The hydrogenosome of Trichomonas vaginalis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
22-14413S
Grantová Agentura České Republiky
PubMed
35567536
DOI
10.1111/jeu.12922
Knihovny.cz E-zdroje
- Klíčová slova
- Trichomonas, history, hydrogenosome, iron sulfur cluster assembly, metabolism, protein import,
- MeSH
- mitochondrie metabolismus MeSH
- organely metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- transport proteinů MeSH
- Trichomonas vaginalis * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protozoální proteiny MeSH
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Zobrazit více v PubMed
Agar, J.N., Krebs, C., Frazzon, J., Huynh, B.H., Dean, D.R. & Johnson, M.K. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry, 39, 7856-7862. Available from: https://pubmed.ncbi.nlm.nih.gov/10891064/
Alexeieff, A.G. (1924) Parabazalnoe tel'tse, aksostil i mitokhondrii u zhgutikovykh (Parabasal body, axostyl and mitochondria in flagellates). Russia Arch Protistology, 3, 9-152.
Almeida, C.C., Romao, C.V., Lindley, P.F., Teixeira, M. & Saraiva, L.M. (2006) The role of the hybrid cluster protein in oxidative stress defense. Journal of Biological Chemistry, 281, 32445-32450.
Anderson, E. & Beams, H.W. 1959. The cytology of Tritrichomonas as revealed by the electron microscope. Journal of Morphology, 104, 205-235. Available from: https://doi.org/10.1002/jmor.1051040203
Andersson, J.O., Hirt, R.P., Foster, P.G. & Roger, A.J. 2006. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evolutionary Biology, 6(27). Available from: https://bmcecolevol.biomedcentral.com/track/pdf/10.1186/1471-2148-6-27.pdf
Araiso, Y., Imai, K. & Endo, T. 2021. Structural snapshot of the mitochondrial protein import gate. The FEBS Journal, 288, 5300-5310. Available from: https://doi.org/10.1111/febs.15661
Balk, J. & Pilon, M. 2011. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science , 16, 218-226. Available from: https://pubmed.ncbi.nlm.nih.gov/21257336/
Beltrán, N.C., Horváthová, L., Jedelský, P.L., Šedinová, M., Rada, P., Marcinčiková, M. et al. (2013) Iron-induced changes in the proteome of trichomonas vaginalis hydrogenosomes. PLoS One, 8, e65148.
Benchimol, M., Johnson, P.J. & De Souza, W. 1996. Morphogenesis of the hydrogenosome: an ultrastructural study. Biology of the Cell, 87, 197-205. Available from: https://pubmed.ncbi.nlm.nih.gov/9075329/
Beverly, K.N., Sawaya, M.R., Schmid, E. & Koehler, C. M. 2008. The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23. Journal of Molecular Biology , 382, 1144-1156. Available from: http://www./pmc/articles/PMC2651516/
Bland, P.B. & Goldstein, L.W.D.H. (1931) Vaginal trichomoniasis in the pregnant woman. JAMA, 96, 157-163.
Bolliger, L., Junne, T., Schatz, G. & Lithgow, T. 1995. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. The EMBO Journal, 14, 6318-6326. Available from: https://doi.org/10.1002/j.1460-2075.1995.tb00322.x
Bradley, P.J., Lahti, C.J., Plumper, E. & Johnson, P.J. (1997) Targeting and translocation of proteins into the hydrogenosome of the protist trichomonas: similarities with mitochondrial protein import. The EMBO Journal, 16, 3484-3493.
Braymer, J.J., Freibert, S.A., Rakwalska-Bange, M. & Lill, R. 2021. Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochimica et Biophysica Acta - Molecular Cell Research, 1868, 118863. Available from: https://pubmed.ncbi.nlm.nih.gov/33007329/
Britt, R.D., Rao, G. & Tao, L. 2020. Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe-S maturase proteins HydE, HydF, and HydG. Chemical Science, 11, 10313-10323. Available from: https://pubs.rsc.org/en/content/articlehtml/2020/sc/d0sc04216a
Brix, J., Dietmeier, K. & Pfanner, N. 1997. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. The Journal of Biological Chemistry, 272, 20730-20735. Available from: http://www.jbc.org
Brown, M.T., Goldstone, H.M.H., Bastida-Corcuera, F., Delgadillo-Correa, M.G., McArthur, A.G. & Johnson, P.J. (2007) A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Molecular Microbiology, 64, 1154-1163.
Brugerolle, G. & Metenier, G. 1973. Intracellular localization and characterization of 2 types of malate dehydrogenases in trichomonas vaginalis Donne, 1836. The Journal of Protozoology, 20, 320-327. Available from: https://pubmed.ncbi.nlm.nih.gov/4350906/
Bui, E.T. & Johnson, P.J. (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of trichomonas vaginalis. Molecular and Biochemical Parasitology, 76, 305-310.
Bui, E.T.N., Bradley, P.J. & Johnson, P.J. 1996. A common evolutionary origin for mitochondria and hydrogenosomes. Proceedings of the National Academy of Sciences of the United States of America, 93. Available from: isi:A1996VF61400061, 9651-9656
Buttrey, B.W. (1954) Morphological variations in Tritrichomonas augusta (Alexeieff) from amphibia. Journal of Morphology, 94, 125-164.
Buttrey, W.B. (1956) A morphological description of a Tritrichomonas from the nasal cavity of swine. The Journal of Protozoology, 3, 8-13.
Bych, K., Kerscher, S., Netz, D.J., Pierik, A.J., Zwicker, K., Huynen, M.A. et al. (2008) The iron-sulphur protein Ind1 is required for effective complex I assembly. The EMBO Journal, 27, 1736-1746.
