Effect of a Zr-Based Metal-Organic Framework Structure on the Properties of Its Composite with Polyaniline
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37141587
PubMed Central
PMC10197080
DOI
10.1021/acsami.3c03870
Knihovny.cz E-zdroje
- Klíčová slova
- NMR, electrochemical characterization, grafting, metal−organic framework, polyaniline,
- Publikační typ
- časopisecké články MeSH
Composites of polyaniline (PANI) and Zr-based metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were synthesized by the oxidative polymerization of aniline in the presence of MOF templates with the MOF content in the resulting materials (78.2 and 86.7 wt %, respectively) close to the theoretical value (91.5 wt %). Scanning electron microscopy and transmission electron microscopy showed that the morphology of the composites was set by the morphology of the MOFs, whose structure was mostly preserved after the synthesis, based on the X-ray diffraction data. Vibrational and NMR spectroscopies pointed out that MOFs participate in the protonation of PANI and conducting polymer chains were grafted to amino groups of UiO-66-NH2. Unlike PANI-UiO-66, cyclic voltammograms of PANI-UiO-66-NH2 showed a well-resolved redox peak at around ≈0 V, pointing at the pseudocapacitive behavior. The gravimetric capacitance of PANI-UiO-66-NH2, normalized per mass of the active material, was also found to be higher compared to that of pristine PANI (79.8 and 50.5 F g-1, respectively, at 5 mV s-1). The introduction of MOFs into the composites with PANI significantly improved the cycling stability of the materials over 1000 cycles compared to the pristine conducting polymer, with the residual gravimetric capacitance being ≥100 and 77%, respectively. Thus, the electrochemical performance of the prepared PANI-MOF composites makes them attractive materials for application in energy storage.
Institute of Inorganic Chemistry Functional Materials University of Vienna A 1090 Vienna Austria
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 00 Prague Czech Republic
Zobrazit více v PubMed
Stejskal J.; Trchová M.; Bober P.; Humpolíček P.; Kašpárková V.; Sapurina I.; Shishov M. A.; Varga M.. Conducting Polymers: Polyaniline. In Encyclopedia of Polymer Science and Technology; Wiley Online, 2015; pp 1–44.
Sun S.; Hao F. Y.; Maimaitiyiming X. 3D Print Polyaniline/Gelatin Hydrogels as Wearable Multifunctional Sensors. ChemistrySelect 2022, 7, e2022032810.1002/slct.202203286. DOI
Zhu C. H.; Xu Y. F.; Zhou T. T.; Liu L. C.; Chen Q. D.; Gao B. R.; Zhang T. Self-assembly Polyaniline Films for the High-performance Ammonia Gas Sensor. Sens. Actuators, B 2022, 365, 13192810.1016/j.snb.2022.131928. DOI
Fratoddi I.; Venditti I.; Cametti C.; Russo M. V. Chemiresistive Polyaniline-based Gas Sensors: A Mini Review. Sens. Actuators, B 2015, 220, 534–548. 10.1016/j.snb.2015.05.107. DOI
Luqman M.; Shaikh H. M.; Anis A.; Al-Zahrani S. M.; Alam M. A. A Convenient and Simple Ionic Polymer-metal Composite (IPMC) Actuator Based on a Platinum-coated Sulfonated Poly(ether ether ketone)-Polyaniline Composite Membrane. Polymers 2022, 14, 66810.3390/polym14040668. PubMed DOI PMC
Smela E.; Lu W.; Mattes B. R. Polyaniline Actuators: Part 1. PANI(AMPS) in HCl. Synth. Met. 2005, 151, 25–42. 10.1016/j.synthmet.2005.03.009. DOI
