What Do We Know about Barley miRNAs?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu systematický přehled, časopisecké články, přehledy
Grantová podpora
21-18532S
Czech Science Foundation GACR
SGS11/PřF/2022
University of Ostrava
SGS10/PřF/2022
University of Ostrava
CZ.02.1.01/0.0/0.0/16_019/0000797
Ministry of Education, Youth and Sports of the Czech Republic
QK1810391
National Agency for Agricultural Research
PubMed
36499082
PubMed Central
PMC9740008
DOI
10.3390/ijms232314755
PII: ijms232314755
Knihovny.cz E-zdroje
- Klíčová slova
- barley, environmental stress, gene expression, miRNAs, plants, regulation,
- MeSH
- fyziologický stres genetika MeSH
- ječmen (rod) * genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- mikro RNA * MeSH
Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.
Department of Biology and Ecology University of Ostrava 710 00 Ostrava Czech Republic
Department of Physics University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences 603 00 Brno Czech Republic
Zobrazit více v PubMed
Lam J.K.W., Chow M.Y.T., Zhang Y., Leung S.W.S. SiRNA versus MiRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids. 2015;4:e252. doi: 10.1038/mtna.2015.23. PubMed DOI PMC
Wang J., Mei J., Ren G. Plant MicroRNAs: Biogenesis, Homeostasis, and Degradation. Front. Plant Sci. 2019;10:360. doi: 10.3389/fpls.2019.00360. PubMed DOI PMC
Sen G.L., Blau H.M. A Brief History of RNAi: The Silence of the Genes. FASEB J. 2006;20:1293–1299. doi: 10.1096/fj.06-6014rev. PubMed DOI
Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell. 1990;2:279–289. doi: 10.2307/3869076. PubMed DOI PMC
Romano N., Macino G. Quelling: Transient Inactivation of Gene Expression in Neurospora Crassa by Transformation with Homologous Sequences. Mol. Microbiol. 1992;6:3343–3353. doi: 10.1111/j.1365-2958.1992.tb02202.x. PubMed DOI
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., et al. A Uniform System for MicroRNA Annotation. RNA. 2003;9:277–279. doi: 10.1261/rna.2183803. PubMed DOI PMC
Gebert L.F.R., MacRae I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC
Garcia D. A MiRacle in Plant Development: Role of MicroRNAs in Cell Differentiation and Patterning. Semin. Cell Dev. Biol. 2008;19:586–595. doi: 10.1016/j.semcdb.2008.07.013. PubMed DOI
Millar A.A. The Function of MiRNAs in Plants. Plants. 2020;9:198. doi: 10.3390/plants9020198. PubMed DOI PMC
Muhammad T., Zhang F., Zhang Y., Liang Y. RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells. 2019;8:38. doi: 10.3390/cells8010038. PubMed DOI PMC
Wang W., Galili G. Tuning the Orchestra: MiRNAs in Plant Immunity. Trends Plant Sci. 2019;24:189–191. doi: 10.1016/j.tplants.2019.01.009. PubMed DOI
Cui C., Wang J.-J., Zhao J.-H., Fang Y.-Y., He X.-F., Guo H.-S., Duan C.-G. A Brassica MiRNA Regulates Plant Growth and Immunity through Distinct Modes of Action. Mol. Plant. 2020;13:231–245. doi: 10.1016/j.molp.2019.11.010. PubMed DOI
Mengistu A.A., Tenkegna T.A. The Role of MiRNA in Plant–Virus Interaction: A Review. Mol. Biol. Rep. 2021;48:2853–2861. doi: 10.1007/s11033-021-06290-4. PubMed DOI
Pagano L., Rossi R., Paesano L., Marmiroli N., Marmiroli M. MiRNA Regulation and Stress Adaptation in Plants. Environ. Exp. Bot. 2021;184:104369. doi: 10.1016/j.envexpbot.2020.104369. DOI
Nevo E. Advance in Barley Sciences. Springer; Dordrecht, The Netherlands: 2013. Evolution of Wild Barley and Barley Improvement; pp. 1–23.
Pourkheirandish M., Komatsuda T. The Importance of Barley Genetics and Domestication in a Global Perspective. Ann. Bot. 2007;100:999–1008. doi: 10.1093/aob/mcm139. PubMed DOI PMC
Ullrich S.E. Barley: Production, Improvement, and Uses. John Wiley & Sons; New York, NY, USA: 2010.
