Effect of a Zr-Based Metal-Organic Framework Structure on the Properties of Its Composite with Polyaniline

. 2023 May 17 ; 15 (19) : 23813-23823. [epub] 20230504

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37141587

Composites of polyaniline (PANI) and Zr-based metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were synthesized by the oxidative polymerization of aniline in the presence of MOF templates with the MOF content in the resulting materials (78.2 and 86.7 wt %, respectively) close to the theoretical value (91.5 wt %). Scanning electron microscopy and transmission electron microscopy showed that the morphology of the composites was set by the morphology of the MOFs, whose structure was mostly preserved after the synthesis, based on the X-ray diffraction data. Vibrational and NMR spectroscopies pointed out that MOFs participate in the protonation of PANI and conducting polymer chains were grafted to amino groups of UiO-66-NH2. Unlike PANI-UiO-66, cyclic voltammograms of PANI-UiO-66-NH2 showed a well-resolved redox peak at around ≈0 V, pointing at the pseudocapacitive behavior. The gravimetric capacitance of PANI-UiO-66-NH2, normalized per mass of the active material, was also found to be higher compared to that of pristine PANI (79.8 and 50.5 F g-1, respectively, at 5 mV s-1). The introduction of MOFs into the composites with PANI significantly improved the cycling stability of the materials over 1000 cycles compared to the pristine conducting polymer, with the residual gravimetric capacitance being ≥100 and 77%, respectively. Thus, the electrochemical performance of the prepared PANI-MOF composites makes them attractive materials for application in energy storage.

Zobrazit více v PubMed

Stejskal J.; Trchová M.; Bober P.; Humpolíček P.; Kašpárková V.; Sapurina I.; Shishov M. A.; Varga M.. Conducting Polymers: Polyaniline. In Encyclopedia of Polymer Science and Technology; Wiley Online, 2015; pp 1–44.

Sun S.; Hao F. Y.; Maimaitiyiming X. 3D Print Polyaniline/Gelatin Hydrogels as Wearable Multifunctional Sensors. ChemistrySelect 2022, 7, e2022032810.1002/slct.202203286. DOI

Zhu C. H.; Xu Y. F.; Zhou T. T.; Liu L. C.; Chen Q. D.; Gao B. R.; Zhang T. Self-assembly Polyaniline Films for the High-performance Ammonia Gas Sensor. Sens. Actuators, B 2022, 365, 13192810.1016/j.snb.2022.131928. DOI

Fratoddi I.; Venditti I.; Cametti C.; Russo M. V. Chemiresistive Polyaniline-based Gas Sensors: A Mini Review. Sens. Actuators, B 2015, 220, 534–548. 10.1016/j.snb.2015.05.107. DOI

Luqman M.; Shaikh H. M.; Anis A.; Al-Zahrani S. M.; Alam M. A. A Convenient and Simple Ionic Polymer-metal Composite (IPMC) Actuator Based on a Platinum-coated Sulfonated Poly(ether ether ketone)-Polyaniline Composite Membrane. Polymers 2022, 14, 66810.3390/polym14040668. PubMed DOI PMC

Smela E.; Lu W.; Mattes B. R. Polyaniline Actuators: Part 1. PANI(AMPS) in HCl. Synth. Met. 2005, 151, 25–42. 10.1016/j.synthmet.2005.03.009. DOI

Anwar N.; Shakoor A.; Ali G.; Ahmad H.; Niaz N. A.; Seerat-Ul-Arooj; Mahmood A. Synthesis and Electrochemical Characterization of Polyaniline Doped Cadmium Oxide (PANI-CdO) Nanocomposites for Supercapacitor Applications. J. Energy Storage 2022, 55, 10544610.1016/j.est.2022.105446. DOI

Huang Z. Q.; Li L.; Wang Y. F.; Zhang C.; Liu T. X. Polyaniline/Graphene Nanocomposites Towards High-Performance Supercapacitors: A Review. Compos. Commun. 2018, 8, 83–91. 10.1016/j.coco.2017.11.005. DOI

Yu Y.; Xu A. Z.; Zhang Y.; Li W.; Qin Y. J. Evaporation-induced Hydrated Graphene/Polyaniline/Carbon Cloth Integration Towards High Mass Loading Supercapacitor Electrodes. Chem. Eng. J. 2022, 445, 13672710.1016/j.cej.2022.136727. DOI

