polymeric composites incorporating 3D MWCNT/PEDOT:PSS scaffolds. Compos. Part B Eng. 2018;136:46–54. doi: 10.1016/j.compositesb.2017.10.004. DOI

Carayon I., Gaubert A., Mousli Y., Philippe B. Electro-responsive hydrogels: Macromolecular and supramolecular approaches in the biomedical field. Biomater. Sci. 2020;8:5589–5600. doi: 10.1039/D0BM01268H. PubMed DOI

Cao H., Yang Y., Qi Y., Li Y., Sun B., Li Y., Cui W., Li J., Li J. Intraparticle FRET for Enhanced Efficiency of Two-Photon Activated Photodynamic Therapy. Adv. Healthc. Mater. 2018;7:1701357. doi: 10.1002/adhm.201701357. PubMed DOI

Adewunmi A.A., Ismail S., Sultan A.S. Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: A Critical Review. J. Inorg. Organomet. Polym. Mater. 2016;26:717–737. doi: 10.1007/s10904-016-0379-6. DOI

Homenick C.M., Sheardown H., Adronov A. Reinforcement of collagen with covalently-functionalized single-walled carbon nanotube crosslinkers. J. Mater. Chem. 2010;20:2887–2894. doi: 10.1039/b925799c. DOI

Yu H., Zhao H., Huang C., Du Y. Mechanically and Electrically Enhanced CNT-Collagen Hydrogels As Potential Scaffolds for Engineered Cardiac Constructs. ACS Biomater. Sci. Eng. 2017;3:3017–3021. doi: 10.1021/acsbiomaterials.6b00620. PubMed DOI

Kolahchi R., Safari M., Esmailpour M. Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos. Struct. 2016;150:255–265. doi: 10.1016/j.compstruct.2016.05.023. DOI

Rehman H.U., Chen Y., Guo Y., Du Q., Zhou J., Guo Y., Duan H., Li H., Liu H. Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite. Compos. Part A Appl. Sci. Manuf. 2016;90:250–260. doi: 10.1016/j.compositesa.2016.07.014. DOI

Castagnola E., Maggiolini E., Ceseracciu L., Ciarpella F., Zucchini E., De Faveri S., Fadiga L., Ricci D. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Front. Neurosci. 2016;10:14. doi: 10.3389/fnins.2016.00151. PubMed DOI PMC

Chen C.-R., Qin H., Cong H.-P., Yu S.-H. A Highly Stretchable and Real-Time Healable Supercapacitor. Adv. Mater. 2019:31. doi: 10.1002/adma.201900573. PubMed DOI

Deng Z., Guo Y., Zhao X., Ma P.X., Guo B. Multifunctional Stimuli-Responsive Hydrogels with Self-Healing, High Conductivity, and Rapid Recovery through Host-Guest Interactions. Chem. Mater. 2018;30:1729–1742. doi: 10.1021/acs.chemmater.8b00008. DOI

Shin J., Choi E.J., Cho J.H., Cho A.N., Jin Y., Yang K., Song C., Cho S.W. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules. 2017;18:3060–3072. doi: 10.1021/acs.biomac.7b00568. PubMed DOI

MacDonald R.A., Laurenzi B.F., Viswanathan G., Ajayan P.M., Stegemann J.P. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. A. 2005;74:489–496. doi: 10.1002/jbm.a.30386. PubMed DOI

Pok S., Vitale F., Eichmann S.L., Benavides O.M., Pasquali M., Jacot J.G. Biocompatible Carbon Nanotube–Chitosan Scaffold Matching the Electrical Conductivity of the Heart. ACS Nano. 2014;8:9822–9832. doi: 10.1021/nn503693h. PubMed DOI PMC

Tosun Z., McFetridge P.S. A composite SWNT-collagen matrix: Characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix. J. Neural Eng. 2010;7:066002. doi: 10.1088/1741-2560/7/6/066002. PubMed DOI

Peña B., Bosi S., Aguado B.A., Borin D., Farnsworth N.L., Dobrinskikh E., Rowland T.J., Martinelli V., Jeong M., Taylor M.R.G., et al. Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Appl. Mater. Interfaces. 2017;9:31645–31656. doi: 10.1021/acsami.7b11438. PubMed DOI PMC