Tosh S.M., Bordenave N. Emerging Science on Benefits of Whole Grain Oat and Barley and Their Soluble Dietary Fibers for Heart Health, Glycemic Response, and Gut Microbiota. Nutr. Rev. 2020;78:13–20. doi: 10.1093/nutrit/nuz085. PubMed DOI
Lahouar L., El-Bok S., Achour L. Therapeutic Potential of Young Green Barley Leaves in Prevention and Treatment of Chronic Diseases: An Overview. Am. J. Chin. Med. 2015;43:1311–1329. doi: 10.1142/S0192415X15500743. PubMed DOI
Pech R., Volná A., Hunt L., Bartas M., Červeň J., Pečinka P., Špunda V., Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int. J. Mol. Sci. 2022;23:6533. doi: 10.3390/ijms23126533. PubMed DOI PMC
Harwood W.A. Barley. Humana Press; New York, NY, UAS: 2019. An Introduction to Barley: The Crop and the Model; pp. 1–5. PubMed
Sato K. History and Future Perspectives of Barley Genomics. DNA Res. 2020;27:dsaa023. doi: 10.1093/dnares/dsaa023. PubMed DOI PMC
Saski C., Lee S.-B., Fjellheim S., Guda C., Jansen R.K., Luo H., Tomkins J., Rognli O.A., Daniell H., Clarke J.L. Complete Chloroplast Genome Sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and Comparative Analyses with Other Grass Genomes. Theor. Appl. Genet. 2007;115:571–590. doi: 10.1007/s00122-007-0567-4. PubMed DOI PMC
Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., Mcveigh R., O’Neill K., Robbertse B. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database. 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC
Sato F., Tsuchiya S., Meltzer S.J., Shimizu K. MicroRNAs and Epigenetics. FEBS J. 2011;278:1598–1609. doi: 10.1111/j.1742-4658.2011.08089.x. PubMed DOI
Shapulatov U., van Hoogdalem M., Schreuder M., Bouwmeester H., Abdurakhmonov I.Y., van der Krol A.R. Functional Intron-Derived MiRNAs and Host-Gene Expression in Plants. Plant Methods. 2018;14:83. doi: 10.1186/s13007-018-0351-2. PubMed DOI PMC
Wu X., Hornyik C., Bayer M., Marshall D., Waugh R., Zhang R. In Silico Identification and Characterization of Conserved Plant MicroRNAs in Barley. Open Life Sci. 2014;9:841–852. doi: 10.2478/s11535-014-0308-z. DOI
Baldrich P., Hsing Y.-I.C., San Segundo B. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice. Genome. Biol. Evol. 2016;8:1104–1114. doi: 10.1093/gbe/evw062. PubMed DOI PMC
Zou Q., Mao Y., Hu L., Wu Y., Ji Z. MiRClassify: An Advanced Web Server for MiRNA Family Classification and Annotation. Comput. Biol. Med. 2014;45:157–160. doi: 10.1016/j.compbiomed.2013.12.007. PubMed DOI
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Zhang S., Dou Y., Li S., Ren G., Chevalier D., Zhang C., Yu B. DAWDLE Interacts with DICER-LIKE Proteins to Mediate Small RNA Biogenesis. Plant Physiol. 2018;177:1142–1151. doi: 10.1104/pp.18.00354. PubMed DOI PMC
Zhang L., Xiang Y., Chen S., Shi M., Jiang X., He Z., Gao S. Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Front. Plant Sci. 2022;13:844149. doi: 10.3389/fpls.2022.844149. PubMed DOI PMC
Yu B., Yang Z., Li J., Minakhina S., Yang M., Padgett R.W., Steward R., Chen X. Methylation as a Crucial Step in Plant MicroRNA Biogenesis. Science. 2005;307:932–935. doi: 10.1126/science.1107130. PubMed DOI PMC
Djami-Tchatchou A.T., Sanan-Mishra N., Ntushelo K., Dubery I.A. Functional Roles of MicroRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection. Front. Plant Sci. 2017;8:378. doi: 10.3389/fpls.2017.00378. PubMed DOI PMC
Li M., Yu B. Recent Advances in the Regulation of Plant MiRNA Biogenesis. RNA Biol. 2021;18:2087–2096. doi: 10.1080/15476286.2021.1899491. PubMed DOI PMC
Medley J.C., Panzade G., Zinovyeva A.Y. MicroRNA Strand Selection: Unwinding the Rules. Wiley Interdiscip. Rev. RNA. 2021;12:e1627. doi: 10.1002/wrna.1627. PubMed DOI PMC
Meijer H.A., Smith E.M., Bushell M. Regulation of MiRNA Strand Selection: Follow the Leader? Biochem. Soc. Trans. 2014;42:1135–1140. doi: 10.1042/BST20140142. PubMed DOI
Vimalraj S., Selvamurugan N. MicroRNAs: Synthesis, Gene Regulation and Osteoblast Differentiation. Curr. Issues Mol. Biol. 2013;15:7–18. doi: 10.21775/cimb.015.007. PubMed DOI
Forman J.J., Coller H.A. The Code within the Code: MicroRNAs Target Coding Regions. Cell Cycle. 2010;9:1533–1541. doi: 10.4161/cc.9.8.11202. PubMed DOI PMC
Yu B., Wang H. Translational Inhibition by MicroRNAs in Plants. Prog. Mol. Subcell. Biol. 2010;50:41–57. doi: 10.1007/978-3-642-03103-8_3. PubMed DOI
Liu Y., Teng C., Xia R., Meyers B.C. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. Plant Cell. 2020;32:3059–3080. doi: 10.1105/tpc.20.00335. PubMed DOI PMC
Araki S., Le N.T., Koizumi K., Villar-Briones A., Nonomura K.-I., Endo M., Inoue H., Saze H., Komiya R. MiR2118-Dependent U-Rich PhasiRNA Production in Rice Anther Wall Development. Nat. Commun. 2020;11:3115. doi: 10.1038/s41467-020-16637-3. PubMed DOI PMC