Duraisamy M.; Mari E.; Chinnuswamy V.; Senthilkumar S.; Lin Y. C.; Ponnusamy V. K. Novel Palladium-decorated Molybdenum Carbide/Polyaniline Nanohybrid Material as Superior Electrocatalyst for Fuel Cell Application. Int. J. Hydrogen Energy 2022, 47, 37599–37608. 10.1016/j.ijhydene.2021.11.200. DOI

Ramohlola K. E.; Monana G. R.; Hato M. J.; Modibane K. D.; Molapo K. M.; Masikini M.; Mduli S. B.; Iwuoha E. I. Polyaniline-Metal Organic Framework Nanocomposite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Composites, Part B 2018, 137, 129–139. 10.1016/j.compositesb.2017.11.016. DOI

Kaewsaneha C.; Thananukul K.; Opaprakasit P.; Tangboriboonrat P.; Sreearunothai P. Hybrid MXene (Ti3C2Tx)/Polyaniline Nanosheets as Additives for Enhancing Anticorrosion Properties of Zn-epoxy Coating. Prog. Org. Coat. 2022, 173, 10717310.1016/j.porgcoat.2022.107173. DOI

Gao F. J.; Mu J.; Bi Z. X.; Wang S.; Li Z. L. Recent Advances of Polyaniline Composites in Anticorrosive Coatings: A review. Prog. Org. Coat. 2021, 151, 10607110.1016/j.porgcoat.2020.106071. DOI

Safaei M.; Foroughi M. M.; Ebrahimpoor N.; Jahani S.; Omidi A.; Khatami M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC, Trends Anal. Chem. 2019, 118, 401–425. 10.1016/j.trac.2019.06.007. DOI

Zong Z.; Tian G. H.; Wang J. L.; Fan C. B.; Yang F. L.; Guo F. Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022, 14, 279010.3390/pharmaceutics14122790. PubMed DOI PMC

Maranescu B.; Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 445810.3390/ijms23084458. PubMed DOI PMC

Sun C. Y.; Qin C.; Wang X. L.; Su Z. M. Metal-Organic Frameworks as Potential Drug Delivery Systems. Expert Opin. Drug Delivery 2013, 10, 89–101. 10.1517/17425247.2013.741583. PubMed DOI

Gascon J.; Corma A.; Kapteijn F.; Xamena F. X. L. I. Metal Organic Framework Catalysis: Quo Vadis?. ACS Catal. 2014, 4, 361–378. 10.1021/cs400959k. DOI

Dybtsev D. N.; Bryliakov K. P. Asymmetric Catalysis Using Metal-Organic Frameworks. Coord. Chem. Rev. 2021, 437, 21384510.1016/j.ccr.2021.213845. DOI

Dhakshinamoorthy A.; Asiri A. M.; Garcia H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020, 12, 4732–4753. 10.1002/cctc.202001188. DOI

Zhang Y. M.; Yuan S.; Day G.; Wang X.; Yang X. Y.; Zhou H. C. Luminescent Sensors Based on Metal-Organic Frameworks. Coord. Chem. Rev. 2018, 354, 28–45. 10.1016/j.ccr.2017.06.007. DOI

Yi F. Y.; Chen D. X.; Wu M. K.; Han L.; Jiang H. L. Chemical Sensors Based on Metal-Organic Frameworks. ChemPlusChem 2016, 81, 675–690. 10.1002/cplu.201600137. PubMed DOI

Hitabatuma A.; Wang P. L.; Su X. O.; Ma M. M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022, 11, 38210.3390/foods11030382. PubMed DOI PMC

Chuvikov S. V.; Klyamkin S. N. Assessment of High-pressure Hydrogen Storage Performance of Basolite Metal-Organic Frameworks. Int. J. Energy Res. 2022, 46, 21937–21947. 10.1002/er.8747. DOI

He Y. B.; Chen F. L.; Li B.; Qian G. D.; Zhou W.; Chen B. L. Porous Metal-Organic Frameworks for Fuel Storage. Coord. Chem. Rev. 2018, 373, 167–198. 10.1016/j.ccr.2017.10.002. DOI