Raphey V.R., Henna T.K., Nivitha K.P., Mufeedha P., Sabu C., Pramod K. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C. 2019;100:616–630. doi: 10.1016/j.msec.2019.03.043. PubMed DOI

Prajapati S.K., Malaiya A., Kesharwani P., Soni D., Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem. Toxicol. 2020 doi: 10.1080/01480545.2019.1709492. PubMed DOI

Hsu J.-H., Yu C. Sorting-free utilization of semiconducting carbon nanotubes for large thermoelectric responses. Nano Energy. 2020:67. doi: 10.1016/j.nanoen.2019.104282. DOI

Yang X., Wang S., Zhuang X., Tomanec O., Zboril R., Yu D.Y.W., Rogach A.L. Polypyrrole and Carbon Nanotube Co-Composited Titania Anodes with Enhanced Sodium Storage Performance in Ether-Based Electrolyte. Adv. Sustain. Syst. 2019:3. doi: 10.1002/adsu.201800154. DOI

Rudramurthy G.R., Swamy M.K. Potential applications of engineered nanoparticles in medicine and biology: An update. J. Biol. Inorg. Chem. 2018;23:1185–1204. doi: 10.1007/s00775-018-1600-6. PubMed DOI

Gorjikhah F., Davaran S., Salehi R., Bakhtiari M., Hasanzadeh A., Panahi Y., Emamverdy M., Akbarzadeh A. Improving “lab-on-a-chip” techniques using biomedical nanotechnology: A review. Artif. Cells Nanomed. Biotechnol. 2016;44:1609–1614. doi: 10.3109/21691401.2015.1129619. PubMed DOI

Silva G.A. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. Neurosci. 2006;7:65–74. doi: 10.1038/nrn1827. PubMed DOI

Rauti R., Musto M., Bosi S., Prato M., Ballerini L. Properties and Behavior of Carbon Nanomaterials when Interfacing Neuronal Cells: How Far Have We Come? Carbon. 2019;143:430–446. doi: 10.1016/j.carbon.2018.11.026. DOI

Mattson M.P., Haddon R.C., Rao A.M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 2000;14:175–182. doi: 10.1385/JMN:14:3:175. PubMed DOI

Fabbro A., Prato M., Ballerini L. Carbon Nanotubes in Neuroregeneration and Repair. Adv. Drug Deliv. Rev. 2013;65:2034–2044. doi: 10.1016/j.addr.2013.07.002. PubMed DOI

Fabbro A., Bosi S., Ballerini L., Prato M. Carbon Nanotubes: Artificial Nanomaterials to Engineer Single Neurons and Neuronal Networks. ACS Chem. Neurosci. 2012;3:611–618. doi: 10.1021/cn300048q. PubMed DOI PMC

Pampaloni N.P., Scaini D., Perissinotto F., Bosi S., Prato M., Ballerini L. Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. Nanomed. Nanotechnol. Biol. Med. 2018;14:2521–2532. doi: 10.1016/j.nano.2017.01.020. PubMed DOI

Fiorito S., Russier J., Salemme A., Soligo M., Manni L., Krasnowska E., Bonnamy S., Flahaut E., Serafino A., Togna G.I., et al. Switching on microglia with electro-conductive multi walled carbon nanotubes. Carbon. 2018;129:572–584. doi: 10.1016/j.carbon.2017.12.069. DOI

Lovat V., Pantarotto D., Lagostena L., Cacciari B., Grandolfo M., Righi M., Spalluto G., Prato M., Ballerini L. Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Lett. 2005;5:1107–1110. doi: 10.1021/nl050637m. PubMed DOI

Shao H., Li T.T., Zhu R., Xu X.T., Yu J.D., Chen S.F., Song L., Ramakrishna S., Lei Z.G., Ruan Y.W., et al. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials. 2018;175:93–109. doi: 10.1016/j.biomaterials.2018.05.028. PubMed DOI

Su W.T., Shih Y.A. Nanofiber containing carbon nanotubes enhanced PC12 cell proliferation and neuritogenesis by electrical stimulation. Bio-Med. Mater. Eng. 2015;26:S189–S195. doi: 10.3233/BME-151305. PubMed DOI

Mazzatenta A., Giugliano M., Campidelli S., Gambazzi L., Businaro L., Markram H., Prato M., Ballerini L. Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. J. Neurosci. 2007;27:6931–6936. doi: 10.1523/JNEUROSCI.1051-07.2007. PubMed DOI PMC

