Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions

. 2021 Nov 21 ; 10 (11) : . [epub] 20211121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834896

Grantová podpora
GAČR 18-23702S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000797 SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions

Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.

Zobrazit více v PubMed

Gray A., Liu L., Facette M. Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function. Front. Plant Sci. 2020;11:881. doi: 10.3389/fpls.2020.00881. PubMed DOI PMC

Keenan T.F., Hollinger D.Y., Bohrer G., Dragoni D., Munger J.W. Increase in forest water-use efficency as atmospheric carbon dioxide concentrations rise. Nature. 2013;499:324–327. doi: 10.1038/nature12291. PubMed DOI

Lake J., Quick W., Beerling D., Woodward F. Plant development—Signals from mature to new leaves. Nature. 2001;411:154. doi: 10.1038/35075660. PubMed DOI

De Boer H.J., Price C.A., Wagner-Cremer F., Dekker S., Franks P., Veneklaas E.J. Optimal allocation of leaf epidermal area for gas exchange. New Phytol. 2016;210:1219–1228. doi: 10.1111/nph.13929. PubMed DOI PMC

Vatén A., Bergmann D.C. Mechanisms of stomatal development: An evolutionary view. EvoDevo. 2012;3:11. doi: 10.1186/2041-9139-3-11. PubMed DOI PMC

Driesen E., Ende W.V.D., De Proft M., Saeys W. Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. Agronomy. 2020;10:1975. doi: 10.3390/agronomy10121975. DOI

Woodward F.I., Kelly C.K. The influence of CO2 concentration on stomatal density. New Phytol. 1995;131:311–327. doi: 10.1111/j.1469-8137.1995.tb03067.x. DOI

Estiarte M., Peñuelas J., Kimball B., Idso S., Lamorte R., Pinter J.P., Wall G., Garcia R. Elevated CO2 effects on stomatal density of wheat and sour orange trees. J. Exp. Bot. 1994;45:1665–1668. doi: 10.1093/jxb/45.11.1665. DOI

Woodward F.I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature. 1987;327:617–618. doi: 10.1038/327617a0. DOI

McElwain J.C., Chaloner W.G. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic. Ann. Bot. 1995;76:389–395. doi: 10.1006/anbo.1995.1112. DOI

Zhang L., Niu H., Wang S., Zhu X., Luo C., Li Y., Zhao X. Gene or environment? Species-specific control of stomatal density and length. Ecol. Evol. 2012;2:1065–1070. doi: 10.1002/ece3.233. PubMed DOI PMC

Blatt M.R. Cellular Signaling and Volume Control in Stomatal Movements in Plants. Annu. Rev. Cell Dev. Biol. 2000;16:221–241. doi: 10.1146/annurev.cellbio.16.1.221. PubMed DOI

Shimada T., Sugano S.S., Hara-Nishimura I. Positive and negative peptide signals control stomatal density. Cell. Mol. Life Sci. 2011;68:2081–2088. doi: 10.1007/s00018-011-0685-7. PubMed DOI PMC

Chater C., Peng K., Movahedi M., Dunn J.A., Walker H.J., Liang Y.-K., McLachlan D.H., Casson S., Isner J.-C., Wilson I., et al. Elevated CO2 -Induced Responses in Stomata Require ABA and ABA Signaling. Curr. Biol. 2015;25:2709–2716. doi: 10.1016/j.cub.2015.09.013. PubMed DOI PMC

Long S.P., Ainsworth E.A., Rogers A., Ort D.R. Rising Atmospheric Carbon Dioxide: Plants FACE the Future. Annu. Rev. Plant Biol. 2004;55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610. PubMed DOI

Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., Belausov E., Granot D. Hexokinase mediates stomatal closure. Plant J. 2013;75:977–988. doi: 10.1111/tpj.12258. PubMed DOI

Talbott L.D., Zeiger E. Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation. Plant Physiol. 1996;111:1051–1057. doi: 10.1104/pp.111.4.1051. PubMed DOI PMC

Gotow K., Taylor S., Zeiger E. Photosynthetic Carbon Fixation in Guard Cell Protoplasts of Vicia faba L.: Evidence from Radiolabel Experiments. Plant Physiol. 1988;86:700–705. doi: 10.1104/pp.86.3.700. PubMed DOI PMC

Taiz L., Zeiger E., Møller I.M., Murphy A. Plant Physiology and Development. Sinauer Associates Incorporated; Sunderland, MA, USA: 2015.

Hunt L., Klem K., Lhotáková Z., Vosolsobě S., Oravec M., Urban O., Špunda V., Albrechtová J. Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants. 2021;10:385. doi: 10.3390/antiox10030385. PubMed DOI PMC

Hughes J., Hepworth C., Dutton C., Dunn J.A., Hunt L., Stephens J., Waugh R., Cameron D.D., Gray J.E. Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. Plant Physiol. 2017;174:776–787. doi: 10.1104/pp.16.01844. PubMed DOI PMC

Dunn J., Hunt L., Afsharinafar M., Al Meselmani M., Mitchell A., Howells R., Wallington E., Fleming A.J., Gray J.E. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exp. Bot. 2019;70:4737–4748. doi: 10.1093/jxb/erz248. PubMed DOI PMC

Hasanuzzaman M., Shabala L., Zhou M., Brodribb T.J., Corkrey R., Shabala S. Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environ. Exp. Bot. 2018;153:10–20. doi: 10.1016/j.envexpbot.2018.05.002. DOI

Bertolino L.T., Caine R., Gray J.E. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front. Plant Sci. 2019;10:225. doi: 10.3389/fpls.2019.00225. PubMed DOI PMC

Franks P.J., Doheny-Adams T.W., Britton-Harper Z.J., Gray J.E. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 2015;207:188–195. doi: 10.1111/nph.13347. PubMed DOI

Fetter K.C., Eberhardt S., Barclay R.S., Wing S., Keller S.R. StomataCounter: A neural network for automatic stomata identification and counting. New Phytol. 2019;223:1671–1681. doi: 10.1111/nph.15892. PubMed DOI

Jumrani K., Bhatia V.S. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiol. Rep. 2020;25:277–283. doi: 10.1007/s40502-020-00508-6. DOI

Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes. PLoS ONE. 2015;10:e0117449. doi: 10.1371/journal.pone.0117449. PubMed DOI PMC

Miskin E., Rasmusson D.C. Frequency and distribution of stomata in barley. Crop Sci. 1970;10:575–578. doi: 10.2135/cropsci1970.0011183X001000050038x. DOI

Kubinova L. Stomata and Mesophyll Characteristics of Barley Leaf as Affected by Light: Stereological Analysis. J. Exp. Bot. 1991;42:995–1001. doi: 10.1093/jxb/42.8.995. DOI

Wild A., Wolf G. The Effect of Different Light Intensities on the Frequency and Size of Stomata, the Size of Cells, the Number, Size and Chlorophyll Content of Chloroplasts in the Mesophyll and the Guard Cells during the Ontogeny of Primary Leaves of Sinapis alba. Z. Pflanzenphysiol. 1980;97:325–342. doi: 10.1016/S0044-328X(80)80006-7. DOI

Tichá I. Photosynthetic Characteristics during Ontogenesis of Leaves. VII: Stomata Denity and Sizes. Czechoslovak Academy of Science, Institute of Experimental Botany; Prague, Czech Republic: 1982.

Hronková M., Wiesnerová D., Šimková M., Skůpa P., Dewitte W., Vráblová M., Zažímalová E., Šantrůček J. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. J. Exp. Bot. 2015;66:4621–4630. doi: 10.1093/jxb/erv233. PubMed DOI

Hepworth C., Caine R., Harrison E., Sloan J., Gray J.E. Stomatal development: Focusing on the grasses. Curr. Opin. Plant Biol. 2018;41:1–7. doi: 10.1016/j.pbi.2017.07.009. PubMed DOI

Arenas-Corraliza M.G., Rolo V., López-Díaz M.L., Moreno G. Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Sci. Rep. 2019;9:9547. doi: 10.1038/s41598-019-46027-9. PubMed DOI PMC

Yu Q., Zhang Y., Liu Y., Shi P. Simulation of the Stomatal Conductance of Winter Wheat in Response to Light, Temperature and CO2 Changes. Ann. Bot. 2004;93:435–441. doi: 10.1093/aob/mch023. PubMed DOI PMC

Morison J.I.L. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell Environ. 1985;8:467–474. doi: 10.1111/j.1365-3040.1985.tb01682.x. DOI

Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum) J. Plant Physiol. 2015;184:89–97. doi: 10.1016/j.jplph.2015.07.003. PubMed DOI

Gray J.E., Holroyd G.H., Van Der Lee F.M., Bahrami A.R., Sijmons P.C., Woodward F.I., Schuch W., Hetherington A.M. The HIC signalling pathway links CO2 perception to stomatal development. Nature. 2000;408:713–716. doi: 10.1038/35047071. PubMed DOI

Meehl G.A., Stocker T.F., Collins W.D., Friedlingstein P., Gaye A.T., Gregory J.M., Kitoh A., Knutti R., Murphy J.M., Noda A., et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. Global Climate Projections; pp. 747–845.

Delmas R.J., Ascencio J.-M., Legrand M. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature. 1980;284:155–157. doi: 10.1038/284155a0. DOI

Ehleringer J.R., Cerling T.E. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol. 1995;15:105–111. doi: 10.1093/treephys/15.2.105. PubMed DOI

Faralli M., Cockram J., Ober E., Wall S., Galle A., Van Rie J., Raines C., Lawson T. Genotypic, Developmental and Environmental Effects on the Rapidity of gs in Wheat: Impacts on Carbon Gain and Water-Use Efficiency. Front. Plant Sci. 2019;10:492. doi: 10.3389/fpls.2019.00492. PubMed DOI PMC

Franks P.J., Beerling D. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA. 2009;106:10343–10347. doi: 10.1073/pnas.0904209106. PubMed DOI PMC

Büssis D., von Groll U., Fisahn J., Altman T. Stomatal aperture can compensate altered stomatal density. Funct. Plant Biol. 2006;33:1037–1043. doi: 10.1071/FP06078. PubMed DOI

Liao J.-X., Chang J., Wang G.-X. Stomatal density and gas exchange in six wheat cultivars. Cereal Res. Commun. 2005;33:719–726. doi: 10.1556/CRC.33.2005.2-3.140. DOI

Schuler M.L., Sedelnikova O.V., Walker B.J., Westhoff P., Langdale J.A. Shortroot-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency. Plant Physiol. 2018;176:757–772. doi: 10.1104/pp.17.01005. PubMed DOI PMC

Urban O., Klem K., Holišova P., Šigut L., Šprtová M., Teslová-Navrátilová P., Zitová M., Špunda V., Marek M.V., Grace J. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. Environ. Pollut. 2014;185:271–280. doi: 10.1016/j.envpol.2013.11.009. PubMed DOI

Misra B.B., Acharya B.R., Granot D., Assmann S.M., Chen S. The guard cell metabolome: Functions in stomatal movement and global food security. Front. Plant Sci. 2015;6:334. doi: 10.3389/fpls.2015.00334. PubMed DOI PMC

Gago J., De Menezes Daloso D., Figueroa C.M., Flexas J., Fernie A.R., Nikoloski Z. Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach. Plant Physiol. 2016;171:265–279. doi: 10.1104/pp.15.01660. PubMed DOI PMC

Zeiger E., Talbott L.D., Frechilla S., Srivastava A., Zhu J. The guard cell chloroplast: A perspective for the twenty-first century. New Phytol. 2002;153:415–424. doi: 10.1046/j.0028-646X.2001.NPH328.doc.x. PubMed DOI

Medeiros D.B., Barros J.A., Fernie A.R., Araújo W.L. Eating Away at ROS to Regulate Stomatal Opening. Trends Plant Sci. 2020;25:220–223. doi: 10.1016/j.tplants.2019.12.023. PubMed DOI

Watkins J.M., Hechler P.J., Muday G.K. Ethylene-induced flavonol accumulation in guard cells supressed reactive oxygen species and moderates stomatal aperture. Plant Physiol. 2014;164:1707–1717. doi: 10.1104/pp.113.233528. PubMed DOI PMC

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI

Postiglione A.E., Muday G.K. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Front. Plant Sci. 2020;11:968. doi: 10.3389/fpls.2020.00968. PubMed DOI PMC

Chen Z.-H., Hills A., Lim C.K., Blatt M.R. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J. 2010;61:816–825. doi: 10.1111/j.1365-313X.2009.04108.x. PubMed DOI

Schroeder J., Hagiwara S. Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad. Sci. USA. 1990;87:9305–9309. doi: 10.1073/pnas.87.23.9305. PubMed DOI PMC

Gietler M., Fidler J., Labudda M., Nykiel M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020;21:4607. doi: 10.3390/ijms21134607. PubMed DOI PMC

Cuvelier M.-E., Richard H., Berset C. Comparison of the Antioxidative Activity of Some Acid-phenols: Structure-Activity Relationship. Biosci. Biotechnol. Biochem. 2014;56:324–325. doi: 10.1271/bbb.56.324. DOI

Plumbe A.M., Willmer C.M. Phytoalexins, Water-stress and Stomata. Iii. The effects of some phenolics, fatty acids and some other compounds on stomatal responses. New Phytol. 1986;103:17–22. doi: 10.1111/j.1469-8137.1986.tb00592.x. DOI

Ouzounis T., Parjikolaei B.R., Frettã X., Rosenqvist E., Ottosen C.-O. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci. 2015;6:19. doi: 10.3389/fpls.2015.00019. PubMed DOI PMC

Finelstein R.R., Gibson S.I. ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 2002;5:26–32. doi: 10.1016/S1369-5266(01)00225-4. PubMed DOI

Lu P., Outlaw W.H., Jr., Smith B.G., Freed G.A. A New Mechanism for the Regulation of Stomatal Aperture Size in Intact Leaves (Accumulation of Mesophyll-Derived Sucrose in the Guard-Cell Wall of Vicia faba) Plant Physiol. 1997;114:109–118. doi: 10.1104/pp.114.1.109. PubMed DOI PMC

Outlaw W.H., De Vlieghere-He X. Transpiration Rate. An Important Factor Controlling the Sucrose Content of the Guard Cell Apoplast of Broad Bean. Plant Physiol. 2001;126:1716–1724. doi: 10.1104/pp.126.4.1716. PubMed DOI PMC

Ruan Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251. PubMed DOI

Granot D. Potting plant hexokinases in their proper place. Phytochemistry. 2008;69:2649–2654. doi: 10.1016/j.phytochem.2008.08.026. PubMed DOI

Asad M.A.U., Wang F., Ye Y., Guan X., Zhou L., Han Z., Pan G., Cheng F. Contribution of ABA metabolism and ROS generation to sugar starvation-induced senescence of rice leaves. Plant Growth Regul. 2021;95:241–257. doi: 10.1007/s10725-021-00718-4. DOI

Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., Granot D. Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces Photosynthesis, and Induces Rapid Senescence. Plant Cell. 1999;11:1253. doi: 10.1105/tpc.11.7.1253. PubMed DOI PMC

Wu Y., Tiedemann A. Light-dependent oxidative stress determines physiological lead spot formation in barley. Phytopathology. 2004;94:584–592. doi: 10.1094/PHYTO.2004.94.6.584. PubMed DOI

Klem K., Ač A., Holub P., Kováč D., Špunda V., Robson T.M., Urban O. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 2012;75:52–64. doi: 10.1016/j.envexpbot.2011.08.008. DOI

Agrární Komora České Republiky . Ústrědní Kontrolní a Zkušební Ústav Zemědělsý: Obilniny 2018. Národní Odrůový Úřad; Brno, Czech Republic: 2018.

Le Cun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Appliedto Document Recognition. Proc. IEEE. 1998;86:2278–2324. doi: 10.1109/5.726791. DOI

Chollet F.E.A. Keras. 2015. [(accessed on 4 March 2019)]. Available online: https://github.com/fchollet/keras.

Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv. 20151502.03167

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.

Nair V., Hinton G.E. Rectified linear units improve restricted boltzmann machines; Proceedings of the 27th International Conference on Machine Learning (ICML-10); Haifa, Israel. 21–24 June 2010; pp. 807–814.

Gunderson H.J.G. Notes on estimation of numerical density of arbitrary profiles: The edge effect. J. Microsc. 1997;111:219–223. doi: 10.1111/j.1365-2818.1977.tb00062.x. DOI

Kubinova L. Recent stereological methods for measuring leaf anatomical characteristics: Estimation of the number and sizes of stomata and mesophyll cells. J. Exp. Bot. 1994;45:119–127. doi: 10.1093/jxb/45.1.119. DOI

Albrechtova J., Kubinova L. Quantitative Analysis of the Structure of Etiolated Barley Leaf Using Stereological Methods. J. Exp. Bot. 1991;42:1311–1314. doi: 10.1093/jxb/42.10.1311. DOI

Kubínová L., Radichivá B., Lhotáková Z., Kubínová Z., Albrechtová J. Stereology, an unbiased methodological approach to study plant anatomy and cytology: Past, present and future. Image Anal. Stereol. 2017;36:187–205. doi: 10.5566/ias.1848. DOI

Večeřová K., Večeřa Z., Mikuška P., Coufalík P., Oravec M., Dočekal B., Novotná K., Veselá B., Pompeiano A., Urban O. Temperature alters susceptibility of Picea abies seedlings to airborne pollutants: The case of CdO nanoparticles. Environ. Pollut. 2019;253:646–654. doi: 10.1016/j.envpol.2019.07.061. PubMed DOI

Smilauer P., Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2nd ed. Cambridge University Press; Cambridge, UK: 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...