Byer, A.S., Shepard, E.M., Ratzloff, M.W., Betz, J.N., King, P.W., Broderick, W.E. & Broderick, J.B. 2019. H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG. Journal of Biological Inorganic Chemistry , 24, 783-792. Available from: https://pubmed.ncbi.nlm.nih.gov/31493152/
Cabello, P., Pino, C., Olmo-Mira, M.F., Castillo, F., Roldan, M.D. & Moreno-Vivian, C. (2004) Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. Requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction. Journal of Biological Chemistry, 279, 45485-45494.
Cameron, J.M., Janer, A., Levandovskiy, V., MacKay, N., Rouault, T.A., Tong, W.H., Ogilvie, I., Shoubridge, E.A. & Robinson, B.H. 2011. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. American Journal of Human Genetics, 89, 486-495. Available from: https://pubmed.ncbi.nlm.nih.gov/21944046/
Čerkasov, J., Čerkasovová, A., Kulda, J. & Vilhelmová, D. (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. Journal of Biological Chemistry, 253, 1207-1214.
Čerkasov, J., Kulda, J., Čerkasovová, A., Vávra, J. & Vilhelmová, D. (1974) ATP formation in hydrogenosomes of trichomonads. The Journal of Protozoology, 21, 454-455.
Čerkasovová, A., Čerkasov, J. & Kulda, J. (1974) Biochemical comparison og microbody-like granules (hydrogenosomes) of trichomonads with mitochondria of other cells. In: Proceedings, third international congress of parasitology: a conference of the world Federation of Parasitologists, Munich, August 25th. Vienna: Facta Publication.
Čerkasovová, A., Lukášová, G., Čerkasov, J. & Kulda, J. (1973) Biochemical characterization of large granule fraction of Tritrichomonas foetus (KV1 strain). The Journal of Protozoology, 20, 537.
Chakraborty, J., Das Gupta, N.N. & Ray, H.N. (1961) An electron microscope study of the Trichomonas criceti. Cytologia (Tokyo)., 26, 320-326.
Chaudhuri, M., Darden, C., Gonzalez, F.S., Singha, U.K., Quinones, L. & Tripathi, A. 2020. Tim17 updates: a comprehensive review of an ancient mitochondrial protein translocator. Biomolecules, 10, 1-20. Available from: https://pubmed.ncbi.nlm.nih.gov/33297490/
Cheng, W.H., Huang, K.Y., Huang, P.J., Hsu, J.H., Fang, Y.K., Chiu, C.H. & Tang, P. 2015. Nitric oxide maintains cell survival of trichomonas vaginalis upon iron depletion. Parasites & Vectors, 8, 392. Available from: https://pubmed.ncbi.nlm.nih.gov/26205151/
Coombs, G.H., Westrop, G.D., Suchan, P., Puzova, G., Hirt, R.P., Embley, T.M. et al. (2004) The amitochondriate eukaryote trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. Journal of Biological Chemistry, 279, 5249-5256.
Costello, J.L., Castro, I.G., Camões, F., Schrader, T. A., McNeall, D., Yang, J., Giannopoulou, E.A., Gomes, S., Pogenberg, V., Bonekamp, N.A., Ribeiro, D., Wilmanns, M., Jedd, G., Islinger, M. & Schrader, M. 2017. Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. Journal of Cell Science, 130, 1675-1687. Available from: https://pubmed.ncbi.nlm.nih.gov/28325759/
Cruz, F. & Ferry, J.G. (2006) Interaction of iron-sulfur flavoprotein with oxygen and hydrogen peroxide. Biochimica et Biophysica Acta, 1760, 858-864.
Declerck, P.J. & Müller, M. (1987) Hydrogenosomal ATP: AMP phosphotransferase of trichomonas vaginalis. Comparative Biochemistry and Physiology Part B: Biochemistry, 88, 575-580.
Dietmeier, K., Hönlinger, A., Bömer, U., Dekker, P.J.T., Eckerskorn, C., Lottspeicht, F., Kübrich, M. & Pfanner, N. 1997. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature, 388, 195-200. Available from: https://www.nature.com/articles/40663
Doležal, P., Dagley, M.J., Kono, M., Wolynec, P., Likić, V.A., Foo, J.H., Šedinová, M., Tachezy, J., Bachmann, A., Bruchhaus, I. & Lithgow, T. 2010. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathogens, 6, e1000812. Available from: https://pubmed.ncbi.nlm.nih.gov/20333239/
Doležal, P., Dancis, A., Lesuisse, E., Šuťák, R., Hrdý, I., Embley, T.M. et al. (2007) Frataxin, a conserved mitochondrial protein, in the hydrogenosome of trichomonas vaginalis. Eukaryotic Cell, 6, 1431-1438.
Douce, R., Bourguignon, J., Neuburger, M. & Rébeillé, F. (2001) The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6, 167-176.
Drmota, T., Proost, P., Van Ranst, M., Weyda, F., Kulda, J. & Tachezy, J. (1996) Iron-ascorbate cleavable malic enzyme from hydrogenosomes of trichomonas vaginalis: purification and characterization. Molecular and Biochemical Parasitology, 83, 221-234.
de Duve, C. 1969. Evolution of the peroxisome. Annals of the New York Academy of Sciences, 168, 369-381. Available from: https://pubmed.ncbi.nlm.nih.gov/5270945/
De Duve, C. & Baudhuin, P. 1966. Peroxisomes (microbodies and related particles). Physiological Reviews, 46, 323-357. Available from: https://pubmed.ncbi.nlm.nih.gov/5325972/
De Duve, C., Pressman, B.C., Gianetto, R., Wattiaux, R. & Appelmans, F. 1955. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. The Biochemical Journal, 60, 604-617. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1216159/
Dvořáková-Holá, K., Matušková, A., Kubala, M., Otyepka, M., Kučera, T., Večeř, J. et al. (2010) Glycine-rich loop of mitochondrial processing peptidase α-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. Journal of Molecular Biology, 396, 1197-1210.