Li H.; Li L. B.; Lin R. B.; Zhou W.; Zhang Z. J.; Xiang S. C.; Chen B. L. Porous Metal-Organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem 2019, 1, 10000610.1016/j.enchem.2019.100006. PubMed DOI PMC

Yuan Q.; Wang Y. L.; Yuan F.; Jia S. R.; Sun H. B.; Zhang X. K. Water-stable Metal Organic Framework-199@Polyaniline with High-performance Removal of Copper II. Environ. Sci. Pollut. Res. 2022, 29, 44883–44892. 10.1007/s11356-022-19047-8. PubMed DOI

Milakin K. A.; Gavrilov N.; Pašti I. A.; Morávková Z.; Acharya U.; Unterweger C.; Breitenbach S.; Zhigunov A.; Bober P. Polyaniline-Metal Organic Framework (Fe-BTC) Composite for Electrochemical Applications. Polymer 2020, 208, 12294510.1016/j.polymer.2020.122945. DOI

Kandiah M.; Nilsen M. H.; Usseglio S.; Jakobsen S.; Olsbye U.; Tilset M.; Larabi C.; Quadrelli E. A.; Bonino F.; Lillerud K. P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. 10.1021/cm102601v. DOI

Winarta J.; Shan B. H.; Mcintyre S. M.; Ye L.; Wang C.; Liu J. C.; Mu B. A Decade of UiO-66 Research: a Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal-Organic Framework. Cryst. Growth Des. 2020, 20, 1347–1362. 10.1021/acs.cgd.9b00955. DOI

DeStefano M. R.; Islamoglu T.; Garibay S. J.; Hupp J. T.; Farha O. K. Room-temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chem. Mater. 2017, 29, 1357–1361. 10.1021/acs.chemmater.6b05115. DOI

Wang Y.; Wang L.; Huang W.; Zhang T.; Hu X. Y.; Perman J. A.; Ma S. Q. A Metal-Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Performance Cadmium Ion Detection. J. Mater. Chem. A 2017, 5, 8385–8393. 10.1039/c7ta01066d. DOI

Mirzaei K.; Jafarpour E.; Shojaei A.; Molavi H. Facile Synthesis of Polyaniline@UiO-66 Nanohybrids for Efficient and Rapid Adsorption of Methyl Orange from Aqueous Media. Ind. Eng. Chem. Res. 2022, 61, 11735–11746. 10.1021/acs.iecr.2c00919. DOI

Shanahan J.; Kissel D. S.; Sullivan E. PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega 2020, 5, 6395–6404. 10.1021/acsomega.9b03834. PubMed DOI PMC

Lin J. Q.; Li G. S.; She C. K.; Zhang Y.; Liu S. H.; Jing C. B.; Cheng Y.; Chu J. H. Microchannel Tube NH3 Sensor Based on Metal-Organic Framework UiO-66 Modified Polyaniline. Mater. Res. Bull. 2022, 150, 11177010.1016/j.materresbull.2022.111770. DOI

Shao L.; Wang Q.; Ma Z. L.; Ji Z. Y.; Wang X. Y.; Song D. D.; Liu Y. G.; Wang N. A High-capacitance Flexible Solid-state Supercapacitor Based on Polyaniline and Metal-Organic Framework (UiO-66) composites. J. Power Sources 2018, 379, 350–361. 10.1016/j.jpowsour.2018.01.028. DOI

Song Y. D.; Ho W. H.; Chen Y. C.; Li J. H.; Wang Y. S.; Gu Y. J.; Chuang C. H.; Kung C. W. Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chem.—Eur. J. 2021, 27, 3560–3567. 10.1002/chem.202004516. PubMed DOI

Rajakumaran R.; Shen C. H.; Satilmis B.; Kung C. W. Metal-Organic Framework Functionalized Poly-cyclodextrin Membranes Confining Polyaniline for Charge Storage. Chem. Commun. 2022, 58, 6590–6593. 10.1039/d2cc02231a. PubMed DOI

Chen J. X.; Zhang B. R.; Dang X. P.; Zheng D. Y.; Ai Y. H.; Chen H. X. A Nanocomposite Consisting of Etched Multiwalled Carbon Nanotubes, Amino-Modified Metal-Organic Framework UiO-66 and Polyaniline for Preconcentration of Polycyclic Aromatic Hydrocarbons Prior to Their Determination by HPLC. Microchim. Acta 2020, 187, 7810.1007/s00604-019-3997-1. PubMed DOI

Katz M. J.; Brown Z. J.; Colon Y. J.; Siu P. W.; Scheidt K. A.; Snurr R. Q.; Hupp J. T.; Farha O. K. A Facile Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Commun. 2013, 49, 9449–9451. 10.1039/c3cc46105j. PubMed DOI

Morcombe C. R.; Zilm K. W. Chemical Shift Referencing in MAS Solid State NMR. J. Magn. Reson. 2003, 162, 479–486. 10.1016/S1090-7807(03)00082-X. PubMed DOI

Mahun A.; Abbrent S.; Bober P.; Brus J.; Kobera L. Effect of Structural Features of Polypyrrole (PPy) on Electrical Conductivity Reflected on C-13 ssNMR Parameters. Synth. Met. 2020, 259, 11625010.1016/j.synthmet.2019.116250. DOI

Hahn E. L. Spin Echoes. Phys. Rev. 1950, 80, 580.10.1103/PhysRev.80.580. DOI

Brus J. Heating of Samples Induced by Fast Magic-angle Spinning. Solid State Nucl. Magn. Reson. 2000, 16, 151–160. 10.1016/S0926-2040(00)00061-8. PubMed DOI

Stejskal J.; Kratochvil P.; Špírková M. Accelerating Effect of Some Cation Radicals on the Polymerization of Aniline. Polymer 1995, 36, 4135–4140. 10.1016/0032-3861(95)90996-F. DOI

Stejskal J.; Gilbert R. G. Polyaniline. Preparation of a Conducting Polymer (IUPAC technical report). Pure Appl. Chem. 2002, 74, 857–867. 10.1351/pac200274050857. DOI

Trchová M.; Stejskal J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. 10.1351/PAC-REP-10-02-01. DOI

Wang Y. Preparation and Application of Polyaniline Nanofibers: an Overview. Polym. Int. 2018, 67, 650–669. 10.1002/pi.5562. DOI

Cavka J. H.; Jakobsen S.; Olsbye U.; Guillou N.; Lamberti C.; Bordiga S.; Lillerud K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. 10.1021/ja8057953. PubMed DOI

Liu X.; Zhao X.; Zhou M.; Cao Y.; Wu H.; Zhu J. Highly Stable and Active Palladium Nanoparticles Supported on a Mesoporous UiO66@Reduced Graphene Oxide Complex for Practical Catalytic Applications. Eur. J. Inorg. Chem. 2016, 2016, 3338–3343. 10.1002/ejic.201600367. DOI

Leus K.; Bogaerts T.; De Decker J.; Depauw H.; Hendrickx K.; Vrielinck H.; Van Speybroeck V.; Van Der Voort P. Systematic Study of the Chemical and Hydrothermal Stability of Selected ″Stable″ Metal Organic Frameworks. Microporous Mesoporous Mater. 2016, 226, 110–116. 10.1016/j.micromeso.2015.11.055. DOI

Yot P. G.; Yang K.; Ragon F.; Dmitriev V.; Devic T.; Horcajada P.; Serre C.; Maurin G. Exploration of the Mechanical Behavior of Metal Organic Frameworks UiO-66 (Zr) and MIL-125 (Ti) and Their NH2 Functionalized Versions. Dalton Trans. 2016, 45, 4283–4288. 10.1039/C5DT03621F. PubMed DOI

Hashem T.; Sanchez E. P. V.; Bogdanova E.; Ugodchikova A.; Mohamed A.; Schwotzer M.; Alkordi M. H.; Woll C. Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes 2021, 11, 20710.3390/membranes11030207. PubMed DOI PMC

Piscopo C. G.; Polyzoidis A.; Schwarzer M.; Loebbecke S. Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications. Microporous Mesoporous Mater. 2015, 208, 30–35. 10.1016/j.micromeso.2015.01.032. DOI