Anwar N.; Shakoor A.; Ali G.; Ahmad H.; Niaz N. A.; Seerat-Ul-Arooj; Mahmood A. Synthesis and Electrochemical Characterization of Polyaniline Doped Cadmium Oxide (PANI-CdO) Nanocomposites for Supercapacitor Applications. J. Energy Storage 2022, 55, 10544610.1016/j.est.2022.105446. DOI
Huang Z. Q.; Li L.; Wang Y. F.; Zhang C.; Liu T. X. Polyaniline/Graphene Nanocomposites Towards High-Performance Supercapacitors: A Review. Compos. Commun. 2018, 8, 83–91. 10.1016/j.coco.2017.11.005. DOI
Yu Y.; Xu A. Z.; Zhang Y.; Li W.; Qin Y. J. Evaporation-induced Hydrated Graphene/Polyaniline/Carbon Cloth Integration Towards High Mass Loading Supercapacitor Electrodes. Chem. Eng. J. 2022, 445, 13672710.1016/j.cej.2022.136727. DOI
Duraisamy M.; Mari E.; Chinnuswamy V.; Senthilkumar S.; Lin Y. C.; Ponnusamy V. K. Novel Palladium-decorated Molybdenum Carbide/Polyaniline Nanohybrid Material as Superior Electrocatalyst for Fuel Cell Application. Int. J. Hydrogen Energy 2022, 47, 37599–37608. 10.1016/j.ijhydene.2021.11.200. DOI
Ramohlola K. E.; Monana G. R.; Hato M. J.; Modibane K. D.; Molapo K. M.; Masikini M.; Mduli S. B.; Iwuoha E. I. Polyaniline-Metal Organic Framework Nanocomposite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Composites, Part B 2018, 137, 129–139. 10.1016/j.compositesb.2017.11.016. DOI
Kaewsaneha C.; Thananukul K.; Opaprakasit P.; Tangboriboonrat P.; Sreearunothai P. Hybrid MXene (Ti3C2Tx)/Polyaniline Nanosheets as Additives for Enhancing Anticorrosion Properties of Zn-epoxy Coating. Prog. Org. Coat. 2022, 173, 10717310.1016/j.porgcoat.2022.107173. DOI
Gao F. J.; Mu J.; Bi Z. X.; Wang S.; Li Z. L. Recent Advances of Polyaniline Composites in Anticorrosive Coatings: A review. Prog. Org. Coat. 2021, 151, 10607110.1016/j.porgcoat.2020.106071. DOI
Safaei M.; Foroughi M. M.; Ebrahimpoor N.; Jahani S.; Omidi A.; Khatami M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC, Trends Anal. Chem. 2019, 118, 401–425. 10.1016/j.trac.2019.06.007. DOI
Zong Z.; Tian G. H.; Wang J. L.; Fan C. B.; Yang F. L.; Guo F. Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022, 14, 279010.3390/pharmaceutics14122790. PubMed DOI PMC
Maranescu B.; Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 445810.3390/ijms23084458. PubMed DOI PMC
Sun C. Y.; Qin C.; Wang X. L.; Su Z. M. Metal-Organic Frameworks as Potential Drug Delivery Systems. Expert Opin. Drug Delivery 2013, 10, 89–101. 10.1517/17425247.2013.741583. PubMed DOI
Gascon J.; Corma A.; Kapteijn F.; Xamena F. X. L. I. Metal Organic Framework Catalysis: Quo Vadis?. ACS Catal. 2014, 4, 361–378. 10.1021/cs400959k. DOI
Dybtsev D. N.; Bryliakov K. P. Asymmetric Catalysis Using Metal-Organic Frameworks. Coord. Chem. Rev. 2021, 437, 21384510.1016/j.ccr.2021.213845. DOI
Dhakshinamoorthy A.; Asiri A. M.; Garcia H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020, 12, 4732–4753. 10.1002/cctc.202001188. DOI
Zhang Y. M.; Yuan S.; Day G.; Wang X.; Yang X. Y.; Zhou H. C. Luminescent Sensors Based on Metal-Organic Frameworks. Coord. Chem. Rev. 2018, 354, 28–45. 10.1016/j.ccr.2017.06.007. DOI
Yi F. Y.; Chen D. X.; Wu M. K.; Han L.; Jiang H. L. Chemical Sensors Based on Metal-Organic Frameworks. ChemPlusChem 2016, 81, 675–690. 10.1002/cplu.201600137. PubMed DOI
Hitabatuma A.; Wang P. L.; Su X. O.; Ma M. M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022, 11, 38210.3390/foods11030382. PubMed DOI PMC
