Synthesis and Impedance Spectroscopy of Poly(p-phenylenediamine)/Montmorillonite Composites

. 2021 Sep 16 ; 13 (18) : . [epub] 20210916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578038

Grantová podpora
21-01401S Grantová Agentura České Republiky

Poly(p-phenylenediamine)/montmorillonite (PPDA/MMT) composites were prepared by the oxidative polymerization of monomers intercalated within the MMT gallery, using ammonium peroxydisulfate as an oxidant. The intercalation process was evidenced by X-ray powder diffraction. The FT-IR and Raman spectroscopies revealed that, depending on the initial ratio between monomers and MMT in the polymerization mixture, the polymer or mainly oligomers are created during polymerization. The DC conductivity of composites was found to be higher than the conductivity of pristine polymer, reaching the highest value of 10-6 S cm-1 for the optimal MMT amount used during polymerization. Impedance spectroscopy was performed over wide frequency and temperature ranges to study the charge transport mechanism. The data analyzed in the framework of conductivity formalism suggest different conduction mechanisms for high and low temperature regions.

Zobrazit více v PubMed

Faustini M., Nicole L., Ruiz-Hitzky E., Sanchez C. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018;28:1704158. doi: 10.1002/adfm.201704158. DOI

Kenane A., Galca A.-C., Matei E., Yahiaoui A., Hachemaoui A., Benkouider A.M., Bartha C., Istrate M.C., Galatanu M., Rasoga O., et al. Synthesis and Characterization of Conducting Aniline and O-Anisidine Nanocomposites Based on Montmorillonite Modified Clay. Appl. Clay Sci. 2020;184:105395. doi: 10.1016/j.clay.2019.105395. DOI

Li S., Fan Z. Encapsulation Methods of Sulfur Particles for Lithium-Sulfur Batteries: A Review. Energy Storage Mater. 2021;34:107–127. doi: 10.1016/j.ensm.2020.09.005. DOI

Li S., Leng D., Li W., Qie L., Dong Z., Cheng Z., Fan Z. Recent Progress in Developing Li2S Cathodes for Li–S Batteries. Energy Storage Mater. 2020;27:279–296. doi: 10.1016/j.ensm.2020.02.010. DOI

Li S., Fan Z. Nitrogen-Doped Carbon Mesh from Pyrolysis of Cotton in Ammonia as Binder-Free Electrodes of Supercapacitors. Microporous Mesoporous Mater. 2019;274:313–317. doi: 10.1016/j.micromeso.2018.09.002. DOI

Hosseini M.G., Raghibi-Boroujeni M., Ahadzadeh I., Najjar R., Seyed Dorraji M.S. Effect of Polypyrrole–Montmorillonite Nanocomposites Powder Addition on Corrosion Performance of Epoxy Coatings on Al 5000. Prog. Org. Coat. 2009;66:321–327. doi: 10.1016/j.porgcoat.2009.08.010. DOI

Oraon R., De Adhikari A., Tiwari S.K., Nayak G.C. Enhanced Specific Capacitance of Self-Assembled Three-Dimensional Carbon Nanotube/Layered Silicate/Polyaniline Hybrid Sandwiched Nanocomposite for Supercapacitor Applications. ACS Sustain. Chem. Eng. 2016;4:1392–1403. doi: 10.1021/acssuschemeng.5b01389. DOI

Bober P., Stejskal J., Špírková M., Trchová M., Varga M., Prokeš J. Conducting Polyaniline–Montmorillonite Composites. Synth. Met. 2010;160:2596–2604. doi: 10.1016/j.synthmet.2010.10.010. DOI

De León-Almazán C.M., Estrada-Moreno I.A., Olmedo-Martínez J.L., Rivera-Armenta J.L. Semiconducting Elastomers Based on Polyaniline/Clay Nanocomposites and SEBS Obtained by an Alternative Processing Technique. Synth. Met. 2020;268:116460. doi: 10.1016/j.synthmet.2020.116460. DOI

Kazim S., Ahmad S., Pfleger J., Plestil J., Joshi Y.M. Polyaniline–Sodium Montmorillonite Clay Nanocomposites: Effect of Clay Concentration on Thermal, Structural, and Electrical Properties. J. Mater. Sci. 2012;47:420–428. doi: 10.1007/s10853-011-5815-y. DOI