Acharya U.; Bober P.; Thottappali M. A.; Morávková Z.; Konefal M.; Pfleger J. Synthesis and Impedance Spectroscopy of Poly(p-phenylenediamine)/Montmorillonite Composites. Polymers 2021, 13, 313210.3390/polym13183132. PubMed DOI PMC

Abdelhamid H. N. UiO-66 as a Catalyst for Hydrogen Production via the Hydrolysis of Sodium Borohydride. Dalton Trans. 2020, 49, 10851–10857. 10.1039/d0dt01688h. PubMed DOI

Hinde C. S.; Webb W. R.; Chew B. K. J.; Tan H. R.; Zhang W. H.; Hor T. S. A.; Raja R. Utilisation of Gold Nanoparticles on Amine-functionalised UiO-66 (NH2-UiO-66) Nanocrystals for Selective Tandem Catalytic Reactions. Chem. Commun. 2016, 52, 6557–6560. 10.1039/c6cc02169g. PubMed DOI

Helal A.; Arafat M. E.; Rahman M. M. Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors 2020, 8, 12210.3390/chemosensors8040122. DOI

Li W. G.; Wan M. X. Stability of Polyaniline Synthesized by a Doping-Dedoping-Redoping Method. J. Appl. Polym. Sci. 1999, 71, 615–621. 10.1002/(SICI)1097-4628(19990124)71:4%3C615::AID-APP13%3E3.0.CO;2-O. DOI

Logan M. W.; Langevin S.; Xia Z. Y. Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks. Sci. Rep. 2020, 10, 149210.1038/s41598-020-58405-9. PubMed DOI PMC

Morávková Z.; Dmitrieva E. Structural Changes in Polyaniline Near the Middle Oxidation Peak Studied by In Situ Raman Spectroelectrochemistry. J. Raman Spectrosc. 2017, 48, 1229–1234. 10.1002/jrs.5197. DOI

dos Santos I. F.; Temperini M. L. A. Investigation of the Correlation Between Chemical Structure and Morphology in Oligoaniline Microspheres Produced in Buffered Conditions. Eur. Polym. J. 2020, 122, 10934510.1016/j.eurpolymj.2019.109345. DOI

Socrates G.Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley& Sons, Ltd: Chichester, 2001; pp 51–55, 108–110, 126–128.

Valenzano L.; Civalleri B.; Chavan S.; Bordiga S.; Nilsen M. H.; Jakobsen S.; Lillerud K. P.; Lamberti C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: a Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23, 1700–1718. 10.1021/cm1022882. DOI

Chakarova K.; Strauss I.; Mihaylov M.; Drenchev N.; Hadjiivanov K. Evolution of Acid and Basic Sites in UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: FTIR Study by Probe Molecules. Microporous Mesoporous Mater. 2019, 281, 110–122. 10.1016/j.micromeso.2019.03.006. DOI

Trchová M.; Morávková Z.; Šeděnková I.; Stejskal J. Spectroscopy of Thin Polyaniline Films Deposited During Chemical Oxidation of Aniline. Chem. Pap. 2012, 66, 415–445. 10.2478/s11696-012-0142-6. DOI

Grigoras M.; Catargiu A. M.; Tudorache F. Molecular Composites Obtained by Polyaniline Synthesis in the Presence of p-Octasulfonated Calixarene Macrocycle. J. Appl. Polym. Sci. 2013, 127, 2796–2802. 10.1002/app.37605. DOI

Sapurina I.; Mokeev M.; Lavrentev V.; Zgonnik V.; Trchová M.; Hlavatá D.; Stejskal J. Polyaniline Complex with Fullerene C-60. Eur. Polym. J. 2000, 36, 2321–2326. 10.1016/S0014-3057(00)00012-4. DOI

Devautour-Vinot S.; Maurin G.; Serre C.; Horcajada P.; da Cunha D. P.; Guillerm V.; Costa E. D.; Taulelle F.; Martineau C. Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chem. Mater. 2012, 24, 2168–2177. 10.1021/cm300863c. DOI

Gospodinova N.; Mokreva P.; Terlemezyan L. Influence of Hydrolysis on the Chemical Polymerization of Aniline. Polymer 1994, 35, 3102–3106. 10.1016/0032-3861(94)90425-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...