Eocene aposematic patterns persist in modern European Lycidae beetles despite the absence of co-mimics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36922999
PubMed Central
PMC10009048
DOI
10.1016/j.isci.2023.106217
PII: S2589-0042(23)00294-8
Knihovny.cz E-zdroje
- Klíčová slova
- Evolutionary biology, Paleobiology, Zoology,
- Publikační typ
- časopisecké články MeSH
Ancient aposematic signals might have evolved under different ecological circumstances. Using European Cenozoic amber and phylogenetic reconstruction, we evaluated the evolution of net-winged beetle aposematism. We describe Priabonian Hiekeolycus winkleri sp. nov. from Baltic amber, review known fossil species, and suggest earlier high diversity and morphological conservativeness of European Lycidae since the Eocene. We hypothesize the presence of red and black/red aposematic patterns in Eocene Europe. The analyses suggest the Oligocene to Miocene dispersal of additional species from East Asia and their advergence to autochthonous patterns. Recently dispersed lycids have retained similarities with their East Asian relatives. Net-winged beetles are rare in Europe after the Quaternary climatic oscillations, and we hypothesize a currently relaxed selection for shared aposematic signals. Neophobia, and eventually inborn rejection of brightly colored prey, putatively preserved ancient aposematism under changing conditions. Evidence from paleontology and phylogenetics can provide insight into the long-term persistence of old adaptations under changing conditions.
1 I Schmalhausen Institute of Zoology Bogdan Khmelnitski Street15 01030 Kiev Ukraine
A A Borissiak Paleontological Institute RAS 123 Profsoyuznaya Street 117647 Moscow Russia
A N Severtsov Institute of Ecology and Evolution RAS 33 Leninsky Pr 119071 Moscow Russia
Hokkaido University Museum Hokkaido University Kita 10 Nishi 8 Kita ku Sapporo 060 0810 Japan
Zobrazit více v PubMed
Perkovsky E.E., Rasnitsyn A.P., Vlaskin A.P., Rasnitsyn S.P. Contribution to the study of the structure of amber forest communities based on analysis of syninclusions in the Rovno amber (late Eocene of Ukraine) Paleontol. J. 2012;46:293–301. doi: 10.1134/S0031030112030136. DOI
Kirejtshuk A.G., Azar D. Current knowledge of Coleoptera (Insecta) from the Lower Cretaceous Lebanese amber and taxonomical notes for some Mesozoic groups. Terr. Arthropod Rev. 2013;6:103–134. doi: 10.1163/18749836-06021061. DOI
Wang B., Rust J., Engel M.S., Szwedo J., Dutta S., Nel A., Fan Y., Meng F., Shi G., Jarzembowski E.A., et al. A diverse paleobiota in early Eocene fushun amber from China. Curr. Biol. 2014;24:1606–1610. doi: 10.1016/j.cub.2014.05.048. PubMed DOI
Alekseev V.I. Coleoptera from the middle-upper Eocene European ambers: generic composition, zoogeography and climatic implications. Zootaxa. 2017;4290:401–443. doi: 10.11646/zootaxa.4290.3.1. DOI
Su T., Spicer R.A., Wu F.X., Farnsworth A., Huang J., Del Rio C., Deng T., Ding L., Deng W.Y.D., Huang Y.J., et al. A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet. Proc. Natl. Acad. Sci. USA. 2020;117:32989–32995. doi: 10.1073/pnas.2012647117. PubMed DOI PMC
Gao T., Shih C., Ren D. Behaviors and interactions of insects in mid-mesozoic ecosystems of northeastern China ann. Annu. Rev. Entomol. 2021;66:337–354. doi: 10.1146/annurev-ento-072720-095043. PubMed DOI
Speed M.P. Müllerian mimicry and the psychology of predation. Anim. Behav. 1993;45:571–580. doi: 10.1006/anbe.1993.1067. DOI
Speed M.P. Warning signals, receiver psychology and predator memory. Anim. Behav. 2000;60:269–278. doi: 10.1006/anbe.2000.1430. PubMed DOI
Lindström L., Alatalo R.V., Lyytinen A., Mappes J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA. 2001;98:9181–9184. doi: 10.1073/pnas.161071598. PubMed DOI PMC
Wilson J.S., Williams K.A., Forister M.L., von Dohlen C.D., Pitts J.P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI
Wilson J.S., Jahner J.P., Forister M.L., Sheehan E.S., Williams K.A., Pitts J.P. North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr. Biol. 2015;25:R704–R706. doi: 10.1016/j.cub.2015.06.053. PubMed DOI
Endler J.A., Mappes J. The current and future state of animal coloration research. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372:20160352. doi: 10.1098/rstb.2016.0352. PubMed DOI PMC
Kunte K., Kizhakke A.G., Nawge V. Evolution of mimicry rings as a window into community dynamics. Annu. Rev. Ecol. Evol. Syst. 2021;52:315–341. doi: 10.1146/annurev-ecolsys-012021-024616. DOI
Paladini A., Takiya D.M., Urban J.M., Cryan J.R. New World spittlebugs (Hemiptera: cercopidae: Ischnorhininae): dated molecular phylogeny, classification, and evolution of aposematic coloration. Mol. Phylogenet. Evol. 2018;120:321–334. doi: 10.1016/j.ympev.2017.12.020. PubMed DOI
Motyka M., Kusy D., Masek M., Bocek M., Li Y., Bilkova R., Kapitán J., Yagi T., Bocak L. Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci. Rep. 2021;11:5961. doi: 10.1038/s41598-021-85567-x. PubMed DOI PMC
Martínez-Delclòs X., Briggs D.E., Peñalver E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004;203:19–64. doi: 10.4202/app.00071.2014. DOI
Xu C., Luo C., Jarzembowski E.A., Fang Y., Wang B. Aposematic coloration from mid-cretaceous kachin amber. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022;377:20210039. doi: 10.1098/rstb.2021.0039. PubMed DOI PMC
Sendi H., Azar D. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretac. Res. 2017;72:13–17. doi: 10.1016/j.cretres.2016.11.013. DOI
Vršanský P., Bechly G., Zhang Q., Jarzembowski E.A., Mlynský T., Šmídová L., Barna P., Kúdela M., Aristov D., Bigalk S., et al. Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches. Biologia. 2018;73:987–1006.
Xu C., Wang B., Fan L., Jarzembowski E.A., Fang Y., Wang H., Li T., Zhuo D., Ding M., Engel M.S. Widespread mimicry and camouflage among mid-Cretaceous insects. Gondwana Res. 2022;101:94–102. doi: 10.1016/j.gr.2021.07.025. DOI
Wappler T., Garrouste R., Engel M.S., Nel A. Wasp mimicry among Palaeocene reduviid bugs from Svalbard. Acta Palaeontol. Pol. 2013;58:883–887. doi: 10.4202/app.2011.0202. DOI
Tihelka E., Engel M.S., Huang D., Cai C. Mimicry in cretaceous bugs. iScience. 2020;23:101280. doi: 10.1016/j.isci.2020.101280. PubMed DOI PMC
Bocak L., Kundrata R., Fernández C.A., Vogler A.P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. Biol. Sci. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC
Zhang S.Q., Che L.H., Li Y., Liang D., Pang H., Ślipiński A., Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC
Kazantsev S.V. Phylogeny of the tribe Erotini (Coleoptera, Lycidae), with descriptions of new taxa. Zootaxa. 2004;496:1–48. doi: 10.11646/zootaxa.496.1. DOI
Masek M., Motyka M., Kusy D., Bocek M., Li Y., Bocak L. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae) Insects. 2018;9:154. doi: 10.3390/insects9040154. PubMed DOI PMC
Motyka M., Kusy D., Bilkova R., Bocak L. 2022. Neogene Climatic Fluctuations and Poor Connectivity with the Centres of Diversity Shaped the Western Palearctic Net-Winged Beetle Fauna.https://biorxiv.org/cgi/content/short/2022.09.08.507108v1
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Zherikhin V.V., Sukacheva I.D., Rasnitsyn A.P. Arthropods in contemporary and some fossil resins. Paleontol. J. 2009;43:987–1005. doi: 10.1134/S00310301090900. DOI
Aleksandrova G.N., Zaporozhets N.I. Palynological characteristics of upper cretaceous and paleogene deposits on the west of the sambian peninsula (Kaliningrad region), Part 1. Stratigr. Geol. Correl. 2008;16:295–316. doi: 10.1134/S0869593808030052. DOI
Iakovleva A.I. Detalization of Eocene dinocyst zonation for eastern peritethys. Bull. Mosc. Soc. Naturalists, Geol. Ser. 2017;92:32–48.