Contri G., Barra G.M.O., Ramoa S.D.A.S., Merlini C., Ecco L.G., Souza F.S., Spinelli A. Epoxy Coating Based on Montmorillonite-Polypyrrole: Electrical Properties and Prospective Application on Corrosion Protection of Steel. Prog. Org. Coat. 2018;114:201–207. doi: 10.1016/j.porgcoat.2017.10.008. DOI

Vilímová P., Kulhánková L., Peikertová P., Mamulová Kutláková K., Vallová S., Koníčková H., Plaček T., Tokarský J. Effect of Montmorillonite/Polypyrrole Ratio and Oxidizing Agent on Structure and Electrical Conductivity of Intercalated Nanocomposites. Appl. Clay Sci. 2019;168:459–468. doi: 10.1016/j.clay.2018.12.015. DOI

Aradilla D., Estrany F., Azambuja D.S., Casas M.T., Puiggali J., Ferreira C.A., Alemán C. Conducting Poly(3,4-Ethylenedioxythiophene)-Montmorillonite Exfoliated Nanocomposites. Eur. Polym. J. 2010;46:977–983. doi: 10.1016/j.eurpolymj.2010.01.003. DOI

Do Nascimento G.M., Sestrem R.H., Temperini M.L.A. Structural Characterization of Poly-Para-Phenylenediamine–Montmorillonite Clay Nanocomposites. Synth. Met. 2010;160:2397–2403. doi: 10.1016/j.synthmet.2010.09.016. DOI

Ramya E., Rajashree C., Nayak P.L., Narayana Rao D. New Hybrid Organic Polymer Montmorillonite/Chitosan/Polyphenylenediamine Composites for Nonlinear Optical Studies. Appl. Clay Sci. 2017;150:323–332. doi: 10.1016/j.clay.2017.10.001. DOI

Rajapakse R.M.G., Murakami K., Bandara H.M.N., Rajapakse R.M.M.Y., Velauthamurti K., Wijeratne S. Preparation and Characterization of Electronically Conducting Polypyrrole-Montmorillonite Nanocomposite and Its Potential Application as a Cathode Material for Oxygen Reduction. Electrochim. Acta. 2010;55:2490–2497. doi: 10.1016/j.electacta.2009.12.015. DOI

de Barros A., Constantino C.J.L., da Cruz N.C., Bortoleto J.R.R., Ferreira M. High Performance of Electrochemical Sensors Based on LbL Films of Gold Nanoparticles, Polyaniline and Sodium Montmorillonite Clay Mineral for Simultaneous Detection of Metal Ions. Electrochim. Acta. 2017;235:700–708. doi: 10.1016/j.electacta.2017.03.135. DOI

Zheng H., Liu M., Yan Z., Chen J. Highly Selective and Stable Glucose Biosensor Based on Incorporation of Platinum Nanoparticles into Polyaniline-Montmorillonite Hybrid Composites. Microchem. J. 2020;152:104266. doi: 10.1016/j.microc.2019.104266. DOI

Špírková M., Bober P., Kotek J., Stejskal J. Bi-Hybrid Coatings: Polyaniline-Montmorillonite Filler in Organic-Inorganic Polymer Matrix. Chem. Pap. 2013;67:1020–1027. doi: 10.2478/s11696-012-0299-z. DOI

Ben Ali M., Wang F., Boukherroub R., Lei W., Xia M. Phytic Acid-Doped Polyaniline Nanofibers-Clay Mineral for Efficient Adsorption of Copper (II) Ions. J. Colloid Interface Sci. 2019;553:688–698. doi: 10.1016/j.jcis.2019.06.065. PubMed DOI

Pham Q.L., Haldorai Y., Nguyen V.H., Tuma D., Shim J.-J. Facile Synthesis of Poly(p-Phenylenediamine)/MWCNT Nanocomposites and Characterization for Investigation of Structural Effects of Carbon Nanotubes. Bull. Mater. Sci. 2011;34:37–43. doi: 10.1007/s12034-011-0049-9. DOI