Xia R., Chen C., Pokhrel S., Ma W., Huang K., Patel P., Wang F., Xu J., Liu Z., Li J., et al. 24-Nt Reproductive PhasiRNAs Are Broadly Present in Angiosperms. Nat. Commun. 2019;10:627. doi: 10.1038/s41467-019-08543-0. PubMed DOI PMC
Xie Z., Khanna K., Ruan S. Expression of MicroRNAs and Its Regulation in Plants. Semin. Cell Dev. Biol. 2010;21:790–797. doi: 10.1016/j.semcdb.2010.03.012. PubMed DOI PMC
Chhabra R. MiRNA and Methylation: A Multifaceted Liaison. ChemBioChem. 2015;16:195–203. doi: 10.1002/cbic.201402449. PubMed DOI
Świda-Barteczka A., Krieger-Liszkay A., Bilger W., Voigt U., Hensel G., Szweykowska-Kulinska Z., Krupinska K. The Plastid-Nucleus Located DNA/RNA Binding Protein WHIRLY1 Regulates MicroRNA-Levels during Stress in Barley (Hordeum vulgare L.) RNA Biol. 2018;15:886–891. doi: 10.1080/15476286.2018.1481695. PubMed DOI PMC
Zhao Y., Mo B., Chen X. Mechanisms That Impact MicroRNA Stability in Plants. RNA Biol. 2012;9:1218–1223. doi: 10.4161/rna.22034. PubMed DOI PMC
Gallego-Bartolomé J. DNA Methylation in Plants: Mechanisms and Tools for Targeted Manipulation. New Phytol. 2020;227:38–44. doi: 10.1111/nph.16529. PubMed DOI
Wu L., Zhou H., Zhang Q., Zhang J., Ni F., Liu C., Qi Y. DNA Methylation Mediated by a MicroRNA Pathway. Mol. Cell. 2010;38:465–475. doi: 10.1016/j.molcel.2010.03.008. PubMed DOI
Bao N., Lye K.-W., Barton M.K. MicroRNA Binding Sites in Arabidopsis Class III HD-ZIP MRNAs Are Required for Methylation of the Template Chromosome. Dev. Cell. 2004;7:653–662. doi: 10.1016/j.devcel.2004.10.003. PubMed DOI
Vasudevan S. Posttranscriptional Upregulation by MicroRNAs. WIREs RNA. 2012;3:311–330. doi: 10.1002/wrna.121. PubMed DOI
Lauressergues D., Couzigou J.-M., Clemente H.S., Martinez Y., Dunand C., Bécard G., Combier J.-P. Primary Transcripts of MicroRNAs Encode Regulatory Peptides. Nature. 2015;520:90–93. doi: 10.1038/nature14346. PubMed DOI
Prasad A., Sharma N., Prasad M. Noncoding but Coding: Pri-MiRNA into the Action. Trends Plant Sci. 2021;26:204–206. doi: 10.1016/j.tplants.2020.12.004. PubMed DOI
Sharma A., Badola P.K., Bhatia C., Sharma D., Trivedi P.K. Primary Transcript of MiR858 Encodes Regulatory Peptide and Controls Flavonoid Biosynthesis and Development in Arabidopsis. Nat. Plants. 2020;6:1262–1274. doi: 10.1038/s41477-020-00769-x. PubMed DOI
Couzigou J.-M., André O., Guillotin B., Alexandre M., Combier J.-P. Use of MicroRNA-Encoded Peptide MiPEP172c to Stimulate Nodulation in Soybean. New Phytol. 2016;211:379–381. doi: 10.1111/nph.13991. PubMed DOI
Chen Q., Deng B., Gao J., Zhao Z., Chen Z., Song S., Wang L., Zhao L., Xu W., Zhang C., et al. A MiRNA-Encoded Small Peptide, Vvi-MiPEP171d1, Regulates Adventitious Root Formation. Plant Physiol. 2020;183:656–670. doi: 10.1104/pp.20.00197. PubMed DOI PMC
Wong C.E., Zhao Y.-T., Wang X.-J., Croft L., Wang Z.-H., Haerizadeh F., Mattick J.S., Singh M.B., Carroll B.J., Bhalla P.L. MicroRNAs in the Shoot Apical Meristem of Soybean. J. Exp. Bot. 2011;62:2495–2506. doi: 10.1093/jxb/erq437. PubMed DOI
Choudhary A., Kumar A., Kaur H., Kaur N. MiRNA: The Taskmaster of Plant World. Biologia. 2021;76:1551–1567. doi: 10.1007/s11756-021-00720-1. DOI
Waheed S., Zeng L. The Critical Role of MiRNAs in Regulation of Flowering Time and Flower Development. Genes. 2020;11:319. doi: 10.3390/genes11030319. PubMed DOI PMC
Curaba J., Spriggs A., Taylor J., Li Z., Helliwell C. MiRNA Regulation in the Early Development of Barley Seed. BMC Plant Biol. 2012;12:120. doi: 10.1186/1471-2229-12-120. PubMed DOI PMC
Curaba J., Talbot M., Li Z., Helliwell C. Over-Expression of MicroRNA171 Affects Phase Transitions and Floral Meristem Determinancy in Barley. BMC Plant Biol. 2013;13:6. doi: 10.1186/1471-2229-13-6. PubMed DOI PMC
Smoczynska A., Szweykowska-Kulinska Z. MicroRNA-Mediated Regulation of Flower Development in Grasses. Acta Biochim. Pol. 2016;63:687–692. doi: 10.18388/abp.2016_1358. PubMed DOI
Nair S.K., Wang N., Turuspekov Y., Pourkheirandish M., Sinsuwongwat S., Chen G., Sameri M., Tagiri A., Honda I., Watanabe Y., et al. Cleistogamous Flowering in Barley Arises from the Suppression of MicroRNA-Guided HvAP2 MRNA Cleavage. Proc. Natl. Acad. Sci. USA. 2010;107:490–495. doi: 10.1073/pnas.0909097107. PubMed DOI PMC
Anwar N., Ohta M., Yazawa T., Sato Y., Li C., Tagiri A., Sakuma M., Nussbaumer T., Bregitzer P., Pourkheirandish M., et al. MiR172 Downregulates the Translation of Cleistogamy 1 in Barley. Ann. Bot. 2018;122:251–265. doi: 10.1093/aob/mcy058. PubMed DOI PMC
Yuan W., Suo J., Shi B., Zhou C., Bai B., Bian H., Zhu M., Han N. The Barley MiR393 Has Multiple Roles in Regulation of Seedling Growth, Stomatal Density, and Drought Stress Tolerance. Plant Physiol. Biochem. 2019;142:303–311. doi: 10.1016/j.plaphy.2019.07.021. PubMed DOI
Tombuloglu H. Genome-Wide Analysis of the Auxin Response Factors (ARF) Gene Family in Barley (Hordeum vulgare L.) J. Plant Biochem. Biotechnol. 2019;28:14–24. doi: 10.1007/s13562-018-0458-6. DOI
Shriram V., Kumar V., Devarumath R.M., Khare T.S., Wani S.H. MicroRNAs as Potential Targets for Abiotic Stress Tolerance in Plants. Front. Plant Sci. 2016;7:817. doi: 10.3389/fpls.2016.00817. PubMed DOI PMC
Barczak-Brzyżek A., Brzyżek G., Koter M., Siedlecka E., Gawroński P., Filipecki M. Plastid Retrograde Regulation of MiRNA Expression in Response to Light Stress. BMC Plant Biol. 2022;22:150. doi: 10.1186/s12870-022-03525-9. PubMed DOI PMC
Subburaj S., Ha H.-J., Jin Y.-T., Jeon Y., Tu L., Kim J.-B., Kang S.-Y., Lee G.-J. Identification of γ-Radiation-Responsive MicroRNAs and Their Target Genes in Tradescantia (BNL Clone 4430) J. Plant Biol. 2017;60:116–128. doi: 10.1007/s12374-016-0433-5. DOI
Visentin I., Pagliarani C., Deva E., Caracci A., Turečková V., Novák O., Lovisolo C., Schubert A., Cardinale F. A Novel Strigolactone-MiR156 Module Controls Stomatal Behaviour during Drought Recovery. Plant Cell Environ. 2020;43:1613–1624. doi: 10.1111/pce.13758. PubMed DOI
Saminathan T., Alvarado A., Lopez C., Shinde S., Gajanayake B., Abburi V.L., Vajja V.G., Jagadeeswaran G., Raja Reddy K., Nimmakayala P., et al. Elevated Carbon Dioxide and Drought Modulate Physiology and Storage-Root Development in Sweet Potato by Regulating MicroRNAs. Funct. Integr. Genom. 2019;19:171–190. doi: 10.1007/s10142-018-0635-7. PubMed DOI
Deng P., Wang L., Cui L., Feng K., Liu F., Du X., Tong W., Nie X., Ji W., Weining S. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS ONE. 2015;10:e0137990. doi: 10.1371/journal.pone.0137990. PubMed DOI PMC
Kuang L., Yu J., Shen Q., Fu L., Wu L. Identification of MicroRNAs Responding to Aluminium, Cadmium and Salt Stresses in Barley Roots. Plants. 2021;10:2754. doi: 10.3390/plants10122754. PubMed DOI PMC
Liu B., Sun G. Micro RNA s Contribute to Enhanced Salt Adaptation of the Autopolyploid Hordeum bulbosum Compared with Its Diploid Ancestor. Plant J. 2017;91:57–69. doi: 10.1111/tpj.13546. PubMed DOI
Kuang L., Shen Q., Wu L., Yu J., Fu L., Wu D., Zhang G. Identification of MicroRNAs Responding to Salt Stress in Barley by High-Throughput Sequencing and Degradome Analysis. Environ. Exp. Bot. 2019;160:59–70. doi: 10.1016/j.envexpbot.2019.01.006. DOI
Smoczynska A., Pacak A.M., Nuc P., Swida-Barteczka A., Kruszka K., Karlowski W.M., Jarmolowski A., Szweykowska-Kulinska Z. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes. 2020;11:488. doi: 10.3390/genes11050488. PubMed DOI PMC
Ferdous J., Sanchez-Ferrero J.C., Langridge P., Milne L., Chowdhury J., Brien C., Tricker P.J. Differential Expression of MicroRNAs and Potential Targets under Drought Stress in Barley. Plant Cell Environ. 2017;40:11–24. doi: 10.1111/pce.12764. PubMed DOI
Kantar M., Unver T., Budak H. Regulation of Barley MiRNAs upon Dehydration Stress Correlated with Target Gene Expression. Funct. Integr. Genom. 2010;10:493–507. doi: 10.1007/s10142-010-0181-4. PubMed DOI
Hackenberg M., Gustafson P., Langridge P., Shi B.-J. Differential Expression of MicroRNAs and Other Small RNAs in Barley between Water and Drought Conditions. Plant Biotechnol. J. 2015;13:2–13. doi: 10.1111/pbi.12220. PubMed DOI PMC
Qiu C.-W., Liu L., Feng X., Hao P.-F., He X., Cao F., Wu F. Genome-Wide Identification and Characterization of Drought Stress Responsive MicroRNAs in Tibetan Wild Barley. Int. J. Mol. Sci. 2020;21:2795. doi: 10.3390/ijms21082795. PubMed DOI PMC
Grabowska A., Smoczynska A., Bielewicz D., Pacak A., Jarmolowski A., Szweykowska-Kulinska Z. Barley MicroRNAs as Metabolic Sensors for Soil Nitrogen Availability. Plant Sci. 2020;299:110608. doi: 10.1016/j.plantsci.2020.110608. PubMed DOI
Ozhuner E., Eldem V., Ipek A., Okay S., Sakcali S., Zhang B., Boke H., Unver T. Boron Stress Responsive MicroRNAs and Their Targets in Barley. PLoS ONE. 2013;8:e59543. doi: 10.1371/journal.pone.0059543. PubMed DOI PMC
Hackenberg M., Huang P.-J., Huang C.-Y., Shi B.-J., Gustafson P., Langridge P. A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions. DNA Res. 2013;20:109–125. doi: 10.1093/dnares/dss037. PubMed DOI PMC
Sega P., Kruszka K., Bielewicz D., Karlowski W., Nuc P., Szweykowska-Kulinska Z., Pacak A. Pi-Starvation Induced Transcriptional Changes in Barley Revealed by a Comprehensive RNA-Seq and Degradome Analyses. BMC Genom. 2021;22:165. doi: 10.1186/s12864-021-07481-w. PubMed DOI PMC
