Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-18532S
Czech Science Foundation
SGS11/PřF/2022
University of Ostrava
RRC/10/2021
Moravian-Silesian Region
CZ.02.1.01/0.0/0.0/16_019/0000797
Sus-tES
QK1810391
National Agency for Agricultural Research (NAZV)
PubMed
35742975
PubMed Central
PMC9223736
DOI
10.3390/ijms23126533
PII: ijms23126533
Knihovny.cz E-zdroje
- Klíčová slova
- HPLC, UV tolerance, antioxidants, flavonoids, miRNA, photoprotection, secondary metabolism, spectral quality of light, spring barley (Hordeum vulgare), transcriptomics,
- MeSH
- fenoly metabolismus MeSH
- flavonoidy metabolismus MeSH
- ječmen (rod) * genetika metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- světlo MeSH
- ultrafialové záření * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- flavonoidy MeSH
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m-2 s-1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3'H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences 603 00 Brno Czech Republic
Zobrazit více v PubMed
Yeom M., Kim H., Lim J., Shin A.-Y., Hong S., Kim J.-I., Gil Nam H. How Do Phytochromes Transmit the Light Quality Information to the Circadian Clock in Arabidopsis ? Mol. Plant. 2014;7:1701–1704. doi: 10.1093/mp/ssu086. PubMed DOI
Halaban R. Effects of Light Quality on the Circadian Rhythm of Leaf Movement of a Short-Day-Plant. Plant Physiol. 1969;44:973–977. doi: 10.1104/pp.44.7.973. PubMed DOI PMC
Holmes M.G., Smith H. The function of phytochrome in the natural environment—II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol. 1977;25:539–545. doi: 10.1111/j.1751-1097.1977.tb09125.x. DOI
Xu Y., Wang C., Zhang R., Ma C., Dong S., Gong Z. The relationship between internode elongation of soybean stems and spectral distribution of light in the canopy under different plant densities. Plant Prod. Sci. 2021;24:326–338. doi: 10.1080/1343943X.2020.1847666. DOI
Kotilainen T., Aphalo P.J., Brelsford C., Böök H., Devraj S., Heikkilä A., Hernández R., Kylling A., Lindfors A., Robson T. Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors. Agric. For. Meteorol. 2020;291:108041. doi: 10.1016/j.agrformet.2020.108041. DOI
Swanson S., Gilroy S. ROS in plant development. Physiol. Plant. 2010;138:384–392. doi: 10.1111/j.1399-3054.2009.01313.x. PubMed DOI
Ma X., Bai L. Elevated CO2 and Reactive Oxygen Species in Stomatal Closure. Plants. 2021;10:410. doi: 10.3390/plants10020410. PubMed DOI PMC
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI
You J., Chan Z. ROS Regulation during Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC
Kollist H., Zandalinas S.I., Sengupta S., Nuhkat M., Kangasjärvi J., Mittler R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019;24:25–37. doi: 10.1016/j.tplants.2018.10.003. PubMed DOI
Kakuszi A., Sárvári É., Solti Á., Czégény G., Hideg É., Hunyadi-Gulyás É., Bóka K., Böddi B. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris) J. Photochem. Photobiol. B Biol. 2016;161:422–429. doi: 10.1016/j.jphotobiol.2016.06.009. PubMed DOI
Takahashi S., Badger M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI
Tuteja N., Ahmad P., Panda B.B., Tuteja R. Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. Mutat. Res./Rev. Mutat. Res. 2009;681:134–149. doi: 10.1016/j.mrrev.2008.06.004. PubMed DOI
Yamamoto Y. Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids. Front. Plant Sci. 2016;7:1136. doi: 10.3389/fpls.2016.01136. PubMed DOI PMC
Buettner G.R. Superoxide Dismutase in Redox Biology: The Roles of Superoxide and Hydrogen Peroxide. Anti-Cancer Agents Med. Chem. 2011;11:341–346. doi: 10.2174/187152011795677544. PubMed DOI PMC
Kumar S., Abedin M.M., Singh A.K., Das S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In: Lone R., Shuab R., Kamili A.N., editors. Plant Phenolics in Sustainable Agriculture. Springer; Singapore: 2020. pp. 517–532. DOI
Kaspar S., Matros A., Mock H.-P. Proteome and Flavonoid Analysis Reveals Distinct Responses of Epidermal Tissue and Whole Leaves upon UV−B Radiation of Barley (Hordeum vulgare L.) Seedlings. J. Proteome Res. 2010;9:2402–2411. doi: 10.1021/pr901113z. PubMed DOI
Hunt L., Klem K., Lhotáková Z., Vosolsobě S., Oravec M., Urban O., Špunda V., Albrechtová J. Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants. 2021;10:385. doi: 10.3390/antiox10030385. PubMed DOI PMC
Csepregi K., Hideg É. Phenolic Compound Diversity Explored in the Context of Photo-Oxidative Stress Protection. Phytochem. Anal. 2018;29:129–136. doi: 10.1002/pca.2720. PubMed DOI
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Casal J.J. Photoreceptor Signaling Networks in Plant Responses to Shade. Annu. Rev. Plant Biol. 2013;64:403–427. doi: 10.1146/annurev-arplant-050312-120221. PubMed DOI
Rai N., Morales L.O., Aphalo P.J. Perception of solar UV radiation by plants: Photoreceptors and mechanisms. Plant Physiol. 2021;186:1382–1396. doi: 10.1093/plphys/kiab162. PubMed DOI PMC
Klem K., Holub P., Štroch M., Nezval J., Špunda V., Tříska J., Jansen M., Robson T.M., Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol. Biochem. 2015;93:74–83. doi: 10.1016/j.plaphy.2015.01.001. PubMed DOI
Brelsford C.C., Morales L.O., Nezval J., Kotilainen T.K., Hartikainen S.M., Aphalo P.J., Robson T.M. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana ? Physiol. Plant. 2019;165:537–554. doi: 10.1111/ppl.12749. PubMed DOI
Rai N., Neugart S., Yan Y., Wang F., Siipola S.M., Lindfors A.V., Winkler J.B., Albert A., Brosché M., Lehto T., et al. How do cryptochromes and UVR8 interact in natural and simulated sunlight? J. Exp. Bot. 2019;70:4975–4990. doi: 10.1093/jxb/erz236. PubMed DOI PMC
Pham V.N., Kathare P.K., Huq E. Phytochromes and Phytochrome Interacting Factors. Plant Physiol. 2018;176:1025–1038. doi: 10.1104/pp.17.01384. PubMed DOI PMC
Bilodeau S.E., Wu B.-S., Rufyikiri A.-S., MacPherson S., Lefsrud M. An Update on Plant Photobiology and Implications for Cannabis Production. Front. Plant Sci. 2019;10:296. doi: 10.3389/fpls.2019.00296. PubMed DOI PMC
Battle M.W., Vegliani F., Jones M.A. Shades of green: Untying the knots of green photoperception. J. Exp. Bot. 2020;71:5764–5770. doi: 10.1093/jxb/eraa312. PubMed DOI PMC
Pedmale U.V., Huang S.-S.C., Zander M., Cole B.J., Hetzel J., Ljung K., Reis P.A., Sridevi P., Nito K., Nery J.R., et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell. 2016;164:233–245. doi: 10.1016/j.cell.2015.12.018. PubMed DOI PMC
Shin J., Park E., Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J. 2007;49:981–994. doi: 10.1111/j.1365-313X.2006.03021.x. PubMed DOI
Nguyen N.H. HY5, an integrator of light and temperature signals in the regulation of anthocyanins biosynthesis in Arabidopsis. AIMS Mol. Sci. 2020;7:70–81. doi: 10.3934/molsci.2020005. DOI
Lee S., Wang W., Huq E. Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat. Commun. 2021;12:3656. doi: 10.1038/s41467-021-24018-7. PubMed DOI PMC
Xiao Y., Chu L., Zhang Y., Bian Y., Xiao J., Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. Front. Plant Sci. 2022;12:800989. doi: 10.3389/fpls.2021.800989. PubMed DOI PMC
Gangappa S.N., Botto J.F. The Multifaceted Roles of HY5 in Plant Growth and Development. Mol. Plant. 2016;9:1353–1365. doi: 10.1016/j.molp.2016.07.002. PubMed DOI
Podolec R., Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 2018;45:18–25. doi: 10.1016/j.pbi.2018.04.018. PubMed DOI
Stracke R., Werber M., Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001;4:447–456. doi: 10.1016/S1369-5266(00)00199-0. PubMed DOI
Shin D.H., Choi M., Kim K., Bang G., Cho M., Choi S.-B., Choi G., Park Y.-I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 2013;587:1543–1547. doi: 10.1016/j.febslet.2013.03.037. PubMed DOI
Nguyen N.H., Jeong C.Y., Kang G., Yoo S., Hong S., Lee H. MYBD employed by HY 5 increases anthocyanin accumulation via repression of MYBL 2 in Arabidopsis. Plant J. 2015;84:1192–1205. doi: 10.1111/tpj.13077. PubMed DOI
Wang Y., Wang Y., Song Z., Zhang H. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis. Mol. Plant. 2016;9:1395–1405. doi: 10.1016/j.molp.2016.07.003. PubMed DOI
Borgio J.F. RNA interference (RNAi) technology: A promising tool for medicinal plant research. J. Med. Plants Res. 2010;3:1176–1183.