Fabbro A., Cellot G., Prato M., Ballerini L. Interfacing neurons with carbon nanotubes: (re) engineering neuronal signaling. In: Schouenborg J., Garwicz M., Danielsen N., editors. Brain Machine Interfaces: Implications for Science, Clinical Practice and Society. Volume 194. Elsevier Science Bv; Amsterdam, The Netherlands: 2011. pp. 241–252. PubMed

Cellot G., Cilia E., Cipollone S., Rancic V., Sucapane A., Giordani S., Gambazzi L., Markram H., Grandolfo M., Scaini D., et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 2009;4:126–133. doi: 10.1038/nnano.2008.374. PubMed DOI

Cellot G., Toma F.M., Varley Z.K., Laishram J., Villari A., Quintana M., Cipollone S., Prato M., Ballerini L. Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: Novel frontiers in nanomaterial-tissue interactions. J. Neurosci. 2011;31:12945–12953. doi: 10.1523/JNEUROSCI.1332-11.2011. PubMed DOI PMC

Fabbro A., Sucapane A., Toma F.M., Calura E., Rizzetto L., Carrieri C., Roncaglia P., Martinelli V., Scaini D., Masten L., et al. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons. PLoS ONE. 2013;8:e73621. doi: 10.1371/journal.pone.0073621. PubMed DOI PMC

Fabbro A., Villari A., Laishram J., Scaini D., Toma F.M., Turco A., Prato M., Ballerini L. Spinal Cord Explants Use Carbon Nanotube Interfaces to Enhance Neurite Outgrowth and To Fortify Synaptic Inputs. ACS Nano. 2012;6:2041–2055. doi: 10.1021/nn203519r. PubMed DOI

Lichtenstein M.P., Carretero N.M., Perez E., Pulido-Salgado M., Moral-Vico J., Sola C., Casan-Pastor N., Sunol C. Biosafety assessment of conducting nanostructured materials by using co-cultures of neurons and astrocytes. Neurotoxicology. 2018;68:115–125. doi: 10.1016/j.neuro.2018.07.010. PubMed DOI

Accardo A., Cirillo C., Lionnet S., Vieu C., Loubinoux I. Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Res. Bull. 2019;152:202–211. doi: 10.1016/j.brainresbull.2019.07.020. PubMed DOI

Papadimitriou L., Manganas P., Ranella A., Stratakis E. Biofabrication for neural tissue engineering applications. Mater. Today Bio. 2020;6:100043. doi: 10.1016/j.mtbio.2020.100043. PubMed DOI PMC

Roberts M.J., Leach M.K., Bedewy M., Meshot E.R., Copic D., Corey J.M., Hart A.J. Growth of primary motor neurons on horizontally aligned carbon nanotube thin films and striped patterns. J. Neural Eng. 2014;11:13. doi: 10.1088/1741-2560/11/3/036013. PubMed DOI

Cellot G., Lagonegro P., Tarabella G., Scaini D., Fabbri F., Iannotta S., Prato M., Salviati G., Ballerini L. PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In Vitro. Front. Neurosci. 2015;9:521. doi: 10.3389/fnins.2015.00521. PubMed DOI PMC

Lee S.J., Zhu W., Nowicki M., Lee G., Heo D.N., Kim J., Zuo Y.Y., Zhang L.G. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J. Neural Eng. 2018;15:12. doi: 10.1088/1741-2552/aa95a5. PubMed DOI

Wu S.Q., Duan B., Lu A., Wang Y.F., Ye Q.F., Zhang L.N. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydr. Polym. 2017;174:830–840. doi: 10.1016/j.carbpol.2017.06.101. PubMed DOI

Liu X.F., Miller A.L., Park S., Waletzki B.E., Terzic A., Yaszemski M.J., Lu L.C. Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. J. Mat. Chem. B. 2016;4:6930–6941. doi: 10.1039/C6TB01722C. PubMed DOI PMC

Rad S.M., Khorasani M.T., Joupari M.D. Preparation of HMWCNT/PLLA nanocomposite scaffolds for application in nerve tissue engineering and evaluation of their physical, mechanical and cellular activity properties. Polym. Adv. Technol. 2016;27:325–338. doi: 10.1002/pat.3644. DOI

