Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 18-23702S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
PubMed
34834896
PubMed Central
PMC8625854
DOI
10.3390/plants10112533
PII: plants10112533
Knihovny.cz E-zdroje
- Klíčová slova
- ABA, CO2, barley, light, neural network, phenolics, stomata, stomatal conductance, stomatal density, stomatal regulation,
- Publikační typ
- časopisecké články MeSH
Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.
Zobrazit více v PubMed
Gray A., Liu L., Facette M. Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function. Front. Plant Sci. 2020;11:881. doi: 10.3389/fpls.2020.00881. PubMed DOI PMC
Keenan T.F., Hollinger D.Y., Bohrer G., Dragoni D., Munger J.W. Increase in forest water-use efficency as atmospheric carbon dioxide concentrations rise. Nature. 2013;499:324–327. doi: 10.1038/nature12291. PubMed DOI
Lake J., Quick W., Beerling D., Woodward F. Plant development—Signals from mature to new leaves. Nature. 2001;411:154. doi: 10.1038/35075660. PubMed DOI
De Boer H.J., Price C.A., Wagner-Cremer F., Dekker S., Franks P., Veneklaas E.J. Optimal allocation of leaf epidermal area for gas exchange. New Phytol. 2016;210:1219–1228. doi: 10.1111/nph.13929. PubMed DOI PMC
Vatén A., Bergmann D.C. Mechanisms of stomatal development: An evolutionary view. EvoDevo. 2012;3:11. doi: 10.1186/2041-9139-3-11. PubMed DOI PMC
Driesen E., Ende W.V.D., De Proft M., Saeys W. Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. Agronomy. 2020;10:1975. doi: 10.3390/agronomy10121975. DOI
Woodward F.I., Kelly C.K. The influence of CO2 concentration on stomatal density. New Phytol. 1995;131:311–327. doi: 10.1111/j.1469-8137.1995.tb03067.x. DOI
Estiarte M., Peñuelas J., Kimball B., Idso S., Lamorte R., Pinter J.P., Wall G., Garcia R. Elevated CO2 effects on stomatal density of wheat and sour orange trees. J. Exp. Bot. 1994;45:1665–1668. doi: 10.1093/jxb/45.11.1665. DOI
Woodward F.I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature. 1987;327:617–618. doi: 10.1038/327617a0. DOI
McElwain J.C., Chaloner W.G. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Ann. Bot. 1995;76:389–395. doi: 10.1006/anbo.1995.1112. DOI
Zhang L., Niu H., Wang S., Zhu X., Luo C., Li Y., Zhao X. Gene or environment? Species-specific control of stomatal density and length. Ecol. Evol. 2012;2:1065–1070. doi: 10.1002/ece3.233. PubMed DOI PMC
Blatt M.R. Cellular Signaling and Volume Control in Stomatal Movements in Plants. Annu. Rev. Cell Dev. Biol. 2000;16:221–241. doi: 10.1146/annurev.cellbio.16.1.221. PubMed DOI
Shimada T., Sugano S.S., Hara-Nishimura I. Positive and negative peptide signals control stomatal density. Cell. Mol. Life Sci. 2011;68:2081–2088. doi: 10.1007/s00018-011-0685-7. PubMed DOI PMC
Chater C., Peng K., Movahedi M., Dunn J.A., Walker H.J., Liang Y.-K., McLachlan D.H., Casson S., Isner J.-C., Wilson I., et al. Elevated CO2 -Induced Responses in Stomata Require ABA and ABA Signaling. Curr. Biol. 2015;25:2709–2716. doi: 10.1016/j.cub.2015.09.013. PubMed DOI PMC
Long S.P., Ainsworth E.A., Rogers A., Ort D.R. Rising Atmospheric Carbon Dioxide: Plants FACE the Future. Annu. Rev. Plant Biol. 2004;55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610. PubMed DOI
Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., Belausov E., Granot D. Hexokinase mediates stomatal closure. Plant J. 2013;75:977–988. doi: 10.1111/tpj.12258. PubMed DOI
Talbott L.D., Zeiger E. Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation. Plant Physiol. 1996;111:1051–1057. doi: 10.1104/pp.111.4.1051. PubMed DOI PMC
Gotow K., Taylor S., Zeiger E. Photosynthetic Carbon Fixation in Guard Cell Protoplasts of Vicia faba L.: Evidence from Radiolabel Experiments. Plant Physiol. 1988;86:700–705. doi: 10.1104/pp.86.3.700. PubMed DOI PMC
Taiz L., Zeiger E., Møller I.M., Murphy A. Plant Physiology and Development. Sinauer Associates Incorporated; Sunderland, MA, USA: 2015.
Hunt L., Klem K., Lhotáková Z., Vosolsobě S., Oravec M., Urban O., Špunda V., Albrechtová J. Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants. 2021;10:385. doi: 10.3390/antiox10030385. PubMed DOI PMC
Hughes J., Hepworth C., Dutton C., Dunn J.A., Hunt L., Stephens J., Waugh R., Cameron D.D., Gray J.E. Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. Plant Physiol. 2017;174:776–787. doi: 10.1104/pp.16.01844. PubMed DOI PMC
Dunn J., Hunt L., Afsharinafar M., Al Meselmani M., Mitchell A., Howells R., Wallington E., Fleming A.J., Gray J.E. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exp. Bot. 2019;70:4737–4748. doi: 10.1093/jxb/erz248. PubMed DOI PMC
Hasanuzzaman M., Shabala L., Zhou M., Brodribb T.J., Corkrey R., Shabala S. Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environ. Exp. Bot. 2018;153:10–20. doi: 10.1016/j.envexpbot.2018.05.002. DOI
Bertolino L.T., Caine R., Gray J.E. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front. Plant Sci. 2019;10:225. doi: 10.3389/fpls.2019.00225. PubMed DOI PMC
Franks P.J., Doheny-Adams T.W., Britton-Harper Z.J., Gray J.E. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 2015;207:188–195. doi: 10.1111/nph.13347. PubMed DOI
Fetter K.C., Eberhardt S., Barclay R.S., Wing S., Keller S.R. StomataCounter: A neural network for automatic stomata identification and counting. New Phytol. 2019;223:1671–1681. doi: 10.1111/nph.15892. PubMed DOI
Jumrani K., Bhatia V.S. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiol. Rep. 2020;25:277–283. doi: 10.1007/s40502-020-00508-6. DOI
Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes. PLoS ONE. 2015;10:e0117449. doi: 10.1371/journal.pone.0117449. PubMed DOI PMC
Miskin E., Rasmusson D.C. Frequency and distribution of stomata in barley. Crop Sci. 1970;10:575–578. doi: 10.2135/cropsci1970.0011183X001000050038x. DOI
Kubinova L. Stomata and Mesophyll Characteristics of Barley Leaf as Affected by Light: Stereological Analysis. J. Exp. Bot. 1991;42:995–1001. doi: 10.1093/jxb/42.8.995. DOI
Wild A., Wolf G. The Effect of Different Light Intensities on the Frequency and Size of Stomata, the Size of Cells, the Number, Size and Chlorophyll Content of Chloroplasts in the Mesophyll and the Guard Cells during the Ontogeny of Primary Leaves of Sinapis alba. Z. Pflanzenphysiol. 1980;97:325–342. doi: 10.1016/S0044-328X(80)80006-7. DOI
Tichá I. Photosynthetic Characteristics during Ontogenesis of Leaves. VII: Stomata Denity and Sizes. Czechoslovak Academy of Science, Institute of Experimental Botany; Prague, Czech Republic: 1982.
Hronková M., Wiesnerová D., Šimková M., Skůpa P., Dewitte W., Vráblová M., Zažímalová E., Šantrůček J. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. J. Exp. Bot. 2015;66:4621–4630. doi: 10.1093/jxb/erv233. PubMed DOI
Hepworth C., Caine R., Harrison E., Sloan J., Gray J.E. Stomatal development: Focusing on the grasses. Curr. Opin. Plant Biol. 2018;41:1–7. doi: 10.1016/j.pbi.2017.07.009. PubMed DOI
Arenas-Corraliza M.G., Rolo V., López-Díaz M.L., Moreno G. Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Sci. Rep. 2019;9:9547. doi: 10.1038/s41598-019-46027-9. PubMed DOI PMC
Yu Q., Zhang Y., Liu Y., Shi P. Simulation of the Stomatal Conductance of Winter Wheat in Response to Light, Temperature and CO2 Changes. Ann. Bot. 2004;93:435–441. doi: 10.1093/aob/mch023. PubMed DOI PMC
Morison J.I.L. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell Environ. 1985;8:467–474. doi: 10.1111/j.1365-3040.1985.tb01682.x. DOI
Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum) J. Plant Physiol. 2015;184:89–97. doi: 10.1016/j.jplph.2015.07.003. PubMed DOI
Gray J.E., Holroyd G.H., Van Der Lee F.M., Bahrami A.R., Sijmons P.C., Woodward F.I., Schuch W., Hetherington A.M. The HIC signalling pathway links CO2 perception to stomatal development. Nature. 2000;408:713–716. doi: 10.1038/35047071. PubMed DOI
Meehl G.A., Stocker T.F., Collins W.D., Friedlingstein P., Gaye A.T., Gregory J.M., Kitoh A., Knutti R., Murphy J.M., Noda A., et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. Global Climate Projections; pp. 747–845.