Chuvikov S. V.; Klyamkin S. N. Assessment of High-pressure Hydrogen Storage Performance of Basolite Metal-Organic Frameworks. Int. J. Energy Res. 2022, 46, 21937–21947. 10.1002/er.8747. DOI
He Y. B.; Chen F. L.; Li B.; Qian G. D.; Zhou W.; Chen B. L. Porous Metal-Organic Frameworks for Fuel Storage. Coord. Chem. Rev. 2018, 373, 167–198. 10.1016/j.ccr.2017.10.002. DOI
Li H.; Li L. B.; Lin R. B.; Zhou W.; Zhang Z. J.; Xiang S. C.; Chen B. L. Porous Metal-Organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem 2019, 1, 10000610.1016/j.enchem.2019.100006. PubMed DOI PMC
Yuan Q.; Wang Y. L.; Yuan F.; Jia S. R.; Sun H. B.; Zhang X. K. Water-stable Metal Organic Framework-199@Polyaniline with High-performance Removal of Copper II. Environ. Sci. Pollut. Res. 2022, 29, 44883–44892. 10.1007/s11356-022-19047-8. PubMed DOI
Milakin K. A.; Gavrilov N.; Pašti I. A.; Morávková Z.; Acharya U.; Unterweger C.; Breitenbach S.; Zhigunov A.; Bober P. Polyaniline-Metal Organic Framework (Fe-BTC) Composite for Electrochemical Applications. Polymer 2020, 208, 12294510.1016/j.polymer.2020.122945. DOI
Kandiah M.; Nilsen M. H.; Usseglio S.; Jakobsen S.; Olsbye U.; Tilset M.; Larabi C.; Quadrelli E. A.; Bonino F.; Lillerud K. P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. 10.1021/cm102601v. DOI
Winarta J.; Shan B. H.; Mcintyre S. M.; Ye L.; Wang C.; Liu J. C.; Mu B. A Decade of UiO-66 Research: a Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal-Organic Framework. Cryst. Growth Des. 2020, 20, 1347–1362. 10.1021/acs.cgd.9b00955. DOI
DeStefano M. R.; Islamoglu T.; Garibay S. J.; Hupp J. T.; Farha O. K. Room-temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chem. Mater. 2017, 29, 1357–1361. 10.1021/acs.chemmater.6b05115. DOI
Wang Y.; Wang L.; Huang W.; Zhang T.; Hu X. Y.; Perman J. A.; Ma S. Q. A Metal-Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Performance Cadmium Ion Detection. J. Mater. Chem. A 2017, 5, 8385–8393. 10.1039/c7ta01066d. DOI
Mirzaei K.; Jafarpour E.; Shojaei A.; Molavi H. Facile Synthesis of Polyaniline@UiO-66 Nanohybrids for Efficient and Rapid Adsorption of Methyl Orange from Aqueous Media. Ind. Eng. Chem. Res. 2022, 61, 11735–11746. 10.1021/acs.iecr.2c00919. DOI
Shanahan J.; Kissel D. S.; Sullivan E. PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega 2020, 5, 6395–6404. 10.1021/acsomega.9b03834. PubMed DOI PMC
Lin J. Q.; Li G. S.; She C. K.; Zhang Y.; Liu S. H.; Jing C. B.; Cheng Y.; Chu J. H. Microchannel Tube NH3 Sensor Based on Metal-Organic Framework UiO-66 Modified Polyaniline. Mater. Res. Bull. 2022, 150, 11177010.1016/j.materresbull.2022.111770. DOI
Shao L.; Wang Q.; Ma Z. L.; Ji Z. Y.; Wang X. Y.; Song D. D.; Liu Y. G.; Wang N. A High-capacitance Flexible Solid-state Supercapacitor Based on Polyaniline and Metal-Organic Framework (UiO-66) composites. J. Power Sources 2018, 379, 350–361. 10.1016/j.jpowsour.2018.01.028. DOI
Song Y. D.; Ho W. H.; Chen Y. C.; Li J. H.; Wang Y. S.; Gu Y. J.; Chuang C. H.; Kung C. W. Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chem.—Eur. J. 2021, 27, 3560–3567. 10.1002/chem.202004516. PubMed DOI
Rajakumaran R.; Shen C. H.; Satilmis B.; Kung C. W. Metal-Organic Framework Functionalized Poly-cyclodextrin Membranes Confining Polyaniline for Charge Storage. Chem. Commun. 2022, 58, 6590–6593. 10.1039/d2cc02231a. PubMed DOI