Lakouraj M.M., Zare E.N., Moghadam P.N. Synthesis of Novel Conductive Poly(p-Phenylenediamine)/Fe3O4 Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity. Adv. Polym. Technol. 2014;33:21385:1–21385:7. doi: 10.1002/adv.21385. DOI

Magdziarz P., Bober P., Trchová M., Morávková Z., Bláha M., Prokeš J., Stejskal J. Conducting Composites Prepared by the Reduction of Silver Ions with Poly(p-Phenylenediamine) Polym. Int. 2015;64:496–504. doi: 10.1002/pi.4817. DOI

Minisy I.M., Zasońska B.A., Petrovský E., Veverka P., Šeděnková I., Hromádková J., Bober P. Poly(p-Phenylenediamine)/Maghemite Composite as Highly Effective Adsorbent for Anionic Dye Removal. React. Funct. Polym. 2020;146:104436. doi: 10.1016/j.reactfunctpolym.2019.104436. DOI

Wang Y., Wang H., Zhang T.C., Yuan S., Liang B. N-Doped Porous Carbon Derived from RGO-Incorporated Polyphenylenediamine Composites for CO2 Adsorption and Supercapacitors. J. Power Sources. 2020;472:228610. doi: 10.1016/j.jpowsour.2020.228610. DOI

Stejskal J. Polymers of Phenylenediamines. Prog. Polym. Sci. 2015;41:1–31. doi: 10.1016/j.progpolymsci.2014.10.007. DOI

Bláha M., Trchová M., Morávková Z., Humpolíček P., Stejskal J. Semiconducting Materials from Oxidative Coupling of Phenylenediamines under Various Acidic Conditions. Mater. Chem. Phys. 2018;205:423–435. doi: 10.1016/j.matchemphys.2017.11.007. DOI

Khelifa I., Belmokhtar A., Berenguer R., Benyoucef A., Morallon E. New Poly(o-Phenylenediamine)/Modified-Clay Nanocomposites: A Study on Spectral, Thermal, Morphological and Electrochemical Characteristics. J. Mol. Struct. 2019;1178:327–332. doi: 10.1016/j.molstruc.2018.10.054. DOI

Nath A.K., Kumar A. Scaling of AC Conductivity, Electrochemical and Thermal Properties of Ionic Liquid Based Polymer Nanocomposite Electrolytes. Electrochim. Acta. 2014;129:177–186. doi: 10.1016/j.electacta.2014.02.101. DOI

Dong Y.Z., Kim H.M., Choi H.J. Conducting polymer-based electro-responsive smart suspensions. Chem. Pap. 2021;75:5009–5034. doi: 10.1007/s11696-021-01550-w. DOI

Ates M. A Review on Conducting Polymer Coatings for Corrosion Protection. J. Adhes. Sci. Technol. 2016;30:1510–1536. doi: 10.1080/01694243.2016.1150662. DOI

Slade R.C.T., Barker J., Hirst P.R., Halstead T.K., Reid P.I. Conduction and Diffusion in Exchanged Montmorillonite Clays. Solid State Ion. 1987;24:289–295. doi: 10.1016/0167-2738(87)90135-4. DOI

Nj G., Jc B. Conductivity in Na+-Montmorillonite and Li+-Montmorillonite as a Function of Equilibration Humidity. Solid State Ion. 1996;92:139–143.

Wu L., Cao S., Lv G. Influence of Energy State of Montmorillonite Interlayer Cations on Organic Intercalation. Adv. Mater. Sci. Eng. 2018;2018:3489720. doi: 10.1155/2018/3489720. DOI

Krupskaya V.V., Zakusin S.V., Tyupina E.A., Dorzhieva O.V., Zhukhlistov A.P., Belousov P.E., Timofeeva M.N. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals. 2017;7:49. doi: 10.3390/min7040049. DOI

Hayati-Ashtiani M. Use of FTIR Spectroscopy in the Characterization of Natural and Treated Nanostructured Bentonites (Montmorillonites) Part. Sci. Technol. 2012;30:553–564. doi: 10.1080/02726351.2011.615895. DOI

Becker E.D. Raman Spectra of Isotopic Derivatives of p-Benzoquinone: Revised Vibrational Assignments. J. Phys. Chem. 1991;95:2818–2823. doi: 10.1021/j100160a035. DOI