Dyall, S.D. & Johnson, P.J. (2000) Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Current Opinion in Microbiology, 3. Available from: isi:000088817300014, 404-411.
Dyall, S.D., Yan, W., Delgadillo-Correa, M.G., Lunceford, A., Loo, J.A., Clarke, C.F. et al. (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature, 431, 1103-1107.
Ellenrieder, L., Opaliłski, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., Meisinger, C., Wiedemann, N., Schleiff, E., Wagner, R., Pfanner, N. & Becker, T. 2016. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nature Communications, 7, 13021. Available from: https://pubmed.ncbi.nlm.nih.gov/27721450/
Ellis, J.E., Yarlett, N., Cole, D., Humphreys, M.J. & Lloyd, D. (1994) Antioxidant defences in the microaerophilic protozoan trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology, 140, 2489-2494.
Emelyanov, V.V. 2003. Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiology Letters, 226, 257-266. Available from: isi:000185876100010
Fenchel, T. & Finlay, B.J. 1991. The biology of free-living anaerobic ciliates. European Journal of Protistology, 26, 201-215. Available from: https://pubmed.ncbi.nlm.nih.gov/23196279/
Folgosa, F., Martins, M.C. & Teixeira, M. (2018) Diversity and complexity of flavodiiron NO/O2 reductases. FEMS Microbiol Letters, 365, 1-7.
Fox, N.G., Das, D., Chakrabarti, M., Lindahl, P.A. & Barondeau, D.P. 2015. Frataxin accelerates [2Fe-2S] cluster formation on the human Fe-S assembly complex. Biochemistry, 54, 3880-3889. Available from: https://pubmed.ncbi.nlm.nih.gov/26016518/
Gakh, O., Adamec, J., Gacy, A.M., Twesten, R.D., Owen, W.G. & Isaya, G. (2002a) Physical evidence that yeast frataxin is an iron storage protein. Biochemistry, 41, 6798-6804.
Gakh, O., Cavadini, P. & Isaya, G. (2002b) Mitochondrial processing peptidases. Biochimica et Biophysica Acta - Molecular Cell Research, 1592, 63-77.
Garg, S.G. & Gould, S.B. (2016) The role of charge in protein targeting evolution. Trends in Cell Biology, 26, 894-905.
Garg, S., Stölting, J., Zimorski, V., Rada, P., Tachezy, J., Martin, W.F. et al. (2015) Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biology and Evolution, 7, 2716-2726.
Germot, A., Philippe, H. & Le Guyader, H. 1996. Presence of a mitochondrial-type 70-kDa heat shock protein in trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 93, 14614-14617. Available from: https://pubmed.ncbi.nlm.nih.gov/8962101/
Gervason, S., Larkem, D., Mansour, A. Ben, Botzanowski T., Müller, C.S., Pecqueur, L., Le Pavec, G., Delaunay-Moisan, A., Brun, O., Agramunt, J., Grandas, A., Fontecave, M., Schünemann, V., Cianférani, S., Sizun, C., Tolédano, M.B. & D'Autréaux, B. 2019. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nature Communications, 10, 3566. Available from: https://pubmed.ncbi.nlm.nih.gov/31395877/
Gorrell, T.E., Yarlett, N. & Müller, M. (1984) Isolation and characterization of trichomonas vaginalis ferredoxin. Carlsb. Res.Commun., 49, 259-268.
Van Grinsven, K.W.A., Rosnowsky, S., Van Weelden, S.W.H., Pütz, S., Van Der Giezen, M., Martin, W. et al. (2008) Acetate:succinate CoA-transferase in the hydrogenosomes of trichomonas vaginalis: identification and characterization. The Journal of Biological Chemistry, 283, 1411-1418.
Gutierrez, C. & Devedjian, J.C. (1991) Osmotic induction of gene OsmC expression in Escherichia coli K12. Journal of Molecular Biology, 220, 959-973.
Hansen, K.G. & Herrmann, J.M. 2019. Transport of proteins into mitochondria. The Protein Journal, 38, 330-342. Available from: https://pubmed.ncbi.nlm.nih.gov/30868341/
Harsman, A., Oeljeklaus, S., Wenger, C., Huot, J.L., Warscheid, B. & Schneider, A. 2016. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nature Communications, 7, 13707. Available from: https://pubmed.ncbi.nlm.nih.gov/27991487/
Hashimoto, T. (1998) Secondary absence of mitochondria in Giardia lamblia and trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proceedings of the National Academy of Sciences of the United States of America, 95, 6860-6865.
Hawes, R.S. 1947. On the structure, division, and systematic position of trichomonas vaginalis Donné, with a note on its methods of feeding. The Quarterly Journal of Microscopical Science , 88, 79-98. Available from: https://pubmed.ncbi.nlm.nih.gov/20240380/
Hjort, K., Goldberg, A.V., Tsaousis, A.D., Hirt, R.P. & Embley, T.M. 2010. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 713-727. Available from: https://pubmed.ncbi.nlm.nih.gov/20124340/
Van Hoek, A.H.A.M., Van Alen, T.A., Sprakel, V.S.I., Leunissen, J.A.M., Brigge, T., Vogels, G.D. & Hackstein, J.H.P. 2000. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Molecular Biology and Evolution, 17, 251-258. Available from: https://academic.oup.com/mbe/article/17/2/251/1001839
Honigberg, B. M. & King, V. M. 1964. Structure of trichomonas vaginalis Donn'e. The Journal of Parasitology, 50, 345-364. Available from: https://pubmed.ncbi.nlm.nih.gov/14169529/
Horváthová, L., Šafaříková, L., Basler, M., Hrdý, I., Campo, N.B., Shin, J.W., Huang, K.Y., Huang, P.J., Lin, R., Tang, P. & Tachezy, J. 2012. Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated trichomonas vaginalis genome. Genome Biology and Evolution, 4, 1017-1029. Available from: https://pubmed.ncbi.nlm.nih.gov/22975721/
Hrdý, I., Cammack, R., Stopka, P., Kulda, J., Tachezy, J., Hrdý, I. et al. (2005) Alternative pathway of metronidazole activation in trichomonas vaginalis hydrogenosomes. Antimicrobial Agents and Chemotherapy, 49, 5033-5036.
Hrdý, I., Hirt, R.P., Doležal, P., Bardonová, L., Foster, P.G., Tachezy, J. et al. (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature, 432, 618-622.
Hrdý, I., Müller, M., Hrdý, I., Müller, M., Hrdý, I. & Müller, M. (1995) Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote trichomonas vaginalis. Journal of Molecular Evolution, 41, 388-396.
Hrdý, I., Tachezy, J. & Müller, M. (2008) Metabolism of trichomonad hydrogenosomes. In: Tachezy, J. (Ed.) Hydrogenosome and Mitosomes: mitochondria of anaerobic eukaryotes. Cham: Springer, pp. 113-145.
Inoki, S., Nakanishi, K. & Nakabayashi, T. (1959) Observations on trichomonas vaginalis by electron microscopy. Biken's Journal of Research Institute for Microbial Diseases, 2, 21-24.
Jenkins, T.M., Gorrell, T.E., Müller, M. & Weitzman, P.D. (1991) Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and trichomonas vaginalis. Biochemical and Biophysical Research Communications, 179, 892-896.
Johnson, P.J., d'Oliveira, C.E., Gorrell, T.E. & Müller, M. (1990) Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist trichomonas vaginalis. Proceedings of the National Academy of Sciences of the United States of America, 87, 6097-6101.
Johnson, P.J., Lahti, C.J. & Bradley, P.J. 1993. Biogenesis of the hydrogenosome in the anaerobic protist trichomonas vaginalis. The Journal of Parasitology, 79, 664-670. Available from: https://pubmed.ncbi.nlm.nih.gov/8410536/
Kispal, G., Csere, P., Prohl, C. & Lill, R. (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. The EMBO Journal, 18, 3981-3989.
Kitada, S., Yamasaki, E., Kojima, K. & Ito, A. 2003. Determination of the cleavage site of the presequence by mitochondrial processing peptidase on the substrate binding scaffold and the multiple subsites inside a molecular cavity. The Journal of Biological Chemistry, 278, 1879-1885. Available from: https://pubmed.ncbi.nlm.nih.gov/12433926/
Kučera, T., Otyepka, M., Matušková, A., Samad, A., Kutejová, E. & Janata, J. (2013) A computational study of the glycine-rich loop of mitochondrial processing peptidase. PLoS One, 8, 1-13.
Kuchenreuther, J.M., Myers, W.K., Suess, D.L.M., Stich, T.A., Pelmenschikov, V., Shiigi, S.A., Cramer, S.P., Swartz, J.R., Britt, R.D. & George, S.J. 2014. The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science, 343, 424-427. Available from: https://pubmed.ncbi.nlm.nih.gov/24458644/
Kulda, J., Nohýnková, E. & Ludvík, J. (1987) Basic structure and function of trichomonad cell. Acta Universitatis Carolinae. Biologica, 30, 181-198.
Kunitake, G., Stitt, C. & Saltman, P. 1962. Terminal respiration in trichomonas vaginalis. The Journal of Protozoology, 9, 371-373. Available from: https://pubmed.ncbi.nlm.nih.gov/14460577/
Künstler, J. (1884) Trichomonas vaginalis Don. The Journal of Micrographics, 8, 317-331.
Lange, S., Rozario, C. & Müller, M. (1994) Primary structure of the hydrogenosomal adenylate kinase of trichomonas vaginalis and its phylogenetic relationships. Molecular and Biochemical Parasitology, 66, 297-308.
Leitsch, D., Janssen, B.D., Kolarich, D., Johnson, P.J. & Duchêne, M. 2014. Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Molecular Microbiology, 91, 198-208. Available from: https://pubmed.ncbi.nlm.nih.gov/24256032/
Lill, R., Diekert, K., Kaut, A., Lange, H., Pelzer, W., Prohl, C. et al. (1999) The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biological Chemistry, 380, 1157-1166.
Lill, R. & Kispal, G. 2000. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends in Biochemical Sciences, 25, 352-356. Available from: isi:000088883200003
Lill, R., Lill, R. & Freibert, S.A. 2020. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annual Review of Biochemistry, 89, 471-499. Available from: https://pubmed.ncbi.nlm.nih.gov/31935115/
Lindmark, D.G. (1976) Acetate production by Tritrichomonas foetus. In: Van den Bosche, H. (Ed.) Biochemistry of parasite and host-parasite relationship. Amsterdam: Elsevier, pp. 15-21.
Lindmark, D.G. & Müller, M. (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry, 248, 7724-7728.
Lindmark, D.G. & Müller, M. 1974. Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. The Journal of Biological Chemistry, 249, 4634-4637. Available from: https://pubmed.ncbi.nlm.nih.gov/4152312/
Lindmark, D.G., Müller, M. & Shio, H. (1975) Hydrogenosomes in trichomonas vaginalis. The Journal of Parasitology, 61, 552-554.
Lloyd, D. & Kristensen, B. (1985) Metronidazole inhibition of hydrogen production in vivo in drug-sensitive and resistant strains of trichomonas vaginalis. The Journal of General Microbiology, 131, 849-853.
