Synthesis and Impedance Spectroscopy of Poly(p-phenylenediamine)/Montmorillonite Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Grantová Agentura České Republiky
PubMed
34578038
PubMed Central
PMC8469202
DOI
10.3390/polym13183132
PII: polym13183132
Knihovny.cz E-zdroje
- Klíčová slova
- conductivity mechanism, impedance spectroscopy, montmorillonite, poly(p-phenylenediamine),
- Publikační typ
- časopisecké články MeSH
Poly(p-phenylenediamine)/montmorillonite (PPDA/MMT) composites were prepared by the oxidative polymerization of monomers intercalated within the MMT gallery, using ammonium peroxydisulfate as an oxidant. The intercalation process was evidenced by X-ray powder diffraction. The FT-IR and Raman spectroscopies revealed that, depending on the initial ratio between monomers and MMT in the polymerization mixture, the polymer or mainly oligomers are created during polymerization. The DC conductivity of composites was found to be higher than the conductivity of pristine polymer, reaching the highest value of 10-6 S cm-1 for the optimal MMT amount used during polymerization. Impedance spectroscopy was performed over wide frequency and temperature ranges to study the charge transport mechanism. The data analyzed in the framework of conductivity formalism suggest different conduction mechanisms for high and low temperature regions.
Faculty of Mathematics and Physics Charles University 121 16 Prague Czech Republic
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 06 Prague Czech Republic
Zobrazit více v PubMed
Faustini M., Nicole L., Ruiz-Hitzky E., Sanchez C. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018;28:1704158. doi: 10.1002/adfm.201704158. DOI
Kenane A., Galca A.-C., Matei E., Yahiaoui A., Hachemaoui A., Benkouider A.M., Bartha C., Istrate M.C., Galatanu M., Rasoga O., et al. Synthesis and Characterization of Conducting Aniline and O-Anisidine Nanocomposites Based on Montmorillonite Modified Clay. Appl. Clay Sci. 2020;184:105395. doi: 10.1016/j.clay.2019.105395. DOI
Li S., Fan Z. Encapsulation Methods of Sulfur Particles for Lithium-Sulfur Batteries: A Review. Energy Storage Mater. 2021;34:107–127. doi: 10.1016/j.ensm.2020.09.005. DOI
Li S., Leng D., Li W., Qie L., Dong Z., Cheng Z., Fan Z. Recent Progress in Developing Li2S Cathodes for Li–S Batteries. Energy Storage Mater. 2020;27:279–296. doi: 10.1016/j.ensm.2020.02.010. DOI
Li S., Fan Z. Nitrogen-Doped Carbon Mesh from Pyrolysis of Cotton in Ammonia as Binder-Free Electrodes of Supercapacitors. Microporous Mesoporous Mater. 2019;274:313–317. doi: 10.1016/j.micromeso.2018.09.002. DOI
Hosseini M.G., Raghibi-Boroujeni M., Ahadzadeh I., Najjar R., Seyed Dorraji M.S. Effect of Polypyrrole–Montmorillonite Nanocomposites Powder Addition on Corrosion Performance of Epoxy Coatings on Al 5000. Prog. Org. Coat. 2009;66:321–327. doi: 10.1016/j.porgcoat.2009.08.010. DOI
Oraon R., De Adhikari A., Tiwari S.K., Nayak G.C. Enhanced Specific Capacitance of Self-Assembled Three-Dimensional Carbon Nanotube/Layered Silicate/Polyaniline Hybrid Sandwiched Nanocomposite for Supercapacitor Applications. ACS Sustain. Chem. Eng. 2016;4:1392–1403. doi: 10.1021/acssuschemeng.5b01389. DOI