Sharma D., Tiwari M., Pandey A., Bhatia C., Sharma A., Trivedi P.K. MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development. Plant Physiol. 2016;171:944–959. doi: 10.1104/pp.15.01831. PubMed DOI PMC
Sharma A., Badola P.K., Bhatia C., Sharma D., Trivedi P.K. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat. Plants. 2020;6:1262–1274. doi: 10.1038/s41477-020-00769-x. PubMed DOI
James M., Poret M., Masclaux-Daubresse C., Marmagne A., Coquet L., Jouenne T., Chan P., Trouverie J., Etienne P. SAG12, a Major Cysteine Protease Involved in Nitrogen Allocation during Senescence for Seed Production in Arabidopsis thaliana. Plant Cell Physiol. 2018;59:2052–2063. doi: 10.1093/pcp/pcy125. PubMed DOI
Gregersen P., Culetic A., Boschian L., Krupinska K. Plant senescence and crop productivity. Plant Mol. Biol. 2013;82:603–622. doi: 10.1007/s11103-013-0013-8. PubMed DOI
Roberts I.N., Veliz C.G., Criado M.V., Signorini A.M., Simonetti E., Caputo C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. J. Plant Physiol. 2017;211:70–80. doi: 10.1016/j.jplph.2017.01.005. PubMed DOI
Zmienko A., Samelak-Czajka A., Goralski M., Sobieszczuk-Nowicka E., Kozlowski P., Figlerowicz M. Selection of Reference Genes for qPCR- and ddPCR-Based Analyses of Gene Expression in Senescing Barley Leaves. PLoS ONE. 2015;10:e0118226. doi: 10.1371/journal.pone.0118226. PubMed DOI PMC
Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 2019;10:1026. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC
Son K.-H., Oh M.-M. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-emitting Diodes. HortScience. 2013;48:988–995. doi: 10.21273/HORTSCI.48.8.988. DOI
Ouzounis T., Parjikolaei B.R., Fretté X., Rosenqvist E., Ottosen C.-O. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci. 2015;6:19. doi: 10.3389/fpls.2015.00019. PubMed DOI PMC
Ouzounis T., Fretté X., Rosenqvist E., Ottosen C.-O. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J. Plant Physiol. 2014;171:1491–1499. doi: 10.1016/j.jplph.2014.06.012. PubMed DOI
Siipola S.M., Kotilainen T., Sipari N., Morales L.O., Lindfors A.V., Robson T.M., Aphalo P.J. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell Environ. 2015;38:941–952. doi: 10.1111/pce.12403. PubMed DOI
Ahmad N., Rab A., Ahmad N. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert) J. Photochem. Photobiol. B Biol. 2016;154:51–56. doi: 10.1016/j.jphotobiol.2015.11.015. PubMed DOI
Taulavuori K., Pyysalo A., Julkunen-Tiitto R. Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 2018;150:183–187. doi: 10.1016/j.envexpbot.2018.03.016. DOI
Palma C.F.F., Castro-Alves V., Rosenqvist E., Ottosen C., Strid Å., Morales L.O. Effects of UV radiation on transcript and metabolite accumulation are dependent on monochromatic light background in cucumber. Physiol. Plant. 2021;173:750–761. doi: 10.1111/ppl.13551. PubMed DOI
Khudyakova A.Y., Kreslavski V.D., Shmarev A.N., Lyubimov V.Y., Shirshikova G.N., Pashkovskiy P.P., Kuznetsov V.V., Allakhverdiev S.I. Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. J. Photochem. Photobiol. B Biol. 2019;194:14–20. doi: 10.1016/j.jphotobiol.2019.02.003. PubMed DOI
Løvdal T., Olsen K.M., Slimestad R., Verheul M., Lillo C. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry. 2010;71:605–613. doi: 10.1016/j.phytochem.2009.12.014. PubMed DOI
Wang Q., Lin C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant Biol. 2020;71:103–129. doi: 10.1146/annurev-arplant-050718-100300. PubMed DOI PMC
Liu B., Yang Z., Gomez A., Liu B., Lin C., Oka Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J. Plant Res. 2016;129:137–148. doi: 10.1007/s10265-015-0782-z. PubMed DOI PMC
Folta K.M., Maruhnich S.A. Green light: A signal to slow down or stop. J. Exp. Bot. 2007;58:3099–3111. doi: 10.1093/jxb/erm130. PubMed DOI
Zhang X., Bian Z., Li S., Chen X., Lu C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. J. Agric. Food Chem. 2019;67:13577–13588. doi: 10.1021/acs.jafc.9b05594. PubMed DOI
Nielsen C., Nørby M.S., Kongsted J., Solov’yov I.A. Absorption Spectra of FAD Embedded in Cryptochromes. J. Phys. Chem. Lett. 2018;9:3618–3623. doi: 10.1021/acs.jpclett.8b01528. PubMed DOI
Terashima I., Fujita T., Inoue T., Chow W.S., Oguchi R. Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves are Green. Plant Cell Physiol. 2009;50:684–697. doi: 10.1093/pcp/pcp034. PubMed DOI
Smith H.L., McAusland L., Murchie E. Don’t ignore the green light: Exploring diverse roles in plant processes. J. Exp. Bot. 2017;68:2099–2110. doi: 10.1093/jxb/erx098. PubMed DOI
Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012;134:1494–1499. doi: 10.1016/j.foodchem.2012.03.061. PubMed DOI
Bian Z., Cheng R., Wang Y., Yang Q., Lu C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018;153:63–71. doi: 10.1016/j.envexpbot.2018.05.010. DOI
Zhang X., Bisbis M., Heuvelink E., Jiang W., Marcelis L.F.M. Green light reduces elongation when partially replacing sole blue light independently from cryptochrome 1a. Physiol. Plant. 2021;173:1946–1955. doi: 10.1111/ppl.13538. PubMed DOI PMC
Seikel M.K., Geissman T. The flavonoid constituents of barley (Hordeum vulgare). I. Saponarin. Arch. Biochem. Biophys. 1957;71:17–30. doi: 10.1016/0003-9861(57)90004-8. PubMed DOI
Holub P., Nezval J., Štroch M., Špunda V., Urban O., Jansen M.A., Klem K. Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype. Plant Physiol. Biochem. 2019;134:81–93. doi: 10.1016/j.plaphy.2018.08.012. PubMed DOI
Tattini M., Galardi C., Pinelli P., Massai R., Remorini D., Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004;163:547–561. doi: 10.1111/j.1469-8137.2004.01126.x. PubMed DOI
Yu P., McKinnon J.J., Christensen D.A. Hydroxycinnamic acids and ferulic acid esterase in relation to biodegradation of complex plant cell walls. Can. J. Anim. Sci. 2005;85:255–267. doi: 10.4141/A04-010. DOI
Yang J.-G., Uchiyama T. Hydroxycinnamic Acids and Their Dimers Involved in the Cessation of Cell Elongation in Mentha Suspension Culture. Biosci. Biotechnol. Biochem. 2000;64:1572–1579. doi: 10.1271/bbb.64.1572. PubMed DOI
Macoy D.M., Kim W.-Y., Lee S.Y., Kim M.G. Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnol. Rep. 2015;9:269–278. doi: 10.1007/s11816-015-0368-1. DOI
Pannala A.S., Chan T.S., O’Brien P.J., Rice-Evans C.A. Flavonoid B-Ring Chemistry and Antioxidant Activity: Fast Reaction Kinetics. Biochem. Biophys. Res. Commun. 2001;282:1161–1168. doi: 10.1006/bbrc.2001.4705. PubMed DOI
Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC
Nezval J., Štroch M., Materová Z., Špunda V., Kalina J. Phenolic compounds and carotenoids during acclimation of spring barley and its mutant Chlorina f2 from high to low irradiance. Biol. Plant. 2017;61:73–84. doi: 10.1007/s10535-016-0689-0. DOI
Del Valle J.C., Buide M.L., Whittall J.B., Valladares F., Narbona E. UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE. 2020;15:e0231611. doi: 10.1371/journal.pone.0231611. PubMed DOI PMC
Mathews S. Phytochrome-mediated development in land plants: Red light sensing evolves to meet the challenges of changing light environments. Mol. Ecol. 2006;15:3483–3503. doi: 10.1111/j.1365-294X.2006.03051.x. PubMed DOI
Tattini M., Gravano E., Pinelli P., Mulinacci N., Romani A. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol. 2000;148:69–77. doi: 10.1046/j.1469-8137.2000.00743.x. PubMed DOI