Long, S., Jirků, M., Mach, J., Ginger, M.L., Sutak, R., Richardson, D., Tachezy, J. & Lukeš, J. (2008) Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Molecular Microbiology, 69, 94-109. Available from: https://pubmed.ncbi.nlm.nih.gov/18433447/
López-García, P. & Moreira, D. 2020. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 5, 655-667. Available from: https://www.nature.com/articles/s41564-020-0710-4
Ludvík, J. (1954) The study of the cell morphology of trichomonas foetus (Riedmüller) with the electron microscope. Acta Societatis Zoologicae Bohemoslovacae, 17, 189-197.
Lukeš, J. & Basu, S. 2015. Fe/S protein biogenesis in trypanosomes - a review. Biochimica et Biophysica Acta , 1853, 1481-1492. Available from: https://pubmed.ncbi.nlm.nih.gov/25196712/
Macedo, S., Mitchell, E.P., Romao, C.V., Cooper, S.J., Coelho, R., Liu, M.Y. et al. (2002) Hybrid cluster proteins (HCPs) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-ray structures at 1.25 a resolution using synchrotron radiation. J.Biol.Inorg.Chem., 7, 514-525.
Makki, A., Rada, P., Žárský, V., Kereïche, S., Kováčik, L., Novotný, M., Jores, T., Rapaport, D. & Tachezy, J. 2019. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in trichomonas vaginalis. PLoS Biology, 17, e3000098. Available from: https://pubmed.ncbi.nlm.nih.gov/30608924/
Martin, W. & Müller, M. 1998. The hydrogen hypothesis for the first eukaryote. Nature, 392, 37-41. Available from: https://pubmed.ncbi.nlm.nih.gov/9510246/
Marczak, R., Gorrell, T.E. & Müller, M. (1983) Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus. Journal of Biological Chemistry, 258, 12427-12433.
Di Matteo, A., Scandurra, F.M., Testa, F., Forte, E., Sarti, P., Brunori, M. et al. (2008) The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis. The Journal of Biological Chemistry, 283, 4061-4068.
McCarthy, E. L. & Booker, S. J. 2017. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science, 358, 373-377. Available from: https://pubmed.ncbi.nlm.nih.gov/29051382/
Mehnert, C.S., Rampelt, H., Gebert, M., Oeljeklaus, S., Schrempp, S. G., Kochbeck, L., Guiard, B., Warscheid, B. & Van Der Laan, M. 2014. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. The Journal of Biological Chemistry, 289, 27352-27362. Available from: https://pubmed.ncbi.nlm.nih.gov/25124039/
Mentel, M., Zimorski, V., Haferkamp, P., Martin, W. & Henze, K. (2008) Protein import into hydrogenosomes of trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryotic Cell, 7, 1750-1757.
Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K. & Herrmann, J. M. 2005. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell, 121, 1059-1069. Available from: https://pubmed.ncbi.nlm.nih.gov/15989955/
Moreira, D. & López-García, P. 1998. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. Journal of Molecular Evolution, 47, 517-530. Available from: https://pubmed.ncbi.nlm.nih.gov/9797402/
Moreno, S.N. & Docampo, R. (1985) Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis. Environmental Health Perspectives, 64, 199-208.
Moreno, S.N., Mason, R.P. & Docampo, R. (1984) Distinct reduction of nitrofurans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes. Journal of Biological Chemistry, 259, 8252-8259.
Mühlenhoff, U., Richter, N., Pines, O., Pierik, A. J. & Lill, R. 2011. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. The Journal of Biological Chemistry, 286, 41205-41216. Available from: https://pubmed.ncbi.nlm.nih.gov/21987576/
Mukherjee, M., Brown, M.T., McArthur, A.G. & Johnson, P.J. (2006) Proteins of the glycine decarboxylase complex in the hydrogenosome of trichomonas vaginalis. Eukaryotic Cells, 5, 2062-2071.
Müller, M. (1988) Energy metabolism of protozoa without mitochondria. Annual Review of Microbiology, 42, 465-488.
Müller, M. (1993) The hydrogenosome. Journal of General Microbiology, 139, 2879-2889.
Müller, M. & Lindmark, D.G. (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation. Journal of Biological Chemistry, 253, 1215-1218.
Müller, M., Mentel, M., van Hellemond, J.J., Henze, K., Woehle, C., Gould, S.B. et al. (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews, 76, 444-495.
Nagao, Y., Kitada, S., Kojima, K., Toh, H., Kuhara, S., Ogishima, T. et al. (2000) Glycine-rich region of mitochondrial processing peptidase α-subunit is essential for binding and cleavage of the precursor proteins. The Journal of Biological Chemistry, 275, 34552-34556.
Nývltová, E., Smutná, T., Tachezy, J. & Hrdý, I. (2016) OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of trichomonas vaginalis. Molecular and Biochemical Parasitology, 206, 29-38.
Oguma, K. (1931) On a species of trichomonas, parasitic on pigeon squabs. Journal of the Faculty of Science, Hokkaido University, 1, 117-131.
Opalińska, M. & Meisinger, C. 2015. Metabolic control via the mitochondrial protein import machinery. Current Opinion in Cell Biology , 33, 42-48. Available from: https://pubmed.ncbi.nlm.nih.gov/25497717/
Page-Sharp, M., Behm, C.A., Smith, G.D., PageSharp, M., Behm, C.A. & Smith, G.D. (1996) Tritrichomonas foetus and trichomonas vaginalis: the pattern of inactivation of hydrogenase activity by oxygen and activities of catalase and ascorbate peroxidase. Microbiology, 142, 207-211.