Bober P., Stejskal J., Špírková M., Trchová M., Varga M., Prokeš J. Conducting Polyaniline–Montmorillonite Composites. Synth. Met. 2010;160:2596–2604. doi: 10.1016/j.synthmet.2010.10.010. DOI
De León-Almazán C.M., Estrada-Moreno I.A., Olmedo-Martínez J.L., Rivera-Armenta J.L. Semiconducting Elastomers Based on Polyaniline/Clay Nanocomposites and SEBS Obtained by an Alternative Processing Technique. Synth. Met. 2020;268:116460. doi: 10.1016/j.synthmet.2020.116460. DOI
Kazim S., Ahmad S., Pfleger J., Plestil J., Joshi Y.M. Polyaniline–Sodium Montmorillonite Clay Nanocomposites: Effect of Clay Concentration on Thermal, Structural, and Electrical Properties. J. Mater. Sci. 2012;47:420–428. doi: 10.1007/s10853-011-5815-y. DOI
Contri G., Barra G.M.O., Ramoa S.D.A.S., Merlini C., Ecco L.G., Souza F.S., Spinelli A. Epoxy Coating Based on Montmorillonite-Polypyrrole: Electrical Properties and Prospective Application on Corrosion Protection of Steel. Prog. Org. Coat. 2018;114:201–207. doi: 10.1016/j.porgcoat.2017.10.008. DOI
Vilímová P., Kulhánková L., Peikertová P., Mamulová Kutláková K., Vallová S., Koníčková H., Plaček T., Tokarský J. Effect of Montmorillonite/Polypyrrole Ratio and Oxidizing Agent on Structure and Electrical Conductivity of Intercalated Nanocomposites. Appl. Clay Sci. 2019;168:459–468. doi: 10.1016/j.clay.2018.12.015. DOI
Aradilla D., Estrany F., Azambuja D.S., Casas M.T., Puiggali J., Ferreira C.A., Alemán C. Conducting Poly(3,4-Ethylenedioxythiophene)-Montmorillonite Exfoliated Nanocomposites. Eur. Polym. J. 2010;46:977–983. doi: 10.1016/j.eurpolymj.2010.01.003. DOI
Do Nascimento G.M., Sestrem R.H., Temperini M.L.A. Structural Characterization of Poly-Para-Phenylenediamine–Montmorillonite Clay Nanocomposites. Synth. Met. 2010;160:2397–2403. doi: 10.1016/j.synthmet.2010.09.016. DOI
Ramya E., Rajashree C., Nayak P.L., Narayana Rao D. New Hybrid Organic Polymer Montmorillonite/Chitosan/Polyphenylenediamine Composites for Nonlinear Optical Studies. Appl. Clay Sci. 2017;150:323–332. doi: 10.1016/j.clay.2017.10.001. DOI
Rajapakse R.M.G., Murakami K., Bandara H.M.N., Rajapakse R.M.M.Y., Velauthamurti K., Wijeratne S. Preparation and Characterization of Electronically Conducting Polypyrrole-Montmorillonite Nanocomposite and Its Potential Application as a Cathode Material for Oxygen Reduction. Electrochim. Acta. 2010;55:2490–2497. doi: 10.1016/j.electacta.2009.12.015. DOI
de Barros A., Constantino C.J.L., da Cruz N.C., Bortoleto J.R.R., Ferreira M. High Performance of Electrochemical Sensors Based on LbL Films of Gold Nanoparticles, Polyaniline and Sodium Montmorillonite Clay Mineral for Simultaneous Detection of Metal Ions. Electrochim. Acta. 2017;235:700–708. doi: 10.1016/j.electacta.2017.03.135. DOI
Zheng H., Liu M., Yan Z., Chen J. Highly Selective and Stable Glucose Biosensor Based on Incorporation of Platinum Nanoparticles into Polyaniline-Montmorillonite Hybrid Composites. Microchem. J. 2020;152:104266. doi: 10.1016/j.microc.2019.104266. DOI
Špírková M., Bober P., Kotek J., Stejskal J. Bi-Hybrid Coatings: Polyaniline-Montmorillonite Filler in Organic-Inorganic Polymer Matrix. Chem. Pap. 2013;67:1020–1027. doi: 10.2478/s11696-012-0299-z. DOI
Ben Ali M., Wang F., Boukherroub R., Lei W., Xia M. Phytic Acid-Doped Polyaniline Nanofibers-Clay Mineral for Efficient Adsorption of Copper (II) Ions. J. Colloid Interface Sci. 2019;553:688–698. doi: 10.1016/j.jcis.2019.06.065. PubMed DOI
Pham Q.L., Haldorai Y., Nguyen V.H., Tuma D., Shim J.-J. Facile Synthesis of Poly(p-Phenylenediamine)/MWCNT Nanocomposites and Characterization for Investigation of Structural Effects of Carbon Nanotubes. Bull. Mater. Sci. 2011;34:37–43. doi: 10.1007/s12034-011-0049-9. DOI
Lakouraj M.M., Zare E.N., Moghadam P.N. Synthesis of Novel Conductive Poly(p-Phenylenediamine)/Fe3O4 Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity. Adv. Polym. Technol. 2014;33:21385:1–21385:7. doi: 10.1002/adv.21385. DOI
Magdziarz P., Bober P., Trchová M., Morávková Z., Bláha M., Prokeš J., Stejskal J. Conducting Composites Prepared by the Reduction of Silver Ions with Poly(p-Phenylenediamine) Polym. Int. 2015;64:496–504. doi: 10.1002/pi.4817. DOI
Minisy I.M., Zasońska B.A., Petrovský E., Veverka P., Šeděnková I., Hromádková J., Bober P. Poly(p-Phenylenediamine)/Maghemite Composite as Highly Effective Adsorbent for Anionic Dye Removal. React. Funct. Polym. 2020;146:104436. doi: 10.1016/j.reactfunctpolym.2019.104436. DOI
Wang Y., Wang H., Zhang T.C., Yuan S., Liang B. N-Doped Porous Carbon Derived from RGO-Incorporated Polyphenylenediamine Composites for CO2 Adsorption and Supercapacitors. J. Power Sources. 2020;472:228610. doi: 10.1016/j.jpowsour.2020.228610. DOI
Stejskal J. Polymers of Phenylenediamines. Prog. Polym. Sci. 2015;41:1–31. doi: 10.1016/j.progpolymsci.2014.10.007. DOI
Bláha M., Trchová M., Morávková Z., Humpolíček P., Stejskal J. Semiconducting Materials from Oxidative Coupling of Phenylenediamines under Various Acidic Conditions. Mater. Chem. Phys. 2018;205:423–435. doi: 10.1016/j.matchemphys.2017.11.007. DOI
Khelifa I., Belmokhtar A., Berenguer R., Benyoucef A., Morallon E. New Poly(o-Phenylenediamine)/Modified-Clay Nanocomposites: A Study on Spectral, Thermal, Morphological and Electrochemical Characteristics. J. Mol. Struct. 2019;1178:327–332. doi: 10.1016/j.molstruc.2018.10.054. DOI
Nath A.K., Kumar A. Scaling of AC Conductivity, Electrochemical and Thermal Properties of Ionic Liquid Based Polymer Nanocomposite Electrolytes. Electrochim. Acta. 2014;129:177–186. doi: 10.1016/j.electacta.2014.02.101. DOI
Dong Y.Z., Kim H.M., Choi H.J. Conducting polymer-based electro-responsive smart suspensions. Chem. Pap. 2021;75:5009–5034. doi: 10.1007/s11696-021-01550-w. DOI
Ates M. A Review on Conducting Polymer Coatings for Corrosion Protection. J. Adhes. Sci. Technol. 2016;30:1510–1536. doi: 10.1080/01694243.2016.1150662. DOI
Slade R.C.T., Barker J., Hirst P.R., Halstead T.K., Reid P.I. Conduction and Diffusion in Exchanged Montmorillonite Clays. Solid State Ion. 1987;24:289–295. doi: 10.1016/0167-2738(87)90135-4. DOI
Nj G., Jc B. Conductivity in Na+-Montmorillonite and Li+-Montmorillonite as a Function of Equilibration Humidity. Solid State Ion. 1996;92:139–143.
Wu L., Cao S., Lv G. Influence of Energy State of Montmorillonite Interlayer Cations on Organic Intercalation. Adv. Mater. Sci. Eng. 2018;2018:3489720. doi: 10.1155/2018/3489720. DOI
Krupskaya V.V., Zakusin S.V., Tyupina E.A., Dorzhieva O.V., Zhukhlistov A.P., Belousov P.E., Timofeeva M.N. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals. 2017;7:49. doi: 10.3390/min7040049. DOI
Hayati-Ashtiani M. Use of FTIR Spectroscopy in the Characterization of Natural and Treated Nanostructured Bentonites (Montmorillonites) Part. Sci. Technol. 2012;30:553–564. doi: 10.1080/02726351.2011.615895. DOI
Becker E.D. Raman Spectra of Isotopic Derivatives of p-Benzoquinone: Revised Vibrational Assignments. J. Phys. Chem. 1991;95:2818–2823. doi: 10.1021/j100160a035. DOI
Stammreich H., Sans T.T. Molecular Vibrations of Quinones. IV. Raman Spectra of P-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies. J. Chem. Phys. 1965;42:920–931. doi: 10.1063/1.1696083. PubMed DOI
Bláha M., Marek F., Morávková Z., Svoboda J., Brus J., Dybal J., Prokeš J., Varga M., Stejskal J. Role of P-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline. ACS Omega. 2019;4:7128–7139. doi: 10.1021/acsomega.9b00542. PubMed DOI PMC
Trchová M., Morávková Z., Šeděnková I., Stejskal J. Spectroscopy of Thin Polyaniline Films Deposited during Chemical Oxidation of Aniline. Chem. Pap. 2012;66:415–445. doi: 10.2478/s11696-012-0142-6. DOI
do Nascimento G.M., Constantino V.R.L., Landers R., Temperini M.L.A. Spectroscopic Characterization of Polyaniline Formed in the Presence of Montmorillonite Clay. Polymer. 2006;47:6131–6139. doi: 10.1016/j.polymer.2006.06.036. DOI
Baibarac M., Baltog I., Scocioreanu M., Ballesteros B., Mevellec J.Y., Lefrant S. One-Dimensional Composites Based on Single Walled Carbon Nanotubes and Poly(o-Phenylenediamine) Synth. Met. 2011;161:2344–2354. doi: 10.1016/j.synthmet.2011.09.001. DOI
Sestrem R.H., Ferreira D.C., Landers R., Temperini M.L.A., do Nascimento G.M. Synthesis and Spectroscopic Characterization of Polymer and Oligomers of Ortho-Phenylenediamine. Eur. Polym. J. 2010;46:484–493. doi: 10.1016/j.eurpolymj.2009.12.007. DOI
Brolo A.G., Sanderson A.C. Surface-Enhanced Raman Scattering (SERS) from a Silver Electrode Modified with Oxazine 720. Can. J. Chem. 2011;82:1474–1480. doi: 10.1139/v04-117. DOI
Trchová M., Morávková Z., Dybal J., Stejskal J. Detection of Aniline Oligomers on Polyaniline–Gold Interface Using Resonance Raman Scattering. ACS Appl. Mater. Interfaces. 2014;6:942–950. doi: 10.1021/am404252f. PubMed DOI
Anto P.L., Panicker C.Y., Varghese H.T., Philip D. Potential-Dependent SERS Profile of Orthanilic Acid on Silver Electrode. J. Raman Spectrosc. 2006;37:1265–1271. doi: 10.1002/jrs.1547. DOI
de Santana H., Quillard S., Fayad E., Louarn G. In Situ UV–Vis and Raman Spectroscopic Studies of the Electrochemical Behavior of N,N′-Diphenyl-1,4-Phenylenediamine. Synth. Met. 2006;156:81–85. doi: 10.1016/j.synthmet.2005.10.013. DOI
Boyer M.I., Quillard S., Louarn G., Froyer G., Lefrant S. Vibrational Study of the FeCl3-Doped Dimer of Polyaniline; A Good Model Compound of Emeraldine Salt. J. Phys. Chem. B. 2000;104:8952–8961. doi: 10.1021/jp000946v. DOI
Cochet M., Louarn G., Quillard S., Boyer M.I., Buisson J.P., Lefrant S. Theoretical and Experimental Vibrational Study of Polyaniline in Base Forms: Non-Planar Analysis. Part I. J. Raman Spectrosc. 2000;31:1029–1039. doi: 10.1002/1097-4555(200011)31:11<1029::AID-JRS640>3.0.CO;2-A. DOI