Tayi A.S., Pashuck E.T., Newcomb C.J., McClendon M.T., Stupp S.I. Electrospinning Bioactive Supramolecular Polymers from Water. Biomacromolecules. 2014;15:1323–1327. doi: 10.1021/bm401877s. PubMed DOI PMC

Holzwarth J.M., Ma P.X. 3D nanofibrous scaffolds for tissue engineering. J. Mater. Chem. 2011;21:10243–10251. doi: 10.1039/c1jm10522a. DOI

Park S.Y., Kang B.S., Hong S. Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds. Nanomedicine. 2013;8:715–723. doi: 10.2217/nnm.12.143. PubMed DOI

Hasanzadeh E., Ebrahimi-Barough S., Mirzaei E., Azami M., Tavangar S.M., Mahmoodi N., Basiri A., Ai J. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J. Biomed. Mater. Res. Part A. 2019;107:802–814. doi: 10.1002/jbm.a.36596. PubMed DOI

Balint R., Cassidy N.J., Cartmell S.H. Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Eng. Part B. 2012;19:48–57. doi: 10.1089/ten.teb.2012.0183. PubMed DOI

Niu X., Rouabhia M., Chiffot N., King M.W., Zhang Z. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene) J. Biomed. Mater. Res. A. 2015;103:2635–2644. doi: 10.1002/jbm.a.35408. PubMed DOI

Zhang J., Li M., Kang E.-T., Neoh K.G. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater. 2016;32:46–56. doi: 10.1016/j.actbio.2015.12.024. PubMed DOI

Inal S., Hama A., Ferro M., Pitsalidis C., Oziat J., Iandolo D., Pappa A.-M., Hadida M., Huerta M., Marchat D., et al. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Adv. Biosyst. 2017:1. doi: 10.1002/adbi.201700052. DOI

Kolarcik C.L., Catt K., Rost E., Albrecht I.N., Bourbeau D., Du Z.H., Kozai T.D.Y., Luo X.L., Weber D.J., Cui X.T. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J. Neural Eng. 2015;12:15. doi: 10.1088/1741-2560/12/1/016008. PubMed DOI PMC

Kumar S., Kim B.S., Song H. An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis. Biochip J. 2018;12:332–339. doi: 10.1007/s13206-018-2405-y. DOI

Zhang J., Liu X.J., Xu W.J., Luo W.H., Li M., Chu F.B., Xu L., Cao A.Y., Guan J.S., Tang S.M., et al. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett. 2018;18:2903–2911. doi: 10.1021/acs.nanolett.8b00087. PubMed DOI

Abu-Saude M.J., Morshed B.I. Patterned Vertical Carbon Nanotube Dry Electrodes for Impedimetric Sensing and Stimulation. IEEE Sens. J. 2015;15:5851–5858. doi: 10.1109/JSEN.2015.2449301. DOI

Su J.Y., Zhang X., Li M.N., Gao T., Wang R., Chai X.Y., Zhang D.G., Zhang X.H., Sui X.H. Insulation of Carbon Nanotube Yarn Electrodes for Intrafascicular Neural Stimulation and Recording; Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering; San Francisco, CA, USA. 20–23 March 2019; pp. 815–818.

Pan A.I., Lin M.H., Chung H.W., Chen H., Yeh S.R., Chuang Y.J., Chang Y.C., Yew T.R. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Analyst. 2016;141:279–284. doi: 10.1039/C5AN01750E. PubMed DOI

Liu J.H., Liu M.L., Bai Y., Zhang J.H., Liu H.W., Zhu W.B. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors. 2020;20:4009. doi: 10.3390/s20144009. PubMed DOI PMC

Massicotte G., Carrara S., Di Micheli G., Sawan M. A CMOS Amperometric System for Multi-Neurotransmitter Detection. IEEE Trans. Biomed. Circuits Syst. 2016;10:731–741. doi: 10.1109/TBCAS.2015.2490225. PubMed DOI

Samba R., Fuchsberger K., Matiychyn I., Epple S., Kiesel L., Stett A., Schuhmann W., Stelzle M. Application of PEDOT-CNT Microelectrodes for Neurotransmitter Sensing. Electroanalysis. 2014;26:548–555. doi: 10.1002/elan.201300547. DOI

Kim K., Kim M.J., Kim W., Kim S.Y., Park S., Park C.B. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat. Commun. 2020;11:9. doi: 10.1038/s41467-019-13901-z. PubMed DOI PMC

Son M., Kim D., Park K.S., Hong S., Park T.H. Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica. Biosens. Bioelectron. 2016;78:87–91. doi: 10.1016/j.bios.2015.11.029. PubMed DOI

Afzal A., Abuilaiwi F.A., Habib A., Awais M., Waje S.B., Atieh M.A. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J. Power Sources. 2017;352:174–186. doi: 10.1016/j.jpowsour.2017.03.128. DOI

Singh P. Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors. In: Kumar V., Kalia S., Swart H.C., editors. Conducting Polymer Hybrids. Springer; Cham, Germany: 2017. pp. 305–336. DOI

Zeng S., Chen H., Cai F., Kang Y., Chen M., Li Q. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A. 2015;3:23864–23870. doi: 10.1039/C5TA05937B. DOI

Bai Y., Liu R., Li E., Li X., Liu Y., Yuan G. Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J. Alloy. Compd. 2019;777:524–530. doi: 10.1016/j.jallcom.2018.10.376. DOI

Yin B.-S., Zhang S.-W., Ren Q.-Q., Liu C., Ke K., Wang Z.-B. Elastic soft hydrogel supercapacitor for energy storage. J. Mater. Chem. A. 2017;5:24942–24950. doi: 10.1039/C7TA08152A. DOI

Song C., Yun J., Keum K., Jeong Y.R., Park H., Lee H., Lee G., Oh S.Y., Ha J.S. High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte. Carbon. 2019;144:639–648. doi: 10.1016/j.carbon.2018.12.100. DOI

Ren C., Yan Y., Sun B., Gu B., Chou T.-W. Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor. J. Colloid Interface Sci. 2020;569:298–306. doi: 10.1016/j.jcis.2020.02.092. PubMed DOI

Hao B., Deng Z., Bi S., Ran J., Cheng D., Luo L., Cai G., Wang X., Tang X. In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics. 2020 doi: 10.1007/s11581-020-03784-2. DOI

Hao H.-Y., Dai L., Li Z., Low K.-H. Advanced Material Engineering: Proceedings of the 2015 International Conference on Advanced Material Engineering. World Scientific; Hackensack, NJ, USA: 2016. Enhanced Conductivity and Color Neutrality of Transparent Conductive Electrodes Based on CNT/PEDOT: PSS Composite with a Layer-by-layer Structure; pp. 285–290.

Mbuyise X.G., Arbab E.A.A., Kaviyarasu K., Pellicane G., Maaza M., Mola G.T. Zinc oxide doped single wall carbon nanotubes in hole transport buffer layer. J. Alloy. Compd. 2017;706:344–350. doi: 10.1016/j.jallcom.2017.02.249. DOI

Fan Q., Zhang Q., Zhou W., Xia X., Yang F., Zhang N., Xiao S., Li K., Gu X., Xiao Z., et al. Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy. 2017;33:436–444. doi: 10.1016/j.nanoen.2017.02.003. DOI

Yoon S., Ha S.R., Moon T., Jeong S.M., Ha T.-J., Choi H., Kang D.-W. Carbon nanotubes embedded poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) hybrid hole collector for inverted planar perovskite solar cells. J. Power Sour. 2019:435. doi: 10.1016/j.jpowsour.2019.226765. DOI

Wang X., Ugur A., Goktas H., Chen N., Wang M., Lachman N., Kalfon-Cohen E., Fang W., Wardle B.L., Gleasont K.K. Room Temperature Resistive Volatile Organic Compound Sensing Materials Based on a Hybrid Structure of Vertically Aligned Carbon Nanotubes and Conformal oCVD/iCVD Polymer Coatings. ACS Sens. 2016;1:374–383. doi: 10.1021/acssensors.5b00208. DOI

Chen Y., Owyeung R.E., Sonkusale S.R. Combined optical and electronic paper-nose for detection of volatile gases. Anal. Chim. Acta. 2018;1034:128–136. doi: 10.1016/j.aca.2018.05.078. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Thiophene-Based Trimers and Their Bioapplications: An Overview

. 2021 Jun 16 ; 13 (12) : . [epub] 20210616

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...