Winkler J.R. Three new genera of fossil Lycidae from baltic amber. Mitt. Münchn. Entomol. Ges. 1987;77:61–78.
Kazantsev S.V. A new fossil genus of net-winged beetles, with a brief review of amber Lycidae (Insecta: Coleoptera) Zootaxa. 2013;3608:94–100. doi: 10.11646/zootaxa.3608.1.8. PubMed DOI
Kazantsev S.V. New taxa of Baltic amber soldier beetles (Insecta: Coleoptera: cantharidae) with synonymic and taxonomic notes. Russ. Entomol. J. 2013;22:283–291.
Kazantsev S.V., Bocak L. Protolycus gedaniensis gen. n., sp. n., the first Baltic amber representative of Lycini (Coleoptera, Lycidae, Lycinae). Palaeoentomology 3, 327–332. 37. Kazantsev, S.V., and Bocak, L. (2022). New genus of erotine net-winged beetles, Damzenium gen. nov. (Coleoptera: Lycidae), from Eocene Rovno amber. Zootaxa. 2022;5154:583–589. doi: 10.11646/zootaxa.5154.5.6. PubMed DOI
Kusy D., Motyka M., Fusek L., Li Y., Bocek M., Bilkova R., Ruskova M., Bocak L. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae) Zool. Zool. J. Linn. Soc. 2021;191:902–927. doi: 10.1093/zoolinnean/zlaa055. DOI
Kazantsev S.V., Bocak L. New genus of erotine net-winged beetles, Damzenium gen. nov. (Coleoptera: Lycidae), from Eocene Rovno amber. Zootaxa. 2022;5154:583–589. doi: 10.11646/zootaxa.5154.5.6. PubMed DOI
Kazantsev S.V., Perkovsky E.E. Imprint of a Helcophorus Fairmaire, 1881: the first net-winged beetle (Coleoptera: Lycidae) from Rovno amber. Zootaxa. 2022;5128:84–90. doi: 10.11646/ZOOTAXA.5128.1.4. PubMed DOI
Moore B.P., Brown W.V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Insect Biochem. 1981;11:493–499. http://hdl.handle.net/102.100.100/293100?index=1
Eisner T., Schroeder F.C., Snyder N., Grant J.B., Aneshansley D.J., Utterback D., Meinwald J., Eisner M. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Linsley E.G., Eisner T., Klots A.B. Mimetic assemblages of sibling species of lycid beetles. Evolution. 1961;15:15–29. doi: 10.1111/j.1558-5646.1961.tb03126.x. DOI
Motyka M., Kampova L., Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Motyka M., Bocek M., Kusy D., Bocak L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 2020;10:11193. doi: 10.1038/s41598-020-68027-w. PubMed DOI PMC
Motyka M., Kusy D., Bocek M., Bilkova R., Bocak L. Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis. Elife. 2021;10:71895. doi: 10.7554/eLife.71895. PubMed DOI PMC
Bocek M., Kusy D., Motyka M., Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019;16:38. doi: 10.1186/s12983-019-0335-8. PubMed DOI PMC
Bocak L., Yagi T. Evolution of mimicry patterns in metriorrhynchus (Coleoptera: Lycidae): the history of dispersal and speciation in south East Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Taylor C.H. Body size in Batesian mimicry. Evol. Ecol. 2022 doi: 10.1007/s10682-022-10204-6. DOI
Burke K.D., Williams J.W., Chandler M.A., Haywood A.M., Lunt D.J., Otto-Bliesner B.L. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA. 2018;115:13288–13293. doi: 10.1073/pnas.1809600115. PubMed DOI PMC
Sherratt T.N. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Chouteau M., Arias M., Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC
Kazantsev S.V. New omethid and lampyrid taxa from the baltic amber (insecta: Coleoptera) Zootaxa. 2012;3186:59–63. doi: 10.5281/zenodo.280009. DOI
Kazantsev S.V. A new Luciolinae firefly (Coleoptera: lampyridae) from the Baltic amber. Russ. Entomol. J. 2012;21:319–320.
Kazantsev S. Retromalisus damzeni, gen. et sp. nov., a second Baltic amber taxon of the extinct family Berendtimiridae (Insecta: Coleoptera) J. Nat. Hist. 2020;54:1073–1080. doi: 10.1080/00222933.2020.1781949. DOI
Kazantsev S.V. New Baltic amber soldier beetles (Insecta: Coleoptera: cantharidae) with some taxonomic notes. Palaeoentomology. 2020;3:260–268. doi: 10.11646/palaeoentomology.3.3.7. DOI
Kleine R. Eine Lycidae aus dem Baltischen Bernstein. Entomol. Bl. 1940;36:179–180.
Svenning J.C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 2003;6:646–653. doi: 10.1046/j.1461-0248.2003.00477.x. DOI
Goldner A., Herold N., Huber M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature. 2014;511:574–577. doi: 10.1038/nature13597. PubMed DOI
Mitov P.G., Perkovsky E.E., Dunlop J.A. Harvestmen (arachnida: opiliones) in Eocene Rovno amber (Ukraine) Zootaxa. 2021;4984:43–72. doi: 10.11646/zootaxa.4984.1.6. PubMed DOI
Kvaček Z. Forest flora and vegetation of the European early Palaeogene - a review. Bull. Geosci. 2010;85:63–76. doi: 10.3140/bull.geosci.1146. DOI
Li Y., Gunter N., Pang H., Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI
Sadowski E.-M., Schmidt A.R., Kunzmann L. The hyperdiverse conifer flora of the Baltic amber forest. palb. 2022;304:1–148. doi: 10.1127/palb/2022/0078. DOI
Perkovsky E.E., Rasnitsyn A.P., Vlaskin A.P., Taraschuk M.V. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. Afr. Invertebr. 2007;48:229–245.
Yamamoto S. Fossil evidence of elytra reduction in ship-timber beetles. Sci. Rep. 2019;9:4938. doi: 10.1038/s41598-019-41310-1. PubMed DOI PMC
Robertson J.A., McHugh J.V., Whiting M.F. A molecular phylogenetic analysis of the pleasing fungus beetles (Coleoptera: erotylidae): evolution of colour patterns, gregariousness and mycophagy. Syst. Entomol. 2004;29:173–187. doi: 10.1111/j.0307-6970.2004.00242.x. DOI
Yang Y., Su J., Yang X.K. Description of six new species of Lycocerus Gorham (Coleoptera, Cantharidae), with taxonomic note and new distribution data of some other species. ZooKeys. 2014;456:85–107. doi: 10.3897/zookeys.456.8465. PubMed DOI PMC
Li Y., Pang H., Bocak L. Molecular phylogeny of Erotini with the description of a new genus from China (Coleoptera: Lycidae) Entomol. Sci. 2017;20:213–223. doi: 10.1111/ens.12245. DOI
Nakane T. Academic Press of Japan; 1969. Fauna Japonica. Lycidae (Insecta: Coleoptera)
Motyka M., Kusy D., Bilkova R., Bocak L. Analysis of the Holarctic Dictyoptera aurora complex (Coleoptera, Lycidae) reveals hidden diversity and geographic structure in Müllerian mimicry ring. Insects. 2022;13:817. doi: 10.3390/insects13090817. PubMed DOI PMC
Kirejtshuk A.G., Kovalev A.V. First fossil representative of the family Omalisidae (Coleoptera, Elateroidea sensu lato) from the Baltic Amber. Paleontol. J. 2015;49:1413–1416. doi: 10.1134/S0031030115130031. DOI
Fanti F., Vitali F. Key to fossil Malthininae, with description of two new species in Baltic amber (Coleoptera Cantharidae) Balt. J. Coleopterol. 2017;17:19–27.
Parisi F., Fanti F. A new fossil species of the extinct tribe Mimoplatycini Kazantsev, 2013 (Coleoptera Cantharidae) Annales de Paléontologie. 2019;105:119–122. doi: 10.1016/j.annpal.2019.04.002. DOI
Lindström L., Alatalo R.V., Mappes J. Imperfect Batesian mimicry – the effects of the frequency and the distastefulness of the model. Proc. R. Soc. Lond. B. 1997;264:149–153. doi: 10.1098/rspb.1997.0022. DOI
Borer M., Van Noort T., Rahier M., Naisbit R.E. Positive frequency-dependent selection on warning color in alpine leaf beetles. Evolution. 2010;64:3629–3633. doi: 10.1111/j.1558-5646.2010.01137.x. PubMed DOI
Marples N.M., Kelly D.J., Thomas R.J. Perspective: the evolution of warning coloration is not paradoxical. Evolution. 2005;59:933–940. doi: 10.1111/j.0014-3820.2005.tb01032.x. PubMed DOI
Ruxton G.D., Allen W.L., Sherratt M.P. Oxford University Press; 2018. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry.
Holz C., Streil G., Dettner K., Dütemeyer J., Boland W. Intersexual transfer of a toxic terpenoid during copulation and its paternal allocation to developmental stages: quantification of cantharidin in cantharidin-producing oedemerids (Coleoptera: oedemeridae) and canthariphilous pyrochroids (Coleoptera: pyrochroidae) Z. Naturforsch. 1994;49:856–864. doi: 10.1515/znc-1994-11-1222. DOI
Eisner T., Smedley S.R., Young D.K., Eisner M., Roach B., Meinwald J. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): cantharidin as precopulatory "enticing" agent. Proc. Natl. Acad. Sci. USA. 1996;93:6494–6498. doi: 10.1073/pnas.93.13.6494. PubMed DOI PMC
Marples N.M., Roper T.J. Effects of novel colour and smell on the response of naive chicks towards food and water. Anim. Behav. 1996;51:1417–1424. doi: 10.1006/anbe.1996.0145. DOI
Marples N.M., Kelly D.J. Neophobia and dietary conservatism: two distinct processes. Evol. Ecol. 1999;13:641–653. doi: 10.1023/A:1011077731153. DOI
Briolat E.S., Burdfield-Steel E.R., Paul S.C., Rönkä K.H., Seymoure B.M., Stankowich T., Stuckert A.M.M. Diversity in warning coloration: selective paradox or the norm? Biol. Rev. Camb. Philos. Soc. 2019;94:388–414. doi: 10.1111/brv.12460. PubMed DOI PMC
Bininda-Emonds O.R.P. transAlign: using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinf. 2005;6:156. doi: 10.1186/1471-2105-6-156. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Von Haeseler A., Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Kusy D., Motyka M., Bocek M., Masek M., Bocak L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 2019;44:911–925. doi: 10.1111/syen.12363. DOI
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Kazantsev S.V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron. 2005;19:49–226.
Goloboff P.A., Catalano S.A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics. 2016;32:221–238. doi: 10.1111/cla.12160. PubMed DOI