Chen J. X.; Zhang B. R.; Dang X. P.; Zheng D. Y.; Ai Y. H.; Chen H. X. A Nanocomposite Consisting of Etched Multiwalled Carbon Nanotubes, Amino-Modified Metal-Organic Framework UiO-66 and Polyaniline for Preconcentration of Polycyclic Aromatic Hydrocarbons Prior to Their Determination by HPLC. Microchim. Acta 2020, 187, 7810.1007/s00604-019-3997-1. PubMed DOI
Katz M. J.; Brown Z. J.; Colon Y. J.; Siu P. W.; Scheidt K. A.; Snurr R. Q.; Hupp J. T.; Farha O. K. A Facile Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Commun. 2013, 49, 9449–9451. 10.1039/c3cc46105j. PubMed DOI
Morcombe C. R.; Zilm K. W. Chemical Shift Referencing in MAS Solid State NMR. J. Magn. Reson. 2003, 162, 479–486. 10.1016/S1090-7807(03)00082-X. PubMed DOI
Mahun A.; Abbrent S.; Bober P.; Brus J.; Kobera L. Effect of Structural Features of Polypyrrole (PPy) on Electrical Conductivity Reflected on C-13 ssNMR Parameters. Synth. Met. 2020, 259, 11625010.1016/j.synthmet.2019.116250. DOI
Hahn E. L. Spin Echoes. Phys. Rev. 1950, 80, 580.10.1103/PhysRev.80.580. DOI
Brus J. Heating of Samples Induced by Fast Magic-angle Spinning. Solid State Nucl. Magn. Reson. 2000, 16, 151–160. 10.1016/S0926-2040(00)00061-8. PubMed DOI
Stejskal J.; Kratochvil P.; Špírková M. Accelerating Effect of Some Cation Radicals on the Polymerization of Aniline. Polymer 1995, 36, 4135–4140. 10.1016/0032-3861(95)90996-F. DOI
Stejskal J.; Gilbert R. G. Polyaniline. Preparation of a Conducting Polymer (IUPAC technical report). Pure Appl. Chem. 2002, 74, 857–867. 10.1351/pac200274050857. DOI
Trchová M.; Stejskal J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. 10.1351/PAC-REP-10-02-01. DOI
Wang Y. Preparation and Application of Polyaniline Nanofibers: an Overview. Polym. Int. 2018, 67, 650–669. 10.1002/pi.5562. DOI
Cavka J. H.; Jakobsen S.; Olsbye U.; Guillou N.; Lamberti C.; Bordiga S.; Lillerud K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. 10.1021/ja8057953. PubMed DOI
Liu X.; Zhao X.; Zhou M.; Cao Y.; Wu H.; Zhu J. Highly Stable and Active Palladium Nanoparticles Supported on a Mesoporous UiO66@Reduced Graphene Oxide Complex for Practical Catalytic Applications. Eur. J. Inorg. Chem. 2016, 2016, 3338–3343. 10.1002/ejic.201600367. DOI
Leus K.; Bogaerts T.; De Decker J.; Depauw H.; Hendrickx K.; Vrielinck H.; Van Speybroeck V.; Van Der Voort P. Systematic Study of the Chemical and Hydrothermal Stability of Selected ″Stable″ Metal Organic Frameworks. Microporous Mesoporous Mater. 2016, 226, 110–116. 10.1016/j.micromeso.2015.11.055. DOI
Yot P. G.; Yang K.; Ragon F.; Dmitriev V.; Devic T.; Horcajada P.; Serre C.; Maurin G. Exploration of the Mechanical Behavior of Metal Organic Frameworks UiO-66 (Zr) and MIL-125 (Ti) and Their NH2 Functionalized Versions. Dalton Trans. 2016, 45, 4283–4288. 10.1039/C5DT03621F. PubMed DOI
Hashem T.; Sanchez E. P. V.; Bogdanova E.; Ugodchikova A.; Mohamed A.; Schwotzer M.; Alkordi M. H.; Woll C. Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes 2021, 11, 20710.3390/membranes11030207. PubMed DOI PMC
Piscopo C. G.; Polyzoidis A.; Schwarzer M.; Loebbecke S. Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications. Microporous Mesoporous Mater. 2015, 208, 30–35. 10.1016/j.micromeso.2015.01.032. DOI
Acharya U.; Bober P.; Thottappali M. A.; Morávková Z.; Konefal M.; Pfleger J. Synthesis and Impedance Spectroscopy of Poly(p-phenylenediamine)/Montmorillonite Composites. Polymers 2021, 13, 313210.3390/polym13183132. PubMed DOI PMC
Abdelhamid H. N. UiO-66 as a Catalyst for Hydrogen Production via the Hydrolysis of Sodium Borohydride. Dalton Trans. 2020, 49, 10851–10857. 10.1039/d0dt01688h. PubMed DOI
Hinde C. S.; Webb W. R.; Chew B. K. J.; Tan H. R.; Zhang W. H.; Hor T. S. A.; Raja R. Utilisation of Gold Nanoparticles on Amine-functionalised UiO-66 (NH2-UiO-66) Nanocrystals for Selective Tandem Catalytic Reactions. Chem. Commun. 2016, 52, 6557–6560. 10.1039/c6cc02169g. PubMed DOI
Helal A.; Arafat M. E.; Rahman M. M. Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors 2020, 8, 12210.3390/chemosensors8040122. DOI
Li W. G.; Wan M. X. Stability of Polyaniline Synthesized by a Doping-Dedoping-Redoping Method. J. Appl. Polym. Sci. 1999, 71, 615–621. 10.1002/(SICI)1097-4628(19990124)71:4%3C615::AID-APP13%3E3.0.CO;2-O. DOI
Logan M. W.; Langevin S.; Xia Z. Y. Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks. Sci. Rep. 2020, 10, 149210.1038/s41598-020-58405-9. PubMed DOI PMC
Morávková Z.; Dmitrieva E. Structural Changes in Polyaniline Near the Middle Oxidation Peak Studied by In Situ Raman Spectroelectrochemistry. J. Raman Spectrosc. 2017, 48, 1229–1234. 10.1002/jrs.5197. DOI
dos Santos I. F.; Temperini M. L. A. Investigation of the Correlation Between Chemical Structure and Morphology in Oligoaniline Microspheres Produced in Buffered Conditions. Eur. Polym. J. 2020, 122, 10934510.1016/j.eurpolymj.2019.109345. DOI
Socrates G.Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley& Sons, Ltd: Chichester, 2001; pp 51–55, 108–110, 126–128.
Valenzano L.; Civalleri B.; Chavan S.; Bordiga S.; Nilsen M. H.; Jakobsen S.; Lillerud K. P.; Lamberti C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: a Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23, 1700–1718. 10.1021/cm1022882. DOI
Chakarova K.; Strauss I.; Mihaylov M.; Drenchev N.; Hadjiivanov K. Evolution of Acid and Basic Sites in UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: FTIR Study by Probe Molecules. Microporous Mesoporous Mater. 2019, 281, 110–122. 10.1016/j.micromeso.2019.03.006. DOI
Trchová M.; Morávková Z.; Šeděnková I.; Stejskal J. Spectroscopy of Thin Polyaniline Films Deposited During Chemical Oxidation of Aniline. Chem. Pap. 2012, 66, 415–445. 10.2478/s11696-012-0142-6. DOI
Grigoras M.; Catargiu A. M.; Tudorache F. Molecular Composites Obtained by Polyaniline Synthesis in the Presence of p-Octasulfonated Calixarene Macrocycle. J. Appl. Polym. Sci. 2013, 127, 2796–2802. 10.1002/app.37605. DOI
Sapurina I.; Mokeev M.; Lavrentev V.; Zgonnik V.; Trchová M.; Hlavatá D.; Stejskal J. Polyaniline Complex with Fullerene C-60. Eur. Polym. J. 2000, 36, 2321–2326. 10.1016/S0014-3057(00)00012-4. DOI
Devautour-Vinot S.; Maurin G.; Serre C.; Horcajada P.; da Cunha D. P.; Guillerm V.; Costa E. D.; Taulelle F.; Martineau C. Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chem. Mater. 2012, 24, 2168–2177. 10.1021/cm300863c. DOI
Gospodinova N.; Mokreva P.; Terlemezyan L. Influence of Hydrolysis on the Chemical Polymerization of Aniline. Polymer 1994, 35, 3102–3106. 10.1016/0032-3861(94)90425-1. DOI