Delmas R.J., Ascencio J.-M., Legrand M. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature. 1980;284:155–157. doi: 10.1038/284155a0. DOI
Ehleringer J.R., Cerling T.E. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol. 1995;15:105–111. doi: 10.1093/treephys/15.2.105. PubMed DOI
Faralli M., Cockram J., Ober E., Wall S., Galle A., Van Rie J., Raines C., Lawson T. Genotypic, Developmental and Environmental Effects on the Rapidity of gs in Wheat: Impacts on Carbon Gain and Water-Use Efficiency. Front. Plant Sci. 2019;10:492. doi: 10.3389/fpls.2019.00492. PubMed DOI PMC
Franks P.J., Beerling D. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA. 2009;106:10343–10347. doi: 10.1073/pnas.0904209106. PubMed DOI PMC
Büssis D., von Groll U., Fisahn J., Altman T. Stomatal aperture can compensate altered stomatal density. Funct. Plant Biol. 2006;33:1037–1043. doi: 10.1071/FP06078. PubMed DOI
Liao J.-X., Chang J., Wang G.-X. Stomatal density and gas exchange in six wheat cultivars. Cereal Res. Commun. 2005;33:719–726. doi: 10.1556/CRC.33.2005.2-3.140. DOI
Schuler M.L., Sedelnikova O.V., Walker B.J., Westhoff P., Langdale J.A. Shortroot-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency. Plant Physiol. 2018;176:757–772. doi: 10.1104/pp.17.01005. PubMed DOI PMC
Urban O., Klem K., Holišova P., Šigut L., Šprtová M., Teslová-Navrátilová P., Zitová M., Špunda V., Marek M.V., Grace J. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. Environ. Pollut. 2014;185:271–280. doi: 10.1016/j.envpol.2013.11.009. PubMed DOI
Misra B.B., Acharya B.R., Granot D., Assmann S.M., Chen S. The guard cell metabolome: Functions in stomatal movement and global food security. Front. Plant Sci. 2015;6:334. doi: 10.3389/fpls.2015.00334. PubMed DOI PMC
Gago J., De Menezes Daloso D., Figueroa C.M., Flexas J., Fernie A.R., Nikoloski Z. Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach. Plant Physiol. 2016;171:265–279. doi: 10.1104/pp.15.01660. PubMed DOI PMC
Zeiger E., Talbott L.D., Frechilla S., Srivastava A., Zhu J. The guard cell chloroplast: A perspective for the twenty-first century. New Phytol. 2002;153:415–424. doi: 10.1046/j.0028-646X.2001.NPH328.doc.x. PubMed DOI
Medeiros D.B., Barros J.A., Fernie A.R., Araújo W.L. Eating Away at ROS to Regulate Stomatal Opening. Trends Plant Sci. 2020;25:220–223. doi: 10.1016/j.tplants.2019.12.023. PubMed DOI
Watkins J.M., Hechler P.J., Muday G.K. Ethylene-induced flavonol accumulation in guard cells supressed reactive oxygen species and moderates stomatal aperture. Plant Physiol. 2014;164:1707–1717. doi: 10.1104/pp.113.233528. PubMed DOI PMC
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Postiglione A.E., Muday G.K. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Front. Plant Sci. 2020;11:968. doi: 10.3389/fpls.2020.00968. PubMed DOI PMC
Chen Z.-H., Hills A., Lim C.K., Blatt M.R. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J. 2010;61:816–825. doi: 10.1111/j.1365-313X.2009.04108.x. PubMed DOI
Schroeder J., Hagiwara S. Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad. Sci. USA. 1990;87:9305–9309. doi: 10.1073/pnas.87.23.9305. PubMed DOI PMC
Gietler M., Fidler J., Labudda M., Nykiel M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020;21:4607. doi: 10.3390/ijms21134607. PubMed DOI PMC
Cuvelier M.-E., Richard H., Berset C. Comparison of the Antioxidative Activity of Some Acid-phenols: Structure-Activity Relationship. Biosci. Biotechnol. Biochem. 2014;56:324–325. doi: 10.1271/bbb.56.324. DOI
Plumbe A.M., Willmer C.M. Phytoalexins, Water-stress and Stomata. Iii. The effects of some phenolics, fatty acids and some other compounds on stomatal responses. New Phytol. 1986;103:17–22. doi: 10.1111/j.1469-8137.1986.tb00592.x. DOI
Ouzounis T., Parjikolaei B.R., Frettã X., Rosenqvist E., Ottosen C.-O. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci. 2015;6:19. doi: 10.3389/fpls.2015.00019. PubMed DOI PMC