Bai B., Bian H., Zeng Z., Hou N., Shi B., Wang J., Zhu M., Han N. MiR393-Mediated Auxin Signaling Regulation Is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. Plant Cell Physiol. 2017;58:426–439. doi: 10.1093/pcp/pcw211. PubMed DOI
Wu L., Yu J., Shen Q., Huang L., Wu D., Zhang G. Identification of MicroRNAs in Response to Aluminum Stress in the Roots of Tibetan Wild Barley and Cultivated Barley. BMC Genom. 2018;19:560. doi: 10.1186/s12864-018-4953-x. PubMed DOI PMC
Yu J., Wu L., Fu L., Shen Q., Kuang L., Wu D., Zhang G. Genotypic Difference of Cadmium Tolerance and the Associated MicroRNAs in Wild and Cultivated Barley. Plant Growth Regul. 2019;87:389–401. doi: 10.1007/s10725-019-00479-1. DOI
Chen F., He J., Jin G., Chen Z.-H., Dai F. Identification of Novel MicroRNAs for Cold Deacclimation in Barley. Plant Growth Regul. 2020;92:389–400. doi: 10.1007/s10725-020-00646-9. DOI
Kruszka K., Pacak A., Swida-Barteczka A., Nuc P., Alaba S., Wroblewska Z., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Transcriptionally and Post-Transcriptionally Regulated MicroRNAs in Heat Stress Response in Barley. J. Exp. Bot. 2014;65:6123–6135. doi: 10.1093/jxb/eru353. PubMed DOI PMC
Schreiber A.W., Shi B.-J., Huang C.-Y., Langridge P., Baumann U. Discovery of Barley MiRNAs through Deep Sequencing of Short Reads. BMC Genom. 2011;12:129. doi: 10.1186/1471-2164-12-129. PubMed DOI PMC
Lv S., Nie X., Wang L., Du X., Biradar S.S., Jia X., Weining S. Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing. Int. J. Mol. Sci. 2012;13:2973–2984. doi: 10.3390/ijms13032973. PubMed DOI PMC
Kruszka K., Pacak A., Swida-Barteczka A., Stefaniak A.K., Kaja E., Sierocka I., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Developmentally Regulated Expression and Complex Processing of Barley Pri-MicroRNAs. BMC Genom. 2013;14:34. doi: 10.1186/1471-2164-14-34. PubMed DOI PMC
Liu J., Cheng X., Liu D., Xu W., Wise R., Shen Q.-H. The MiR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling. PLoS Genet. 2014;10:e1004755. doi: 10.1371/journal.pgen.1004755. PubMed DOI PMC
Kis A., Tholt G., Ivanics M., Várallyay É., Jenes B., Havelda Z. Polycistronic Artificial MiRNA-Mediated Resistance to Wheat Dwarf Virus in Barley Is Highly Efficient at Low Temperature. Mol. Plant Pathol. 2016;17:427–437. doi: 10.1111/mpp.12291. PubMed DOI PMC
Deng P., Bian J., Yue H., Feng K., Wang M., Du X., Weining S., Nie X. Characterization of MicroRNAs and Their Targets in Wild Barley (Hordeum vulgare Subsp. Spontaneum) Using Deep Sequencing. Genome. 2016;59:339–348. doi: 10.1139/gen-2015-0224. PubMed DOI
Pacak A.M., Kruszka K., Świda-Barteczka A., Nuc P., Karlowski W., Jarmołowski A., Szweykowska-Kulińska Z. Developmental Changes in Barley MicroRNA Expression Profiles Coupled with MiRNA Targets Analysis. Acta Biochim. Pol. 2016;63:799–809. doi: 10.18388/abp.2016_1347. PubMed DOI
Bai B., Shi B., Hou N., Cao Y., Meng Y., Bian H., Zhu M., Han N. MicroRNAs Participate in Gene Expression Regulation and Phytohormone Cross-Talk in Barley Embryo during Seed Development and Germination. BMC Plant Biol. 2017;17:150. doi: 10.1186/s12870-017-1095-2. PubMed DOI PMC
Smith O., Palmer S.A., Clapham A.J., Rose P., Liu Y., Wang J., Allaby R.G. Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment. Mol. Biol. Evol. 2017;34:2555–2562. doi: 10.1093/molbev/msx175. PubMed DOI PMC
Tripathi R.K., Bregitzer P., Singh J. Genome-Wide Analysis of the SPL/MiR156 Module and Its Interaction with the AP2/MiR172 Unit in Barley. Sci. Rep. 2018;8:7085. doi: 10.1038/s41598-018-25349-0. PubMed DOI PMC
Plaksenkova I., Kokina I., Petrova A., Jermaļonoka M., Gerbreders V., Krasovska M. The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and MiRNA Expression in Barley (Hordeum vulgare L.) Seedlings. Sci. World J. 2020;2020:6649746. doi: 10.1155/2020/6649746. PubMed DOI PMC
Ye Z., Zeng J., Long L., Ye L., Zhang G. Identification of MicroRNAs in Response to Low Potassium Stress in the Shoots of Tibetan Wild Barley and Cultivated. Curr. Plant Biol. 2021;25:100193. doi: 10.1016/j.cpb.2020.100193. DOI
Puchta M., Groszyk J., Małecka M., Koter M.D., Niedzielski M., Rakoczy-Trojanowska M., Boczkowska M. Barley Seeds MiRNome Stability during Long-Term Storage and Aging. Int. J. Mol. Sci. 2021;22:4315. doi: 10.3390/ijms22094315. PubMed DOI PMC
Yao X., Wang Y., Yao Y., Bai Y., Wu K., Qiao Y. Identification MicroRNAs and Target Genes in Tibetan Hulless Barley to BLS Infection. Agron. J. 2021;113:2273–2292. doi: 10.1002/agj2.20649. DOI
Wang N.-H., Zhou X.-Y., Shi S.-H., Zhang S., Chen Z.-H., Ali M.A., Ahmed I.M., Wang Y., Wu F. An MiR156-Regulated Nucleobase-Ascorbate Transporter 2 Confers Cadmium Tolerance via Enhanced Anti-Oxidative Capacity in Barley. J. Adv. Res. 2022 doi: 10.1016/j.jare.2022.04.001. in press . PubMed DOI PMC