Pandey, A.K., Pain, J., Dancis, A. & Pain, D. 2019. Mitochondria export iron-sulfur and sulfur intermediates to the cytoplasm for iron-sulfur cluster assembly and tRNA thiolation in yeast. The Journal of Biological Chemistry, 294, 9489-9502. Available from: https://pubmed.ncbi.nlm.nih.gov/31040179/
Paul, V.D. & Lill, R. (2015) Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochimica et Biophysica Acta - Molecular Cell Research, 1853, 1528-1539.
Payne, M.J., Chapman, A. & Cammack, R. (1993) Evidence for an [Fe]-type hydrogenase in the parasitic protozoan trichomonas vaginalis. FEBS Letters, 317, 101-104.
Pfanner, N., Warscheid, B. & Wiedemann, N. 2019. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews. Molecular Cell Biology, 20, 267-284. Available from: https://pubmed.ncbi.nlm.nih.gov/30626975/
Plumper, E., Bradley, P.J. & Johnson, P.J. (2000) Competition and protease sensitivity assays provide evidence for the existence of a hydrogenosomal protein import machinery in trichomonas vaginalis. Molecular and Biochemical Parasitology, 106, 11-20.
Posewitz, M.C., King, P.W., Smolinski, S.L., Zhang, L., Seibert, M. & Ghirardi, M.L. 2004. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. The Journal of Biological Chemistry , 279, 25711-25720. Available from: https://pubmed.ncbi.nlm.nih.gov/15082711/
Powell, W.N. (1936) Trichomonas vaginalis Donne, 1836: its morphologic characteristics, mitosis and specific ident. American Journal of Hygiene, 24, 145-169.
Pütz, S., Doležal, P., Gelius-Dietrich, G., Boháčová, L., Tachezy, J. & Henze, K. 2006. Fe-hydrogenase maturases in the hydrogenosomes of trichomonas vaginalis. Eukaryotic Cell , 5, 579-586. Available from: https://pubmed.ncbi.nlm.nih.gov/16524912/
Pütz, S., Gelius-Dietrich, G., Piotrowski, M. & Henze, K. (2005) Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon trichomonas vaginalis. Molecular and Biochemical Parasitology, 142, 212-223.
Pyrihová, E., Motyčková, A., Voleman, L., Wandyszewska, N., Fišer, R., Seydlová, G., Roger, A., Kolísko, M. & Doležal, P. 2018. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biology and Evolution, 10, 2813-2822. Available from: https://pubmed.ncbi.nlm.nih.gov/30265292/
Rada, P., Doležal, P., Jedelský, P.L., Bursac, D., Perry, A.J., Šedinová, M. et al. (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of trichomonas vaginalis. PLoS One, 6, e24428.
Rada, P., Makki, A.R., Zimorski, V., Garg, S., Hampl, V., Hrdý, I. et al. (2015) N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of trichomonas vaginalis. Eukaryotic Cell, 14, 1264-1275.
Rada, P., Makki, A., Žárský, V. & Tachezy, J. 2019. Targeting of tail-anchored proteins to trichomonas vaginalis hydrogenosomes. Molecular Microbiology, 111, 588-603. Available from: https://pubmed.ncbi.nlm.nih.gov/30506591/
Rasoloson, D., Tomková, E., Cammack, R., Kulda, J. & Tachezy, J. (2001) Metronidazole-resistant strains of trichomonas vaginalis display increased susceptibility to oxygen. Parasitology, 123, 45-56.
Rasoloson, D., Vaňáčová, Š., Tomková, E., Rázga, J., Hrdý, I., Tachezy, J. et al. (2002) Mechanisms of in vitro development of resistance to metronidazole in trichomonas vaginalis. Microbiology, 148, 2467-2477.
Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N. & Pfanner, N. 2003. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science, 299, 1747-1751. Available from: https://pubmed.ncbi.nlm.nih.gov/12637749/
Roger, A.J., Clark, C.G. & Doolittle, W.F. (1996) A possible mitochondrial gene in the early-branching amitochondriate protist trichomonas vaginalis. Proceedings of the National Academy of Sciences of the United States of America, 93, 14618-14622.
Roger, A.J., Muñoz-Gómez, S. A. & Kamikawa, R. 2017. The origin and diversification of mitochondria. Current Biology, 27, R1177-R1192. Available from: https://pubmed.ncbi.nlm.nih.gov/29112874/
Romao, C.V., Vicente, J.B., Borges, P.T., Frazao, C. & Teixeira, M. (2016) The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases. Journal of Biological Inorganic Chemistry, 21, 39-52.
Rout, S., Oeljeklaus, S., Makki, A., Tachezy, J., Warscheid, B. & Schneider, A. 2021. Determinism and contingencies shaped the evolution of mitochondrial protein import. Proceedings of the National Academy of Sciences, 118, e2017774118. Available from: https://pubmed.ncbi.nlm.nih.gov/33526678/
Ryeley, J.F. (1955) Studies on the metabolism of the protozoa. 5. Metabolism of the parasitic flagellate trichomonas foetus. Biochemical Journal, 59, 361-369.
Sagan, L. 1967. On the origin of mitosing cells. Journal of Theoretical Biology, 14, 255-274. Available from: https://pubmed.ncbi.nlm.nih.gov/11541392/
Samuels, R. (1941) The morphology and division of trichomonas augusta Alexeieff. Transactions of the American Microscopical Society, 60, 422-440.