Finelstein R.R., Gibson S.I. ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 2002;5:26–32. doi: 10.1016/S1369-5266(01)00225-4. PubMed DOI
Lu P., Outlaw W.H., Jr., Smith B.G., Freed G.A. A New Mechanism for the Regulation of Stomatal Aperture Size in Intact Leaves (Accumulation of Mesophyll-Derived Sucrose in the Guard-Cell Wall of Vicia faba) Plant Physiol. 1997;114:109–118. doi: 10.1104/pp.114.1.109. PubMed DOI PMC
Outlaw W.H., De Vlieghere-He X. Transpiration Rate. An Important Factor Controlling the Sucrose Content of the Guard Cell Apoplast of Broad Bean. Plant Physiol. 2001;126:1716–1724. doi: 10.1104/pp.126.4.1716. PubMed DOI PMC
Ruan Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251. PubMed DOI
Granot D. Potting plant hexokinases in their proper place. Phytochemistry. 2008;69:2649–2654. doi: 10.1016/j.phytochem.2008.08.026. PubMed DOI
Asad M.A.U., Wang F., Ye Y., Guan X., Zhou L., Han Z., Pan G., Cheng F. Contribution of ABA metabolism and ROS generation to sugar starvation-induced senescence of rice leaves. Plant Growth Regul. 2021;95:241–257. doi: 10.1007/s10725-021-00718-4. DOI
Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., Granot D. Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces Photosynthesis, and Induces Rapid Senescence. Plant Cell. 1999;11:1253. doi: 10.1105/tpc.11.7.1253. PubMed DOI PMC
Wu Y., Tiedemann A. Light-dependent oxidative stress determines physiological lead spot formation in barley. Phytopathology. 2004;94:584–592. doi: 10.1094/PHYTO.2004.94.6.584. PubMed DOI
Klem K., Ač A., Holub P., Kováč D., Špunda V., Robson T.M., Urban O. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 2012;75:52–64. doi: 10.1016/j.envexpbot.2011.08.008. DOI
Agrární Komora České Republiky . Ústrědní Kontrolní a Zkušební Ústav Zemědělsý: Obilniny 2018. Národní Odrůový Úřad; Brno, Czech Republic: 2018.
Le Cun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Appliedto Document Recognition. Proc. IEEE. 1998;86:2278–2324. doi: 10.1109/5.726791. DOI
Chollet F.E.A. Keras. 2015. [(accessed on 4 March 2019)]. Available online: https://github.com/fchollet/keras.
Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv. 20151502.03167
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.
Nair V., Hinton G.E. Rectified linear units improve restricted boltzmann machines; Proceedings of the 27th International Conference on Machine Learning (ICML-10); Haifa, Israel. 21–24 June 2010; pp. 807–814.
Gunderson H.J.G. Notes on estimation of numerical density of arbitrary profiles: The edge effect. J. Microsc. 1997;111:219–223. doi: 10.1111/j.1365-2818.1977.tb00062.x. DOI
Kubinova L. Recent stereological methods for measuring leaf anatomical characteristics: Estimation of the number and sizes of stomata and mesophyll cells. J. Exp. Bot. 1994;45:119–127. doi: 10.1093/jxb/45.1.119. DOI
Albrechtova J., Kubinova L. Quantitative Analysis of the Structure of Etiolated Barley Leaf Using Stereological Methods. J. Exp. Bot. 1991;42:1311–1314. doi: 10.1093/jxb/42.10.1311. DOI
Kubínová L., Radichivá B., Lhotáková Z., Kubínová Z., Albrechtová J. Stereology, an unbiased methodological approach to study plant anatomy and cytology: Past, present and future. Image Anal. Stereol. 2017;36:187–205. doi: 10.5566/ias.1848. DOI
Večeřová K., Večeřa Z., Mikuška P., Coufalík P., Oravec M., Dočekal B., Novotná K., Veselá B., Pompeiano A., Urban O. Temperature alters susceptibility of Picea abies seedlings to airborne pollutants: The case of CdO nanoparticles. Environ. Pollut. 2019;253:646–654. doi: 10.1016/j.envpol.2019.07.061. PubMed DOI
Smilauer P., Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2nd ed. Cambridge University Press; Cambridge, UK: 2014.
Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland
Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance