Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32641709
PubMed Central
PMC7343875
DOI
10.1038/s41598-020-68027-w
PII: 10.1038/s41598-020-68027-w
Knihovny.cz E-zdroje
- MeSH
- barva MeSH
- biologická evoluce * MeSH
- brouci anatomie a histologie fyziologie MeSH
- křídla zvířecí anatomie a histologie fyziologie MeSH
- mimikry * MeSH
- pohlavní dimorfismus * MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Borneo MeSH
Mimicry is a hot spot of evolutionary research, but de novo origins of aposematic patterns, the persistence of multiple patterns in Müllerian communities, and the persistence of imperfect mimics still need to be investigated. Local mimetic assemblages can contain up to a hundred of species, their structure can be a result of multiple dispersal events, and the gradual build-up of the communities. Here, we investigate the structure of lowland and mountain mimetic communities of net-winged beetles by sampling the Crocker Range in north-eastern Borneo and neighbouring regions. The local endemics evolved from the Bornean lowland fauna which is highly endemic at the species level. We inferred that metriorrhynchine net-winged beetles evolved in high elevations yellow/black and reticulate aposematic high-contrast signals from a widespread low-contrast brown/black pattern. As the mountain range is ~ 6 million years old, and these patterns do not occur elsewhere, we assume their in situ origins. We demonstrate that a signal with increased internal contrast can evolve de novo in a mimetic community and can persist despite its low frequency. Additionally, a similar aposematic signal evolves from different structures and its similarity is imperfect. The community with multiple patterns sets conditions for the evolution of aposematic sexual dimorphism as demonstrated by the yellow/black male and reticulate female pattern of Micronychus pardus. These insights elucidate the complex character of the evolution of mimetic signalling in the dynamically diversifying biota of high tropical mountains.
Zobrazit více v PubMed
Müller F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879;1879:20–24.
Mallet J, Joron M. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Edmunds M. Why are there good and poor mimics? Biol. J. Lin. Soc. 2000;70:459–466. doi: 10.1006/bijl.1999.0425. DOI
Mallet L, Barton NH. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43(421–431):1989. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI
Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L. Can aposematic signals evolve by gradual change? Nature. 1999;397:249–251. doi: 10.1038/16692. DOI
Ezray BD, Wham DC, Hill CE, Hines HM. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. Lond. 2019;286:20191501. doi: 10.1098/rspb.2019.1501. PubMed DOI PMC
Speed MP. Müllerian mimicry and the psychology of predation. Anim. Behav. 1993;45:571–580. doi: 10.1006/anbe.1993.1067. DOI
Endler JA. Frequency-dependent predation, crypsis and aposematic coloration. Phil. Trans. R. Soc. Lond. B. 1988;319:505–523. doi: 10.1098/rstb.1988.0062. PubMed DOI
Turner JRG, Mallet JLB. Did forest islands drive the diversity of warningly coloured butterflies? Biotic drift and the shifting balance. Philos. Trans. R. Soc. Lond. B. 1996;351:835–845. doi: 10.1098/rstb.1996.0078. DOI
Lindström L, Alatalo RV, Lyytinen A, Mappes J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. U. S. A. 2001;98:9181–9184. doi: 10.1073/pnas.161071598. PubMed DOI PMC
Prudic KL, Skemp AK, Papaj DR. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 2007;18:41–46. doi: 10.1093/beheco/arl046. DOI
Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI
Guilford T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 1986;34:286–288. doi: 10.1016/0003-3472(86)90034-5. DOI
Gamberale-Stille G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 2001;12:768–772. doi: 10.1093/beheco/12.6.768. DOI
Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 2015;5:11021. doi: 10.1038/srep11021. PubMed DOI PMC
Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2014;2:1–12. doi: 10.3389/fevo.2014.00025. DOI
Ruxton GD, Speed MP, Broom M. Identifying the ecological conditions that select for intermediate levels of aposematic signaling. Evol. Ecol. 2009;23:491–501. doi: 10.1007/s10682-008-9247-3. DOI
Nokelainen O, Valkonen J, Lindstedt C, Mappes J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 2013;83:598–605. doi: 10.1111/1365-2656.12169. PubMed DOI
Fabricant SA, Herberstein ME. Hidden in plain orange: aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 2015;26:38–44. doi: 10.1093/beheco/aru157. DOI
Bocek M, Kusy D, Motyka M, Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019;16:38. doi: 10.1186/s12983-019-0335-8. PubMed DOI PMC
Masek M, Motyka M, Kusy D, Bocek M, Li Y, Bocak L. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae) Insects. 2018;9:154. doi: 10.3390/insects9040154. PubMed DOI PMC
Moore BP, Brown WV. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae) Ins. Biochem. 1981;1:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI
Guilford T, Nicol C, Rotschild M, Moore BP. The biological roles of pyrazines: evidence for a warning odour function. Biol. J. Linn. Soc. 1987;31:113–128. doi: 10.1111/j.1095-8312.1987.tb01984.x. DOI
Linsley EG, Eisner T, Klots AB. Mimetic assemblages of sibling species of lycid beetles. Evolution. 1961;15:15–29. doi: 10.2307/2405840. DOI
Endler JA. The color of light in forests and its implications. Ecol. Monogr. 1993;63:1–27. doi: 10.2307/2937121. DOI
Lingafelter SW. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae) ZooKeys. 2013;258:53–83. doi: 10.3897/zookeys.258.4391. PubMed DOI PMC
Lamas G, editor. Atlas of Neotropical Lepidoptera. Checklist: Part 4A Hesperioidea—Papiionoidea. Gainesville: Scientific Publishers and Association of Tropical Lepidoptera; 2004.