Santos, H.J., Makiuchi, T. & Nozaki, T. 2018. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends in Parasitology, 34, 1038-1055. Available from: https://pubmed.ncbi.nlm.nih.gov/30201278/
Schaedler, T.A., Thornton, J.D., Kruse, I., Schwarzländer, M., Meyer, A.J., Van Veen, H.W. & Balk, J. 2014. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. The Journal of Biological Chemistry, 289, 23264-23274. Available from: https://pubmed.ncbi.nlm.nih.gov/25006243/
Schendzielorz, A.B., Schulz, C., Lytovchenko, O., Clancy, A., Guiard, B., Ieva, R., van der Laan, M. & Rehling, P. 2017. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. The Journal of Cell Biology, 216, 83-92. Available from: https://pubmed.ncbi.nlm.nih.gov/28011846/
Schilke, B., Voisine, C., Beinert, H. & Craig, E. 1999. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 96, 10206-10211. Available from: https://pubmed.ncbi.nlm.nih.gov/10468587/
Schmucker, S., Martelli, A., Colin, F., Page, A., Wattenhofer-Donzé, M., Reutenauer, L. & Puccio, H. 2011. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS One, 6, e16199. Available from: https://pubmed.ncbi.nlm.nih.gov/21298097/
Schneider, A. 2020. Evolution of mitochondrial protein import - lessons from trypanosomes. Biological Chemistry, 401, 663-676. Available from: https://pubmed.ncbi.nlm.nih.gov/32142472/
Schneider, Rachel E., Brown, M.T., Shiflett, A.M., Dyall, S.D., Hayes, R.D., Xie, Y., Loo, J.A. & Johnson, P.J. 2011. The trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. International Journal for Parasitology, 41, 1421-1434. Available from: https://pubmed.ncbi.nlm.nih.gov/22079833/
Schut, G.J. & Adams, M.W.W. (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. Journal of Bacteriology, 191, 4451-4457.
Seth, D., Hess, D.T., Hausladen, A., Wang, L., Wang, Y.J. & Stamler, J.S. (2018) A multiplex enzymatic machinery for cellular protein S-nitrosylation. Molecular Cell, 69, 451-464.
Sheftel, A.D., Wilbrecht, C., Stehling, O., Niggemeyer, B., Elsasser, H.P., Mühlenhoff, U. et al. (2012) The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Molecular Biology of the Cell, 23, 1157-1166.
Shi, Y., Ghosh, M.C., Tong, W.H. & Rouault, T.A. 2009. Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Human Molecular Genetics, 18, 3014-3025. Available from: https://pubmed.ncbi.nlm.nih.gov/19454487/
Shiflett, A.M. & Johnson, P.J. 2010. Mitochondrion-related organelles in eukaryotic protists. Annual Review of Microbiology, 64, 409-429. Available from: https://pubmed.ncbi.nlm.nih.gov/20528687/
Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H.H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., Elofsson, A., Tomii, K., Horton, P., Wiedemann, N., Pfanner, N., Lithgow, T. & Endo, T. 2015. Molecular architecture of the active mitochondrial protein gate. Science, 349, 1544-1548. Available from: https://pubmed.ncbi.nlm.nih.gov/26404837/
Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K. & Endo, T. 2011. In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proceedings of the National Academy of Sciences of the United States of America, 108, 15179-15183. Available from: https://pubmed.ncbi.nlm.nih.gov/21896724/
Silaghi-Dumitrescu, R., Coulter, E.D., Das, A., Ljungdahl, L.G., Jameson, G.N., Huynh, B.H. et al. (2003) A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry, 42, 2806-2815.
Singha, U.K., Hamilton, V.N., Duncan, M.R., Weems, E., Tripathi, M.K. & Chaudhuri, M. 2012. Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. The Journal of Biological Chemistry, 287, 14480-14493. Available from: http://www.jbc.org/article/S0021925820479414/fulltext
Šmíd, O., Matušková, A., Harris, S. R., Kučera, T., Novotný, M., Horváthová, L., Hrdý, I., Kutějová, E., Hirt, R.P., Embley, T.M., Janata, J. & Tachezy, J. 2008. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites trichomonas vaginalis and Giardia intestinalis. PLoS Pathogens, 4, e1000243. Available from: https://pubmed.ncbi.nlm.nih.gov/19096520/
Smith, B.F. & Stewart, B.T. 1966. Fine structure of trichomonas vaginalis. Experimental Parasitology, 19, 52-63. Available from: https://pubmed.ncbi.nlm.nih.gov/5925489/
Smutná, T., Dohnálková, A., Šuťák, R., Narayanasamy, R.K., Tachezy, J. & Hrdý, I. 2022. A cytosolic ferredoxin-independent hydrogenase possibly mediates hydrogen uptake in trichomonas vaginalis. Current Biology, 32, 124-135.e5. Available from: https://pubmed.ncbi.nlm.nih.gov/34762819/
Smutná, T., Goncalves, V.L., Saraiva, L.M.M., Tachezy, J., Teixeira, M. & Hrdý, I. (2009) Flavodiiron protein from trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryotic Cell, 8, 47-55.
Smutná, T., Pilarová, K., Tarábek, J., Tachezy, J., Hrdý, I., Smutná, T. et al. (2014) Novel functions of an iron-sulfur flavoprotein from trichomonas vaginalis hydrogenosomes. Antimicrobial Agents and Chemotherapy, 58, 3224-3232.
Steinbüchel, A. & Müller, M. (1986a) Glycerol, a metabolic end product of trichomonas vaginalis and Tritrichomonas foetus. Molecular and Biochemical Parasitology, 20, 45-55.
Steinbüchel, A. & Müller, M. 1986b. Anaerobic pyruvate metabolism of Tritrichomonas foetus and trichomonas vaginalis hydrogenosomes. Molecular and Biochemical Parasitology, 20, 57-65. Available from: https://pubmed.ncbi.nlm.nih.gov/3090435/
Šuťák, R., Doležal, P., Fiumera, H.L., Hrdý, I., Dancis, A., Delgadillo-Correa, M. et al. (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote trichomonas vaginalis. Proceedings of the National Academy of Sciences of the United States of America, 101, 10368-10373.
Tachezy, J. ed. 2019. Hydrogenosomes and Mitosomes: mitochondria of anaerobic eukaryotes. 9th ed. Cham, Springer. Available from: http://link.springer.com/10.1007/978-3-030-17941-0
Tachezy, J., Sánchez, L.B. & Müller, M. (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Molecular Biology and Evolution, 18, 1919-1928.
Truscott, K.N., Kovermann, P., Geissler, A., Merlin, A., Meijer, M., Driessen, A.J.M., Rassow, J., Pfanner, N. & Wagner, R. 2001. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Structural Biology, 8, 1074-1082. Available from: https://pubmed.ncbi.nlm.nih.gov/11713477/
Vial, S., Lu, H., Allen, S., Savory, P., Thornton, D., Sheehan, J. & Tokatlidis, K. 2002. Assembly of TIM9 and TIM10 into a functional chaperone. The Journal of Biological Chemistry , 277, 36100-36108. Available from: https://pubmed.ncbi.nlm.nih.gov/12138093/
Vilela, R., Menna-Barreto, R.F.S. & Benchimol, M. 2010. Methyl jasmonate induces cell death and loss of hydrogenosomal membrane potential in trichomonas vaginalis. Parasitology International, 59, 387-393. Available from: https://pubmed.ncbi.nlm.nih.gov/20483382/
Van Vranken, J.G., Jeong, M.Y., Wei, P., Chen, Y.C., Gygi, S.P., Winge, D.R. & Rutter, J. 2016. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife, 5, e17828. Available from: https://pubmed.ncbi.nlm.nih.gov/27540631/
Wang, J., Vine, C.E., Balasiny, B.K., Rizk, J., Bradley, C.L., Tinajero-Trejo, M. et al. (2016) The roles of the hybrid cluster protein, hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Molecular Microbiology, 100, 877-892.
Weinhäupl, K., Lindau, C., Hessel, A., Wang, Y., Schütze, C., Jores, T., Melchionda, L., Schönfisch, B., Kalbacher, H., Bersch, B., Rapaport, D., Brennich, M., Lindorff-Larsen, K., Wiedemann, N. & Schanda, P. 2018. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell, 175, 1365-1379.e25. Available from: https://pubmed.ncbi.nlm.nih.gov/30445040/
Wellerson, R. & Kupferberg, A.B. 1962. On glycolysis in trichomonas vaginalis. The Journal of Protozoology, 9, 418-424. Available from: https://pubmed.ncbi.nlm.nih.gov/13999851/
Wenrich, D.H. (1939) The morphology of trichomonas vaginalis. Vol. Jub. Yoshida Osaka, 2, 65-76.
Wenrich, D.H. (1944) Comparative morphology of the trichomonad flagellates of man. American Journal of Tropical Medicine and Hygiene, 24, 39-51.
Wenrich, D.H. 1945. The cultivation of trichomonas augusta (protozoa) from frogs. The Journal of Parasitology, 31, 375-380. Available from: https://pubmed.ncbi.nlm.nih.gov/21013415/
Wenrich, D.H. 1947. The species of trichomonas in man. The Journal of Parasitology , 33, 177-188. Available from: https://pubmed.ncbi.nlm.nih.gov/20245734/
Wenz, L.S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N. & Becker, T. 2015. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. The Journal of Cell Biology, 210, 1047-1054. Available from: https://pubmed.ncbi.nlm.nih.gov/26416958/
Wideman, J.G. & Muñoz-Gómez, S.A. 2016. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: an evolutionary view from comparative cell biology. Biochimica et Biophysica Acta, 1861, 900-912. Available from: https://pubmed.ncbi.nlm.nih.gov/26825688/
Williams, K., Lowe, P.N. & Leadlay, P.F. (1987) Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon trichomonas vaginalis. Biochem.J., 246, 529-536.
Winterbourn, C.C. (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters, 82-83, 969-974.
Yarlett, N., Yarlett, N.C. & Lloyd, D. (1986) Metronidazole-resistant clinical isolates of trichomonas vaginalis have lowered oxygen affinities. Molecular and Biochemical Parasitology, 19, 111-116.
Yoon, T. & Cowan, J.A. 2003. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. Journal of the American Chemical Society , 125, 6078-6084. Available from: https://pubmed.ncbi.nlm.nih.gov/12785837/
Žárský, V. & Doležal, P. 2016. Evolution of the Tim17 protein family. Biology Direct, 11, 54. Available from: https://pubmed.ncbi.nlm.nih.gov/27760563/
Žárský, V., Klimeš, V., Pačes, J., Vlček, Č., Hradilová, M., Beneš, V., Nývltová, E., Hrdý, I., Pyrih, J., Mach, J., Barlow, L., Stairs, C.W., Eme, L., Hall, N., Eliáš, M., Dacks, J.B., Roger, A. & Tachezy, J. 2021. The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Molecular Biology and Evolution, 38, 2240-2259. Available from: https://pubmed.ncbi.nlm.nih.gov/33528570/
Zhao, T., Cruz, F. & Ferry, J.G. (2001) Iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family. Journal of Bacteriology, 183, 6225-6233.
Zheng, L., White, R.H., Cash, V.L. & Dean, D.R. 1994. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry , 33, 4714-4720. Available from: https://pubmed.ncbi.nlm.nih.gov/8161529/
Zimorski, V., Major, P., Hoffmann, K., Brás, X.P., Martin, W.F. & Gould, S.B. 2013. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of trichomonas vaginalis. The Journal of Eukaryotic Microbiology, 60, 89-97. Available from: https://pubmed.ncbi.nlm.nih.gov/23210891/