Cochet M., Louarn G., Quillard S., Buisson J.P., Lefrant S. Theoretical and Experimental Vibrational Study of Emeraldine in Salt Form. Part II. J. Raman Spectrosc. 2000;31:1041–1049. doi: 10.1002/1097-4555(200012)31:123.0.CO;2-R. DOI
Quillard S., Louam G., Buisson J.P., Boyer M., Lapkowski M., Pron A., Lefrant S. Vibrational Spectroscopic Studies of the Isotope Effects in Polyaniline. Synth. Met. 1997;84:805–806. doi: 10.1016/S0379-6779(96)04155-0. DOI
Louarn G., Lapkowski M., Quillard S., Pron A., Buisson J.P., Lefrant S. Vibrational Properties of PolyanilineIsotope Effects. J. Phys. Chem. 1996;100:6998–7006. doi: 10.1021/jp953387e. DOI
do Nascimento G.M., Kobata P.Y.G., Millen R.P., Temperini M.L.A. Raman Dispersion in Polyaniline Base Forms. Synth. Met. 2007;157:247–251. doi: 10.1016/j.synthmet.2007.02.003. DOI
Do Nascimento G.M., Constantino V.R.L., Landers R., Temperini M.L.A. Aniline Polymerization into Montmorillonite Clay: A Spectroscopic Investigation of the Intercalated Conducting Polymer. Macromolecules. 2004;37:9373–9385. doi: 10.1021/ma049054+. DOI
Morávková Z., Dmitrieva E. The First Products of Aniline Oxidation—SERS Spectroelectrochemistry. Chem. Sel. 2019;4:8847–8854. doi: 10.1002/slct.201802878. DOI
Kumar M., Tiwari T., Chauhan J.K., Srivastava N. Understanding the Ion Dynamics and Relaxation Behavior from Impedance Spectroscopy of NaI Doped Zwitterionic Polymer System. Mater. Res. Express. 2014;1:045003. doi: 10.1088/2053-1591/1/4/045003. DOI
Soltane L., Sediri F. Hydrothermal Synthesis, Characterization and Electrical Investigation of Poly(Para-Phenylenediamine)/Vanadium Oxide Nanocomposite Nanosheets. Mater. Sci. Eng. B. 2013;178:502–510. doi: 10.1016/j.mseb.2013.02.005. DOI
Ali A., Mohamed N.S., Sani N.A.M., Abdullah M.A.A. Preparation and Properties of Alkylphosphonium Modified Montmorillonites. Int. J. Appl. Chem. 2016;12:6.
Chand J., Kumar G., Kumar P., Sharma S.K., Knobel M., Singh M. Effect of Gd3+ Doping on Magnetic, Electric and Dielectric Properties of MgGdxFe2−xO4 Ferrites Processed by Solid State Reaction Technique. J. Alloys Compd. 2011;509:9638–9644. doi: 10.1016/j.jallcom.2011.07.055. DOI
Lvovich V.F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. pp. 1–19.
Einfeldt J., Meißner D., Kwasniewski A. Polymerdynamics of Cellulose and Other Polysaccharides in Solid State-Secondary Dielectric Relaxation Processes. Prog. Polym. Sci. 2001;26:1419–1472. doi: 10.1016/S0079-6700(01)00020-X. DOI
Aziz S.B., Abidin Z.H.Z. Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation. J. Soft Matter. 2013;2013:323868. doi: 10.1155/2013/323868. DOI
Megdiche M., Perrin-pellegrino C., Gargouri M. Conduction Mechanism Study by Overlapping Large-Polaron Tunnelling Model in SrNiP2O7 Ceramic Compound. J. Alloys Compd. 2014;584:209–215. doi: 10.1016/j.jallcom.2013.09.021. DOI
Elliott S.R. A.c. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors. Adv. Phys. 1987;36:135–217. doi: 10.1080/00018738700101971. DOI
Salles F., Devautour-Vinot S., Bildstein O., Jullien M., Maurin G., Giuntini J.-C., Douillard J.-M., Van Damme H. Ionic Mobility and Hydration Energies in Montmorillonite Clay. J. Phys. Chem. C. 2008;112:14001–14009. doi: 10.1021/jp710976g. DOI
Su P.-G., Chen C.-Y. Humidity Sensing and Electrical Properties of Na- and K-Montmorillonite. Sens. Actuators B Chem. 2008;129:380–385. doi: 10.1016/j.snb.2007.08.032. DOI