Agati G., Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186:786–793. doi: 10.1111/j.1469-8137.2010.03269.x. PubMed DOI
Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013;72:35–45. doi: 10.1016/j.plaphy.2013.03.014. PubMed DOI
Hunt L., Fuksa M., Klem K., Lhotáková Z., Oravec M., Urban O., Albrechtová J. Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions. Plants. 2021;10:2533. doi: 10.3390/plants10112533. PubMed DOI PMC
Tohge T., Wendenburg R., Ishihara H., Nakabayashi R., Watanabe M., Sulpice R., Hoefgen R., Takayama H., Saito K., Stitt M., et al. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat. Commun. 2016;7:12399. doi: 10.1038/ncomms12399. PubMed DOI PMC
Tohge T., de Souza L.P., Fernie A.R. On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress. Phytochem. Rev. 2018;17:279–290. doi: 10.1007/s11101-017-9531-3. PubMed DOI PMC
Hideg É., Barta C., Kálai T., Vass I., Hideg K., Asada K. Detection of Singlet Oxygen and Superoxide with Fluorescent Sensors in Leaves Under Stress by Photoinhibition or UV Radiation. Plant Cell Physiol. 2002;43:1154–1164. doi: 10.1093/pcp/pcf145. PubMed DOI
Czégény G., Mátai A., Hideg É. UV-B effects on leaves—Oxidative stress and acclimation in controlled environments. Plant Sci. 2016;248:57–63. doi: 10.1016/j.plantsci.2016.04.013. PubMed DOI
Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012;196:67–76. doi: 10.1016/j.plantsci.2012.07.014. PubMed DOI
Han S.-H., Park Y.-J., Park C.-M. Light priming of thermotolerance development in plants. Plant Signal. Behav. 2019;14:1554469. doi: 10.1080/15592324.2018.1554469. PubMed DOI PMC
Rehman M., Fahad S., Saleem M., Hafeez M., Rahman M., Liu F., Deng G. Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.) Photosynthetica. 2020;58:922–931. doi: 10.32615/ps.2020.040. DOI
Bostancioglu S.M., Tombuloglu G., Tombuloglu H. Genome-wide identification of barley MCs (metacaspases) and their possible roles in boron-induced programmed cell death. Mol. Biol. Rep. 2018;45:211–225. doi: 10.1007/s11033-018-4154-3. PubMed DOI
Sakuraba Y. Light-Mediated Regulation of Leaf Senescence. Int. J. Mol. Sci. 2021;22:3291. doi: 10.3390/ijms22073291. PubMed DOI PMC
Thwe A.A., Kim Y.B., Li X., Seo J.M., Kim S.-J., Suzuki T., Chung S.-O., Park S.U. Effects of Light-Emitting Diodes on Expression of Phenylpropanoid Biosynthetic Genes and Accumulation of Phenylpropanoids in Fagopyrum tataricum Sprouts. J. Agric. Food Chem. 2014;62:4839–4845. doi: 10.1021/jf501335q. PubMed DOI
Liu Y., Fang S., Yang W., Shang X., Fu X. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. J. Photochem. Photobiol. B Biol. 2018;179:66–73. doi: 10.1016/j.jphotobiol.2018.01.002. PubMed DOI
Park W.T., Yeo S.K., Sathasivam R., Park J.S., Kim J.K., Park S.U. Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugosa. Appl. Biol. Chem. 2020;63:25. doi: 10.1186/s13765-020-00510-4. DOI
Li C., Zhang B. MicroRNAs in Control of Plant Development. J. Cell. Physiol. 2016;231:303–313. doi: 10.1002/jcp.25125. PubMed DOI
Kidner C.A., Martienssen R.A. The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 2005;8:38–44. doi: 10.1016/j.pbi.2004.11.008. PubMed DOI
Hsieh L.-C., Lin S.-I., Shih A.C.-C., Chen J.-W., Lin W.-Y., Tseng C.-Y., Li W.-H., Chiou T.-J. Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiol. 2009;151:2120–2132. doi: 10.1104/pp.109.147280. PubMed DOI PMC
Luo Q.-J., Mittal A., Jia F., Rock C.D. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol. Biol. 2012;80:117–129. doi: 10.1007/s11103-011-9778-9. PubMed DOI PMC
Debernardi J., Rodriguez R., Mecchia M., Palatnik J.F. Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions. PLoS Genet. 2012;8:e1002419. doi: 10.1371/journal.pgen.1002419. PubMed DOI PMC