Stammreich H., Sans T.T. Molecular Vibrations of Quinones. IV. Raman Spectra of P-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies. J. Chem. Phys. 1965;42:920–931. doi: 10.1063/1.1696083. PubMed DOI

Bláha M., Marek F., Morávková Z., Svoboda J., Brus J., Dybal J., Prokeš J., Varga M., Stejskal J. Role of P-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline. ACS Omega. 2019;4:7128–7139. doi: 10.1021/acsomega.9b00542. PubMed DOI PMC

Trchová M., Morávková Z., Šeděnková I., Stejskal J. Spectroscopy of Thin Polyaniline Films Deposited during Chemical Oxidation of Aniline. Chem. Pap. 2012;66:415–445. doi: 10.2478/s11696-012-0142-6. DOI

do Nascimento G.M., Constantino V.R.L., Landers R., Temperini M.L.A. Spectroscopic Characterization of Polyaniline Formed in the Presence of Montmorillonite Clay. Polymer. 2006;47:6131–6139. doi: 10.1016/j.polymer.2006.06.036. DOI

Baibarac M., Baltog I., Scocioreanu M., Ballesteros B., Mevellec J.Y., Lefrant S. One-Dimensional Composites Based on Single Walled Carbon Nanotubes and Poly(o-Phenylenediamine) Synth. Met. 2011;161:2344–2354. doi: 10.1016/j.synthmet.2011.09.001. DOI

Sestrem R.H., Ferreira D.C., Landers R., Temperini M.L.A., do Nascimento G.M. Synthesis and Spectroscopic Characterization of Polymer and Oligomers of Ortho-Phenylenediamine. Eur. Polym. J. 2010;46:484–493. doi: 10.1016/j.eurpolymj.2009.12.007. DOI

Brolo A.G., Sanderson A.C. Surface-Enhanced Raman Scattering (SERS) from a Silver Electrode Modified with Oxazine 720. Can. J. Chem. 2011;82:1474–1480. doi: 10.1139/v04-117. DOI

Trchová M., Morávková Z., Dybal J., Stejskal J. Detection of Aniline Oligomers on Polyaniline–Gold Interface Using Resonance Raman Scattering. ACS Appl. Mater. Interfaces. 2014;6:942–950. doi: 10.1021/am404252f. PubMed DOI

Anto P.L., Panicker C.Y., Varghese H.T., Philip D. Potential-Dependent SERS Profile of Orthanilic Acid on Silver Electrode. J. Raman Spectrosc. 2006;37:1265–1271. doi: 10.1002/jrs.1547. DOI

de Santana H., Quillard S., Fayad E., Louarn G. In Situ UV–Vis and Raman Spectroscopic Studies of the Electrochemical Behavior of N,N′-Diphenyl-1,4-Phenylenediamine. Synth. Met. 2006;156:81–85. doi: 10.1016/j.synthmet.2005.10.013. DOI

Boyer M.I., Quillard S., Louarn G., Froyer G., Lefrant S. Vibrational Study of the FeCl3-Doped Dimer of Polyaniline; A Good Model Compound of Emeraldine Salt. J. Phys. Chem. B. 2000;104:8952–8961. doi: 10.1021/jp000946v. DOI

Cochet M., Louarn G., Quillard S., Boyer M.I., Buisson J.P., Lefrant S. Theoretical and Experimental Vibrational Study of Polyaniline in Base Forms: Non-Planar Analysis. Part I. J. Raman Spectrosc. 2000;31:1029–1039. doi: 10.1002/1097-4555(200011)31:11<1029::AID-JRS640>3.0.CO;2-A. DOI

Cochet M., Louarn G., Quillard S., Buisson J.P., Lefrant S. Theoretical and Experimental Vibrational Study of Emeraldine in Salt Form. Part II. J. Raman Spectrosc. 2000;31:1041–1049. doi: 10.1002/1097-4555(200012)31:123.0.CO;2-R. DOI

Quillard S., Louam G., Buisson J.P., Boyer M., Lapkowski M., Pron A., Lefrant S. Vibrational Spectroscopic Studies of the Isotope Effects in Polyaniline. Synth. Met. 1997;84:805–806. doi: 10.1016/S0379-6779(96)04155-0. DOI

Louarn G., Lapkowski M., Quillard S., Pron A., Buisson J.P., Lefrant S. Vibrational Properties of PolyanilineIsotope Effects. J. Phys. Chem. 1996;100:6998–7006. doi: 10.1021/jp953387e. DOI

do Nascimento G.M., Kobata P.Y.G., Millen R.P., Temperini M.L.A. Raman Dispersion in Polyaniline Base Forms. Synth. Met. 2007;157:247–251. doi: 10.1016/j.synthmet.2007.02.003. DOI

Do Nascimento G.M., Constantino V.R.L., Landers R., Temperini M.L.A. Aniline Polymerization into Montmorillonite Clay:  A Spectroscopic Investigation of the Intercalated Conducting Polymer. Macromolecules. 2004;37:9373–9385. doi: 10.1021/ma049054+. DOI

Morávková Z., Dmitrieva E. The First Products of Aniline Oxidation—SERS Spectroelectrochemistry. Chem. Sel. 2019;4:8847–8854. doi: 10.1002/slct.201802878. DOI

Kumar M., Tiwari T., Chauhan J.K., Srivastava N. Understanding the Ion Dynamics and Relaxation Behavior from Impedance Spectroscopy of NaI Doped Zwitterionic Polymer System. Mater. Res. Express. 2014;1:045003. doi: 10.1088/2053-1591/1/4/045003. DOI

Soltane L., Sediri F. Hydrothermal Synthesis, Characterization and Electrical Investigation of Poly(Para-Phenylenediamine)/Vanadium Oxide Nanocomposite Nanosheets. Mater. Sci. Eng. B. 2013;178:502–510. doi: 10.1016/j.mseb.2013.02.005. DOI

Ali A., Mohamed N.S., Sani N.A.M., Abdullah M.A.A. Preparation and Properties of Alkylphosphonium Modified Montmorillonites. Int. J. Appl. Chem. 2016;12:6.

Chand J., Kumar G., Kumar P., Sharma S.K., Knobel M., Singh M. Effect of Gd3+ Doping on Magnetic, Electric and Dielectric Properties of MgGdxFe2−xO4 Ferrites Processed by Solid State Reaction Technique. J. Alloys Compd. 2011;509:9638–9644. doi: 10.1016/j.jallcom.2011.07.055. DOI

Lvovich V.F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. pp. 1–19.

Einfeldt J., Meißner D., Kwasniewski A. Polymerdynamics of Cellulose and Other Polysaccharides in Solid State-Secondary Dielectric Relaxation Processes. Prog. Polym. Sci. 2001;26:1419–1472. doi: 10.1016/S0079-6700(01)00020-X. DOI

Aziz S.B., Abidin Z.H.Z. Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation. J. Soft Matter. 2013;2013:323868. doi: 10.1155/2013/323868. DOI

Megdiche M., Perrin-pellegrino C., Gargouri M. Conduction Mechanism Study by Overlapping Large-Polaron Tunnelling Model in SrNiP2O7 Ceramic Compound. J. Alloys Compd. 2014;584:209–215. doi: 10.1016/j.jallcom.2013.09.021. DOI

Elliott S.R. A.c. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors. Adv. Phys. 1987;36:135–217. doi: 10.1080/00018738700101971. DOI

Salles F., Devautour-Vinot S., Bildstein O., Jullien M., Maurin G., Giuntini J.-C., Douillard J.-M., Van Damme H. Ionic Mobility and Hydration Energies in Montmorillonite Clay. J. Phys. Chem. C. 2008;112:14001–14009. doi: 10.1021/jp710976g. DOI

Su P.-G., Chen C.-Y. Humidity Sensing and Electrical Properties of Na- and K-Montmorillonite. Sens. Actuators B Chem. 2008;129:380–385. doi: 10.1016/j.snb.2007.08.032. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of a Zr-Based Metal-Organic Framework Structure on the Properties of Its Composite with Polyaniline

. 2023 May 17 ; 15 (19) : 23813-23823. [epub] 20230504

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...