Liao P., Li S., Cui X., Zheng Y. A Comprehensive Review of Web-Based Resources of Non-Coding RNAs for Plant Science Research. Int. J. Biol. Sci. 2018;14:819–832. doi: 10.7150/ijbs.24593. PubMed DOI PMC
Yi X., Zhang Z., Ling Y., Xu W., Su Z. PNRD: A Plant Non-Coding RNA Database. Nucleic Acids Res. 2015;43:D982–D989. doi: 10.1093/nar/gku1162. PubMed DOI PMC
Guo Z., Kuang Z., Zhao Y., Deng Y., He H., Wan M., Tao Y., Wang D., Wei J., Li L. PmiREN2.0: From Data Annotation to Functional Exploration of Plant MicroRNAs. Nucleic Acids Res. 2022;50:D1475–D1482. doi: 10.1093/nar/gkab811. PubMed DOI PMC
Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Lunardon A., Johnson N.R., Hagerott E., Phifer T., Polydore S., Coruh C., Axtell M.J. Integrated Annotations and Analyses of Small RNA–Producing Loci from 47 Diverse Plants. Genome Res. 2020;30:497–513. doi: 10.1101/gr.256750.119. PubMed DOI PMC
Szcześniak M.W., Makalowska I. MiRNEST 2.0: A Database of Plant and Animal MicroRNAs. Nucleic Acids Res. 2014;42:D74–D77. doi: 10.1093/nar/gkt1156. PubMed DOI PMC
Liu J., Liu X., Zhang S., Liang S., Luan W., Ma X. TarDB: An Online Database for Plant MiRNA Targets and MiRNA-Triggered Phased SiRNAs. BMC Genom. 2021;22:348. doi: 10.1186/s12864-021-07680-5. PubMed DOI PMC
Dou X., Zhou Z., Zhao L. Identification and Expression Analysis of MiRNAs in Germination and Seedling Growth of Tibetan Hulless Barley. Genomics. 2021;113:3735–3749. doi: 10.1016/j.ygeno.2021.08.019. PubMed DOI
Xing S., Salinas M., Höhmann S., Berndtgen R., Huijser P. MiR156-Targeted and Nontargeted SBP-Box Transcription Factors Act in Concert to Secure Male Fertility in Arabidopsis. Plant Cell. 2010;22:3935–3950. doi: 10.1105/tpc.110.079343. PubMed DOI PMC
Cui L., Zheng F., Wang J., Zhang C., Xiao F., Ye J., Li C., Ye Z., Zhang J. MiR156a-Targeted SBP-Box Transcription Factor SlSPL13 Regulates Inflorescence Morphogenesis by Directly Activating SFT in Tomato. Plant Biotechnol. J. 2020;18:1670–1682. doi: 10.1111/pbi.13331. PubMed DOI PMC
Liu J., Cheng X., Liu P., Sun J. MiR156-Targeted SBP-Box Transcription Factors Interact with DWARF53 to Regulate TEOSINTE BRANCHED1 and BARREN STALK1 Expression in Bread Wheat. Plant Physiol. 2017;174:1931–1948. doi: 10.1104/pp.17.00445. PubMed DOI PMC
Millar A.A., Lohe A., Wong G. Biology and Function of MiR159 in Plants. Plants. 2019;8:255. doi: 10.3390/plants8080255. PubMed DOI PMC
Csukasi F., Donaire L., Casañal A., Martínez-Priego L., Botella M.A., Medina-Escobar N., Llave C., Valpuesta V. Two Strawberry MiR159 Family Members Display Developmental-Specific Expression Patterns in the Fruit Receptacle and Cooperatively Regulate Fa-GAMYB. New Phytol. 2012;195:47–57. doi: 10.1111/j.1469-8137.2012.04134.x. PubMed DOI
da Silva E.M., Silva G.F.F.E., Bidoia D.B., da Silva Azevedo M., de Jesus F.A., Pino L.E., Peres L.E.P., Carrera E., López-Díaz I., Nogueira F.T.S. Micro RNA 159-Targeted Sl GAMYB Transcription Factors Are Required for Fruit Set in Tomato. Plant J. 2017;92:95–109. doi: 10.1111/tpj.13637. PubMed DOI
Yadav A., Kumar S., Verma R., Lata C., Sanyal I., Rai S.P. MicroRNA 166: An Evolutionarily Conserved Stress Biomarker in Land Plants Targeting HD-ZIP Family. Physiol. Mol. Biol. Plants. 2021;27:2471–2485. doi: 10.1007/s12298-021-01096-x. PubMed DOI PMC
Chen H., Fang R., Deng R., Li J. The OsmiRNA166b-OsHox32 Pair Regulates Mechanical Strength of Rice Plants by Modulating Cell Wall Biosynthesis. Plant Biotechnol. J. 2021;19:1468–1480. doi: 10.1111/pbi.13565. PubMed DOI PMC
Javed M., Solanki M., Sinha A., Shukla L.I. Position Based Nucleotide Analysis of MiR168 Family in Higher Plants and Its Targets in Mammalian Transcripts. MicroRNA. 2017;6:136–142. doi: 10.2174/2211536606666170215154151. PubMed DOI
Um T., Choi J., Park T., Chung P.J., Jung S.E., Shim J.S., Kim Y.S., Choi I.-Y., Park S.C., Oh S.-J. Rice MicroRNA171f/SCL6 Module Enhances Drought Tolerance by Regulation of Flavonoid Biosynthesis Genes. Plant Direct. 2022;6:e374. doi: 10.1002/pld3.374. PubMed DOI PMC
Huang S., Zhou J., Gao L., Tang Y. Plant MiR397 and Its Functions. Funct. Plant Biol. 2020;48:361–370. doi: 10.1071/FP20342. PubMed DOI
Dong C.-H., Pei H. Over-Expression of MiR397 Improves Plant Tolerance to Cold Stress in Arabidopsis Thaliana. J. Plant Biol. 2014;57:209–217. doi: 10.1007/s12374-013-0490-y. DOI
Pegler J.L., Oultram J.M., Grof C.P., Eamens A.L. Molecular Manipulation of the MiR399/PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis Thaliana. Plants. 2020;10:73. doi: 10.3390/plants10010073. PubMed DOI PMC
Kim W., Ahn H.J., Chiou T.-J., Ahn J.H. The Role of the MiR399-PHO2 Module in the Regulation of Flowering Time in Response to Different Ambient Temperatures in Arabidopsis Thaliana. Mol. Cells. 2011;32:83–88. doi: 10.1007/s10059-011-1043-1. PubMed DOI PMC
Yan Y., Wang H., Hamera S., Chen X., Fang R. MiR444a Has Multiple Functions in the Rice Nitrate-Signaling Pathway. Plant J. 2014;78:44–55. doi: 10.1111/tpj.12446. PubMed DOI
Wang H., Jiao X., Kong X., Hamera S., Wu Y., Chen X., Fang R., Yan Y. A Signaling Cascade from MiR444 to RDR1 in Rice Antiviral RNA Silencing Pathway. Plant Physiol. 2016;170:2365–2377. doi: 10.1104/pp.15.01283. PubMed DOI PMC
Jiao X., Wang H., Yan J., Kong X., Liu Y., Chu J., Chen X., Fang R., Yan Y. Promotion of BR Biosynthesis by MiR444 Is Required for Ammonium-Triggered Inhibition of Root Growth. Plant Physiol. 2020;182:1454–1466. doi: 10.1104/pp.19.00190. PubMed DOI PMC
Sun L., Sun G., Shi C., Sun D. Transcriptome Analysis Reveals New MicroRNAs-Mediated Pathway Involved in Anther Development in Male Sterile Wheat. BMC Genom. 2018;19:333. doi: 10.1186/s12864-018-4727-5. PubMed DOI PMC
Bano N., Fakhrah S., Nayak S.P., Bag S.K., Mohanty C.S. Identification of MiRNA and Their Target Genes in Cestrum nocturnum L. and Cestrum diurnum L. in Stress Responses. Physiol. Mol. Biol. Plants. 2022;28:31–49. doi: 10.1007/s12298-022-01127-1. PubMed DOI PMC
Li T., Ma L., Geng Y., Hao C., Chen X., Zhang X. Small RNA and Degradome Sequencing Reveal Complex Roles of MiRNAs and Their Targets in Developing Wheat Grains. PLoS ONE. 2015;10:e0139658. doi: 10.1371/journal.pone.0139658. PubMed DOI PMC
Liu Y., Wang X., Yuan L., Liu Y., Shen T., Zhang Y. Comparative Small RNA Profiling and Functional Exploration on Wheat with High-and Low-Cadmium Accumulation. Front. Genet. 2021;12:635599. doi: 10.3389/fgene.2021.635599. PubMed DOI PMC
Samad A.F.A., Sajad M., Nazaruddin N., Fauzi I.A., Murad A.M.A., Zainal Z., Ismail I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Front. Plant Sci. 2017;8:565. doi: 10.3389/fpls.2017.00565. PubMed DOI PMC
Van Bel M., Diels T., Vancaester E., Kreft L., Botzki A., Van de Peer Y., Coppens F., Vandepoele K. PLAZA 4.0: An Integrative Resource for Functional, Evolutionary and Comparative Plant Genomics. Nucleic Acids Res. 2018;46:D1190–D1196. doi: 10.1093/nar/gkx1002. PubMed DOI PMC
Van Bel M., Silvestri F., Weitz E.M., Kreft L., Botzki A., Coppens F., Vandepoele K. PLAZA 5.0: Extending the Scope and Power of Comparative and Functional Genomics in Plants. Nucleic Acids Res. 2022;50:D1468–D1474. doi: 10.1093/nar/gkab1024. PubMed DOI PMC
Zhang H.-M., Kuang S., Xiong X., Gao T., Liu C., Guo A.-Y. Transcription Factor and MicroRNA Co-Regulatory Loops: Important Regulatory Motifs in Biological Processes and Diseases. Brief. Bioinform. 2015;16:45–58. doi: 10.1093/bib/bbt085. PubMed DOI
Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread Changes in Protein Synthesis Induced by MicroRNAs. Nature. 2008;455:58–63. doi: 10.1038/nature07228. PubMed DOI
Baldrich P., Beric A., Meyers B.C. Despacito: The Slow Evolutionary Changes in Plant MicroRNAs. Curr. Opin. Plant Biol. 2018;42:16–22. doi: 10.1016/j.pbi.2018.01.007. PubMed DOI
Liu Y., Wang L., Chen D., Wu X., Huang D., Chen L., Li L., Deng X., Xu Q. Genome-Wide Comparison of MicroRNAs and Their Targeted Transcripts among Leaf, Flower and Fruit of Sweet Orange. BMC Genom. 2014;15:695. doi: 10.1186/1471-2164-15-695. PubMed DOI PMC
Baldrich P., Campo S., Wu M.-T., Liu T.-T., Hsing Y.-I.C., Segundo B.S. MicroRNA-Mediated Regulation of Gene Expression in the Response of Rice Plants to Fungal Elicitors. RNA Biol. 2015;12:847–863. doi: 10.1080/15476286.2015.1050577. PubMed DOI PMC
Banks I.R., Zhang Y., Wiggins B.E., Heck G.R., Ivashuta S. RNA Decoys. Plant Signal. Behav. 2012;7:1188–1193. doi: 10.4161/psb.21299. PubMed DOI PMC
Ma X., Liu C., Gu L., Mo B., Cao X., Chen X. TarHunter, a Tool for Predicting Conserved MicroRNA Targets and Target Mimics in Plants. Bioinformatics. 2018;34:1574–1576. doi: 10.1093/bioinformatics/btx797. PubMed DOI PMC
Unver T., Tombuloglu H. Barley Long Non-Coding RNAs (LncRNA) Responsive to Excess Boron. Genomics. 2020;112:1947–1955. doi: 10.1016/j.ygeno.2019.11.007. PubMed DOI
Yu J., Cheng Y., Feng K., Ruan M., Ye Q., Wang R., Li Z., Zhou G., Yao Z., Yang Y., et al. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2016;7:1215. doi: 10.3389/fpls.2016.01215. PubMed DOI PMC
Lewis B.P., Burge C.B., Bartel D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI
Ni W.-J., Leng X.-M. Dynamic MiRNA–MRNA Paradigms: New Faces of MiRNAs. Biochem. Biophys. Rep. 2015;4:337–341. doi: 10.1016/j.bbrep.2015.10.011. PubMed DOI PMC
Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC
Kerpedjiev P., Hammer S., Hofacker I.L. Forna (Force-Directed RNA): Simple and Effective Online RNA Secondary Structure Diagrams. Bioinformatics. 2015;31:3377–3379. doi: 10.1093/bioinformatics/btv372. PubMed DOI PMC
Jones-Rhoades M.W., Bartel D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced MiRNA. Mol. Cell. 2004;14:787–799. doi: 10.1016/j.molcel.2004.05.027. PubMed DOI
Sun Y.-H., Lu S., Shi R., Chiang V.L. RNAi and Plant Gene Function Analysis. Humana Press; Totowa, NJ, USA: 2011. Computational Prediction of Plant MiRNA Targets; pp. 175–186. PubMed
Dai X., Zhuang Z., Zhao P.X. Computational Analysis of MiRNA Targets in Plants: Current Status and Challenges. Brief. Bioinform. 2011;12:115–121. doi: 10.1093/bib/bbq065. PubMed DOI
Fahlgren N., Carrington J.C. Plant MicroRNAs. Humana Press; Totowa, NJ, USA: 2010. MiRNA Target Prediction in Plants; pp. 51–57. PubMed
Pandey P., Srivastava P.K., Pandey S.P. Plant MicroRNAs. Humana Press; Totowa, NJ, USA: 2019. Prediction of Plant MiRNA Targets; pp. 99–107. PubMed
Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B., Bartel D.P. Prediction of Plant MicroRNA Targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI
Llave C., Xie Z., Kasschau K.D., Carrington J.C. Cleavage of Scarecrow-like MRNA Targets Directed by a Class of Arabidopsis MiRNA. Science. 2002;297:2053–2056. doi: 10.1126/science.1076311. PubMed DOI
Riolo G., Cantara S., Marzocchi C., Ricci C. MiRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020;4:1. doi: 10.3390/mps4010001. PubMed DOI PMC
Patel P., Yadav K., Ganapathi T.R., Penna S. Plant MiRNAome: Cross Talk in Abiotic Stressful Times. In: Rajpal V.R., Sehgal D., Kumar A., Raina S.N., editors. Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity; Springer International Publishing; Cham, Switzesland: 2019. pp. 25–52.
Zhang B., Wang Q. MicroRNA-Based Biotechnology for Plant Improvement. J. Cell. Physiol. 2015;230:1–15. doi: 10.1002/jcp.24685. PubMed DOI
Zhang B. MicroRNA: A New Target for Improving Plant Tolerance to Abiotic Stress. J. Exp. Bot. 2015;66:1749–1761. doi: 10.1093/jxb/erv013. PubMed DOI PMC
Ferdous J., Whitford R., Nguyen M., Brien C., Langridge P., Tricker P.J. Drought-Inducible Expression of Hv-MiR827 Enhances Drought Tolerance in Transgenic Barley. Funct. Integr. Genom. 2017;17:279–292. doi: 10.1007/s10142-016-0526-8. PubMed DOI
Li N., Yang T., Guo Z., Wang Q., Chai M., Wu M., Li X., Li W., Li G., Tang J., et al. Maize MicroRNA166 Inactivation Confers Plant Development and Abiotic Stress Resistance. Int. J. Mol. Sci. 2020;21:9506. doi: 10.3390/ijms21249506. PubMed DOI PMC
Chung P.J., Chung H., Oh N., Choi J., Bang S.W., Jung S.E., Jung H., Shim J.S., Kim J.-K. Efficiency of Recombinant CRISPR/RCas9-Mediated MiRNA Gene Editing in Rice. Int. J. Mol. Sci. 2020;21:9606. doi: 10.3390/ijms21249606. PubMed DOI PMC
Hua K., Tao X., Zhu J.-K. Expanding the Base Editing Scope in Rice by Using Cas9 Variants. Plant Biotechnol. J. 2019;17:499–504. doi: 10.1111/pbi.12993. PubMed DOI PMC
Ó’Maoiléidigh D.S., van Driel A.D., van Singh A., Sang Q., LeBec N., Vincent C., de Olalla E.B.G., Vayssières A., Branchat M.R., Severing E., et al. Systematic Analyses of the MIR172 Family Members of Arabidopsis Define Their Distinct Roles in Regulation of APETALA2 during Floral Transition. PLoS Biol. 2021;19:e3001043. doi: 10.1371/journal.pbio.3001043. PubMed DOI PMC
Deng F., Zeng F., Shen Q., Abbas A., Cheng J., Jiang W., Chen G., Shah A.N., Holford P., Tanveer M., et al. Molecular Evolution and Functional Modification of Plant MiRNAs with CRISPR. Trends Plant Sci. 2022;27:890–907. doi: 10.1016/j.tplants.2022.01.009. PubMed DOI
Dalakouras A., Wassenegger M., Dadami E., Ganopoulos I., Pappas M.L., Papadopoulou K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiol. 2020;182:38–50. doi: 10.1104/pp.19.00570. PubMed DOI PMC
Mujtaba M., Wang D., Carvalho L.B., Oliveira J.L., Espirito Santo Pereira A.D., Sharif R., Jogaiah S., Paidi M.K., Wang L., Ali Q., et al. Nanocarrier-Mediated Delivery of MiRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agric. Sci. Technol. 2021;1:417–435. doi: 10.1021/acsagscitech.1c00146. DOI
Ražná K., Rataj V., Macák M., Galambošová J. MicroRNA-Based Markers as a Tool to Monitor the Barley (Hordeum vulgare L.) Response to Soil Compaction. Acta Fytotech. Zootech. 2020;23:139–146. doi: 10.15414/afz.2020.23.03.139-146. DOI
Gurjar A.K.S., Panwar A.S., Gupta R., Mantri S.S. PmiRExAt: Plant MiRNA Expression Atlas Database and Web Applications. Database. 2016;2016:baw060. doi: 10.1093/database/baw060. PubMed DOI PMC