Guo X.-J., Wang J.-R. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat. BMC Plant Biol. 2017;17:90. doi: 10.1186/s12870-017-1038-y. PubMed DOI PMC
Xie Y., Liu Y., Wang H., Ma X., Wang B., Wu G., Wang H. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat. Commun. 2017;8:348. doi: 10.1038/s41467-017-00404-y. PubMed DOI PMC
Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal. Behav. 2013;8:e26758. doi: 10.4161/psb.26758. PubMed DOI PMC
Jia X., Ren L., Chen Q.-J., Li R., Tang G. UV-B-responsive microRNAs in Populus tremula. J. Plant Physiol. 2009;166:2046–2057. doi: 10.1016/j.jplph.2009.06.011. PubMed DOI
Li S., Shao Z., Fu X., Xiao W., Li L., Chen M., Sun M., Li D., Gao D. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genom. 2017;18:938. doi: 10.1186/s12864-017-4347-5. PubMed DOI PMC
Zhao H., Chen N., Peng Z., Wang L., Gao Z. Identification and Characterization of MicroRNAs in the Leaf of Ma Bamboo (Dendrocalamus latiflorus) by Deep Sequencing. PLoS ONE. 2013;8:e78755. doi: 10.1371/journal.pone.0078755. PubMed DOI PMC
Li Y., Varala K., Hudson M.E. A survey of the small RNA population during far-red light-induced apical hook opening. Front. Plant Sci. 2014;5:156. doi: 10.3389/fpls.2014.00156. PubMed DOI PMC
Ferreres F., Andrade P., Valentão P., Gil-Izquierdo A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A. 2008;1182:56–64. doi: 10.1016/j.chroma.2007.12.070. PubMed DOI
Kuhnert N., Jaiswal R., Matei M.F., Sovdat T., Deshpande S. How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010;24:1575–1582. doi: 10.1002/rcm.4537. PubMed DOI
Masike K., Mhlongo M., Mudau S.P., Nobela O., Ncube E.N., Tugizimana F., George M.J., Madala N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017;11:29. doi: 10.1186/s13065-017-0262-8. PubMed DOI PMC
Han S., Li D., Trost E., Mayer K.F., Vlot A.C., Heller W., Schmid M., Hartmann A., Rothballer M. Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35. Front. Plant Sci. 2016;7:1868. doi: 10.3389/fpls.2016.01868. PubMed DOI PMC
Ghannam A., Alek H., Doumani S., Mansour D., Arabi M.I.E. Deciphering the transcriptional regulation and spatiotemporal distribution of immunity response in barley to Pyrenophora graminea fungal invasion. BMC Genom. 2016;17:256. doi: 10.1186/s12864-016-2573-x. PubMed DOI PMC
Shoeva O.Y., Mock H.-P., Kukoeva T.V., Börner A., Khlestkina E.K. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare. PLoS ONE. 2016;11:e0163782. doi: 10.1371/journal.pone.0163782. PubMed DOI PMC
Cai J., Li P., Luo X., Chang T., Li J., Zhao Y., Xu Y. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS ONE. 2018;13:e0190559. doi: 10.1371/journal.pone.0190559. PubMed DOI PMC
Shagimardanova E., Gusev O., Bingham G.E., Levinskikh M.A., Sychev V.N., Tiansu Z., Kihara M., Ito K., Sugimoto M. Oxidative Stress and Antioxidant Capacity in Barley Grown under Space Environment. Biosci. Biotechnol. Biochem. 2010;74:1479–1482. doi: 10.1271/bbb.100139. PubMed DOI
Parrott D.L., Martin J.M., Fischer A.M. Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: A family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytol. 2010;187:313–331. doi: 10.1111/j.1469-8137.2010.03278.x. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Čech M., Chilton J., Clements D., Coraor N., Grüning B.A., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Van Bel M., Diels T., Vancaester E., Kreft Ł., Botzki A., Van De Peer Y., Coppens F., Vandepoele K. PLAZA 4.0: An integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res. 2018;46:D1190–D1196. doi: 10.1093/nar/gkx1002. PubMed DOI PMC
What Do We Know about Barley miRNAs?