Role of p-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31459822
PubMed Central
PMC6648476
DOI
10.1021/acsomega.9b00542
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polyaniline (PANI) and 2,5-dianilino-p-benzoquinone both are formed by oxidation of aniline in an acidic aqueous environment. The aim of this study is to understand the impact of addition of p-benzoquinone on the structure of PANI prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulfate and to elucidate the formation of low-molecular-weight byproducts. An increasing yield and size-exclusion chromatography, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, and nuclear magnetic resonance analyses of the products show that p-benzoquinone does not act as a terminating agent in the synthesis of PANI and the content of 2,5-dianilino-p-benzoquinone increases with the increasing molar concentration of p-benzoquinone in the reaction mixture, [BzQ]. Regarding the structure of PANI, Raman and UV-visible spectra show that the doping level and the charge delocalization both decrease with the increase of [BzQ], and the FTIR spectra of the PANI bases indicate an increased concentration of benzenoid units at higher [BzQ]. We explain these observations by an increasing concentration of structural defects in PANI chains and propose a 2,5-dianilino-p-benzoquinone-like structure of these defects present as pendant groups. The bands typical of 2,5-dianilino-p-benzoquinone-like moiety are observed even in the vibrational spectra of the sample prepared without addition of p-benzoquinone. This confirms in situ oxidation of aniline to p-benzoquinone within the course of the oxidation of aniline hydrochloride to PANI.
Faculty of Mathematics and Physics Charles University 182 00 Prague 8 Czech Republic
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 06 Prague 6 Czech Republic
Zobrazit více v PubMed
Gospodinova N.; Terlemezyan L. Conducting Polymers Prepared by Oxidative Polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443–1484. 10.1016/S0079-6700(98)00008-2. DOI
Stejskal J.; Sapurina I.; Trchová M. Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation. Prog. Polym. Sci. 2010, 35, 1420–1481. 10.1016/j.progpolymsci.2010.07.006. DOI
Ćirić-Marjanović G. Recent Advances in Polyaniline Research: Polymerization Mechanisms, Structural Aspects, Properties and Applications. Synth. Met. 2013, 177, 1–47. 10.1016/j.synthmet.2013.06.004. DOI
Stejskal J.; Gilbert R. G. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. 10.1351/pac200274050857. DOI
Mezhuev Y. O.; Korshak Y. V.; Shtilman M. I. Oxidative Polymerization of Aromatic Amines: Kinetic Features and Possible Mechanisms. Russ. Chem. Rev. 2017, 86, 1271–1285. 10.1070/RCR4755. DOI
Stejskal J.; Trchová M. Aniline Oligomers versus Polyaniline. Polym. Int. 2012, 61, 240–251. 10.1002/pi.3179. DOI
Manohar S. K.; MacDiarmid A. G.; Epstein A. J. Polyaniline: Pernigraniline, an isolable intermediate in the conventional chemical synthesis of emeraldine. Synth. Met. 1991, 41, 711–714. 10.1016/0379-6779(91)91165-7. DOI
Mažeikiene R.; Niaura G.; Malinauskas A. Chemical Oxidation of Aniline and N-Methylaniline: A Kinetic Study by Raman Spectroscopy. Spectrochim. Acta, Part A 2013, 106, 34–40. 10.1016/j.saa.2013.01.001. PubMed DOI
Gospodinova N.; Mokreva P.; Terlemezyan L. Influence of Hydrolysis on the Chemical Polymerization of Aniline. Polymer 1994, 35, 3102–3106. 10.1016/0032-3861(94)90425-1. DOI
Hakhnazaryan T. L.; Matnishyan H. A. The Mechanism of Formation of Structural Heterogeneities in Polyaniline. J. Compos. Biodegrad. Polym. 2014, 2, 2–9. 10.12974/2311-8717.2014.02.01.1. DOI
Bogomolova O. E.; Sergeyev V. G. Acid Doping of Phenyl-Capped Aniline Dimer: Intermolecular Polaron Formation Mechanism and Its Applicability to Polyaniline. J. Phys. Chem. A 2018, 122, 461–469. 10.1021/acs.jpca.7b09851. PubMed DOI
Gospodinova N.; Mokreva P.; Terlemezyan L. Oxidative Polymerization of Aniline: A New Area in Cationic Polymerization. Polymer 1995, 36, 3585–3587. 10.1016/0032-3861(95)92031-9. DOI
Stejskal J.; Bober P.; Trchová M.; Horský J.; Pilař J.; Walterová Z. The Oxidation of Aniline with p-Benzoquinone and Its Impact on the Preparation of the Conducting Polymer, Polyaniline. Synth. Met. 2014, 192, 66–73. 10.1016/j.synthmet.2014.03.014. DOI
Hand R. L.; Nelson R. F. Anodic Oxidation Pathways of N-Alkylanilines. J. Am. Chem. Soc. 1974, 96, 850–860. 10.1021/ja00810a034. DOI
Hand R. L.; Nelson R. F. The Anodic Decomposition Pathways of Ortho- and Meta-Substituted Anilines. J. Electrochem. Soc. 1978, 125, 1059–1069. 10.1149/1.2131621. DOI
Kobayashi T.; Yoneyama H.; Tamura H. Oxidative Degradation Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293–297. 10.1016/0022-0728(84)80230-2. DOI
Duić L.; Mandić Z.; Kovač S. Polymer-Dimer Distribution in the Electrochemical Synthesis of Polyaniline. Electrochim. Acta 1995, 40, 1681–1688. 10.1016/0013-4686(95)00086-t. DOI
Pud A. A. Stability and Degradation of Conducting Polymers in Electrochemical Systems. Synth. Met. 1994, 66, 1–18. 10.1016/0379-6779(94)90155-4. DOI
Cui C. Q.; Ong L. H.; Tan T. C.; Lee J. Y.; Lee J. Y. Extent of Incorporation of Hydrolysis Products in Polyaniline Films Deposited by Cyclic Potential Sweep. Electrochim. Acta 1993, 38, 1395–1404. 10.1016/0013-4686(93)80076-C. DOI
Barakat M. Z.; Shehab S. K.; El-Sadr M. M. Some Anilinoquinones and N-Substituted 2-Hydroxy-1,4-Naphthaquinone Imines. J. Chem. Soc. 1958, 901–902.
Surwade S. P.; Dua V.; Manohar N.; Manohar S. K.; Beck E.; Ferraris J. P. Oligoaniline Intermediates in the Aniline-Peroxydisulfate System. Synth. Met. 2009, 159, 445–455. 10.1016/j.synthmet.2008.11.002. DOI
Stejskal J.; Trchová M.; Morávková Z.; Bober P.; Bláha M.; Pfleger J.; Magdziarz P.; Prokeš J.; Havlicek M.; Sariciftci N. S.; et al. Conducting Materials Prepared by the Oxidation of p-Phenylenediamine with p-Benzoquinone. J. Solid State Electrochem. 2015, 19, 2653–2664. 10.1007/s10008-015-2838-3. DOI
Durgaryan A. A.; Arakelyan R. A.; Durgaryan N. A. Synthesis of Polymers Containing Polyaniline Fragments Linked by 1,4-Benzoquinone Groups. Russ. J. Gen. Chem. 2017, 87, 139–144. 10.1134/S1070363217010224. DOI
Bláha M.; Trchová M.; Bober P.; Morávková Z.; Prokeš J.; Stejskal J. Polyaniline: Aniline Oxidation with Strong and Weak Oxidants under Various Acidity. Mater. Chem. Phys. 2017, 194, 206–218. 10.1016/j.matchemphys.2017.03.028. DOI
Hao J.; Zhao W.; Zhang H.; Wang D.; Yang Q.; Tang N.; Wang X. Controlled Synthesis of PANI Nanostructures Using Phenol and Hydroquinone as Morphology-Control Agent. Polym. Bull. 2018, 75, 2575–2585. 10.1007/s00289-017-2159-z. DOI
Varga M.; Kopecká J.; Morávková Z.; Křivka I.; Trchová M.; Stejskal J.; Prokeš J. Effect of Oxidant on Electronic Transport in Polypyrrole Nanotubes Synthesized in the Presence of Methyl Orange. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1147–1159. 10.1002/polb.23755. DOI
Wang Z. H.; Ray A.; MacDiarmid A. G.; Epstein A. J. Electron Localization and Charge Transport in Poly(o-Toluidine): A Model Polyaniline Derivative. Phys. Rev. B 1991, 43, 4373–4384. 10.1103/PhysRevB.43.4373. PubMed DOI
Zuppiroli L.; Bussac M. N.; Paschen S.; Chauvet O.; Forro L. Hopping in Disordered Conducting Polymers. Phys. Rev. B 1994, 50, 5196–5203. 10.1103/physrevb.50.5196. PubMed DOI
Huang W. S.; MacDiarmid A. G. Optical Properties of Polyaniline. Polymer 1993, 34, 1833–1845. 10.1016/0032-3861(93)90424-9. DOI
Gruger A.; El Khalki A.; Colomban P. Protonation, Sol Formation and Precipitation of Poly- and Oligoanilines. J. Raman Spectrosc. 2003, 34, 438–450. 10.1002/jrs.1018. DOI
Bláha M.; Zedník J.; Vohlídal J. Self-doping of polyaniline prepared with the FeCl3/H2O2 system and the origin of the Raman band of emeraldine salt at around 1375 cm–1. Polym. Int. 2015, 64, 1801–1807. 10.1002/pi.4983. DOI
de Albuquerque J. E.; Mattoso L. H. C.; Faria R. M.; Masters J. G.; MacDiarmid A. G. Study of the Interconversion of Polyaniline Oxidation States by Optical Absorption Spectroscopy. Synth. Met. 2004, 146, 1–10. 10.1016/j.synthmet.2004.05.019. DOI
Mav-Golež I.; Pahovnik D.; Bláha M.; Žigon M.; Vohlídal J. Copolymers of 2-Methoxyaniline with 2- and 3-Aminobenzenesulfonic and 2- and 3-Aminobenzoic Acids: Relationships between the Polymerization Conditions, Structure, Spectroscopic Characteristics and Conductivity. Synth. Met. 2011, 161, 1845–1855. 10.1016/j.synthmet.2011.06.023. DOI
Bláha M.; Riesová M.; Zedník J.; Anžlovar A.; Žigon M.; Vohlídal J. Polyaniline synthesis with iron(III) chloride−hydrogen peroxide catalyst system: Reaction course and polymer structure study. Synth. Met. 2011, 161, 1217–1225. 10.1016/j.synthmet.2011.04.008. DOI
Trchová M.; Stejskal J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. 10.1351/PAC-REP-10-02-01. DOI
Quillard S.; Louarn G.; Buisson J. P.; Boyer M.; Lapkowski M.; Pron A.; Lefrant S. Vibrational Spectroscopic Studies of the Isotope Effects in Polyaniline. Synth. Met. 1997, 84, 805–806. 10.1016/s0379-6779(96)04155-0. DOI
Louarn G.; Lapkowski M.; Quillard S.; Pron A.; Buisson J. P.; Lefrant S. Vibrational Properties of Polyaniline Isotope Effects. J. Phys. Chem. 1996, 100, 6998–7006. 10.1021/jp953387e. DOI
Trchová M.; Morávková Z.; Šeděnková I.; Stejskal J. Spectroscopy of Thin Polyaniline Films Deposited during Chemical Oxidation of Aniline. Chem. Pap. 2012, 66, 415–445. 10.2478/s11696-012-0142-6. DOI
do Nascimento G. M.; Kobata P. Y. G.; Millen R. P.; Temperini M. L. A. Raman Dispersion in Polyaniline Base Forms. Synth. Met. 2007, 157, 247–251. 10.1016/j.synthmet.2007.02.003. DOI
Trchová M.; Morávková Z.; Bláha M.; Stejskal J. Raman Spectroscopy of Polyaniline and Oligoaniline Thin Films. Electrochim. Acta 2014, 122, 28–38. 10.1016/j.electacta.2013.10.133. DOI
Boyer M.-I.; Quillard S.; Rebourt E.; Louarn G.; Buisson J. P.; Monkman A.; Lefrant S. Vibrational Analysis of Polyaniline: A Model Compound Approach. J. Phys. Chem. B 1998, 102, 7382–7392. 10.1021/jp972652o. DOI
Yamakita Y.; Tasumi M. Vibrational Analyses of p-Benzoquinodimethane and p-Benzoquinone Based on Ab Initio Hartree-Fock and Second-Order Moller-Plesset Calculations. J. Phys. Chem. 1995, 99, 8524–8534. 10.1021/j100021a013. DOI
Morávková Z.; Dmitrieva E. Structural Changes in Polyaniline near the Middle Oxidation Peak Studied by in Situ Raman Spectroelectrochemistry. J. Raman Spectrosc. 2017, 48, 1229–1234. 10.1002/jrs.5197. DOI
Dmitrieva E.; Harima Y.; Dunsch L. Influence of Phenazine Structure on Polaron Formation in Polyaniline: In Situ Electron Spin Resonance–Ultraviolet/Visible–Near-Infrared Spectroelectrochemical Study. J. Phys. Chem. B 2009, 113, 16131–16141. 10.1021/jp9072944. PubMed DOI
Colomban P.; Folch S.; Gruger A. Vibrational Study of Short-Range Order and Structure of Polyaniline Bases and Salts. Macromolecules 1999, 32, 3080–3092. 10.1021/ma981018l. DOI
Kang E. T.; Neoh K. G.; Tan K. L. Polyaniline: A Polymer with Many Interesting Intrinsic Redox States. Prog. Polym. Sci. 1998, 23, 277–324. 10.1016/S0079-6700(97)00030-0. DOI
Kaplan S.; Conwell E. M.; Richter A. F.; MacDiarmid A. G. Solid-State Carbon-13 NMR Characterization of Polyanilines. J. Am. Chem. Soc. 1988, 110, 7647–7651. 10.1021/ja00231a011. DOI
Zujovic Z. D.; Nieuwoudt M.; Bowmaker G. A.; Kilmartin P. A. Nanostructures Obtained in the Oxidative Polymerization of Aniline: Effects of Polarons. Polymer 2013, 54, 6363–6372. 10.1016/j.polymer.2013.09.020. DOI
Bláha M.; Trchová M.; Bober P.; Morávková Z.; Zujovic Z. D.; Filippov S. K.; Prokeš J.; Pilař J.; Stejskal J. Structure and Properties of Polyaniline Interacting with H-Phosphonates. Synth. Met. 2017, 232, 79–86. 10.1016/j.synthmet.2017.07.022. DOI
Bláha M.; Suchánková A.; Watzlová E.; Prokeš J.; Pop-Georgievski O. Partially Sulfonated Polyaniline: Conductivity and Spectroscopic Study. Chem. Pap. 2017, 71, 329–338. 10.1007/s11696-016-0003-9. DOI
Venancio E. C.; Wang P.-C.; MacDiarmid A. G. The Azanes: A Class of Material Incorporating Nano/Micro Self-Assembled Hollow Spheres Obtained by Aqueous Oxidative Polymerization of Aniline. Synth. Met. 2006, 156, 357–369. 10.1016/j.synthmet.2005.08.035. DOI
Varga M.; Kopecký D.; Kopecká J.; Křivka I.; Hanuš J.; Zhigunov A.; Trchová M.; Vrňata M.; Prokeš J. The Ageing of Polypyrrole Nanotubes Synthesized with Methyl Orange. Eur. Polym. J. 2017, 96, 176–189. 10.1016/j.eurpolymj.2017.08.052. DOI
Brus J. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000, 16, 151–160. 10.1016/S0926-2040(00)00061-8. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.
Stratmann R. E.; Scuseria G. E.; Frisch M. J. An Efficient Implementation of Time-Dependent Density-Functional Theory for the Calculation of Excitation Energies of Large Molecules. J. Chem. Phys. 1998, 109, 8218–8224. 10.1063/1.477483. DOI