Sklenarova K, Chesters D, Bocak L. Phylogeography of poorly dispersing net-winged beetles: a role of drifting india in the origin of afrotropical and oriental fauna. PLoS ONE. 2013;8:e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC
Bocak L, Kundrata R, Andújar FC, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. Lond. B. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002;20:353–431. doi: 10.1016/S1367-9120(01)00069-4. DOI
Merckx VSFT, et al. Evolution of endemism on a young tropical mountain. Nature. 2015;524:347–350. doi: 10.1038/nature14949. PubMed DOI
Kazantsev SV. New and little known net-winged beetles (Coleoptera: Lycidae) from the Crocker Range Mountains, Sabah, East Malaysia. Russ. Entomol. J. 2018;27:255–270. doi: 10.15298/rusentj.27.3.04. DOI
Motyka M. Male identification, generic classification and sexual dimorphism of Micronychus pardus (Kazantsev, 2018) comb nov (Coleoptera: Lycidae: Calochrominae) Zootaxa. 2019;4657:177–182. doi: 10.11646/zootaxa.4657.1.9. PubMed DOI
Aronsson M, Gamberale-Stille G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 2013;24:349–354. doi: 10.1093/beheco/ars170. DOI
Wilson J, Williams K, Forister M, et al. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI
Jiruskova A, Motyka M, Bocek M, Bocak L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ. 2019;7:e6511. doi: 10.7717/peerj.6511. PubMed DOI PMC
Malohlava V, Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010;19:4800–4811. doi: 10.1111/j.1365-294X.2010.04850.x. PubMed DOI
Nater A, et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 2017;27:3487–3498.e10. doi: 10.1016/j.cub.2017.09.047. PubMed DOI
Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B. 2017;284:20170744. doi: 10.1098/rspb.2017.0744. PubMed DOI PMC
Gompert Z, Willmott KR, Elias M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 2011;281:39–46. doi: 10.1016/j.jtbi.2011.04.024. PubMed DOI
Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Bocak L, Li Y, Ellenberger S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae) Cret. Res. 2019;99:149–155. doi: 10.1016/j.cretres.2019.02.018. DOI
Motyka M, Kampova L, Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Guilford T. The evolution of conspicuous coloration. Am. Nat. 1988;131:S7–S21. doi: 10.1086/284764. DOI
Alatalo RV, Mappes J. Tracking the evolution of warning signals. Nature. 1996;382:708–710. doi: 10.1038/382708a0. DOI
Speed MP. Warning signals, receiver psychology and predator memory. Anim. Behav. 2000;60(269–278):2000. doi: 10.1006/anbe.2000.1430. PubMed DOI
Mappes J, Alatalo RV. Batesian mimicry and signal accuracy. Evolution. 1997;51:2050–2053. doi: 10.2307/2411028. PubMed DOI
Motyka M, Masek M, Bocak L. Congruence between morphology and molecular phylogeny: the reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history. Zool. J. Linn. Soc. 2017;180:47–65. doi: 10.1111/zoj.12497. DOI
Tiana L, Rahmana SR, Ezrayb BD, Franzini L, Strangec JP, Lhommea P, Hinesa HMA. Homeotic shift late in development drives mimetic color variation in a bumble bee. Proc. Nat. Acad. Sci. USA. 2019;116:11857–11865. PubMed PMC
Lewis JJ, et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl. Acad. Sci. USA. 2019;116:24174–24183. doi: 10.1073/pnas.1907068116. PubMed DOI PMC
Aubier TG, Sherratt TN. Diversity in Müllerian mimicry: The optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution. 2015;69:2831–2845. doi: 10.1111/evo.12790. PubMed DOI
Endler JA, Mappes J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 2004;163:532–547. doi: 10.1086/382662. PubMed DOI
Ree RH. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005;59:257–265. doi: 10.1111/j.0014-3820.2005.tb00986.x. PubMed DOI
Keller SR, Taylor DR. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 2008;11:852–866. doi: 10.1111/j.1461-0248.2008.01188.x. PubMed DOI
Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): the history of dispersal and speciation in southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Kusy D, Motyka M, Bocek M, Masek M, Bocak L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Ent. 2019;44:911–925. doi: 10.1111/syen.12363. DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34(772–773):2016. doi: 10.1093/molbev/msw260. PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: the mid-aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC