What Do We Know about Barley miRNAs?

. 2022 Nov 25 ; 23 (23) : . [epub] 20221125

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu systematický přehled, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499082

Grantová podpora
21-18532S Czech Science Foundation GACR
SGS11/PřF/2022 University of Ostrava
SGS10/PřF/2022 University of Ostrava
CZ.02.1.01/0.0/0.0/16_019/0000797 Ministry of Education, Youth and Sports of the Czech Republic
QK1810391 National Agency for Agricultural Research

Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.

Zobrazit více v PubMed

Lam J.K.W., Chow M.Y.T., Zhang Y., Leung S.W.S. SiRNA versus MiRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids. 2015;4:e252. doi: 10.1038/mtna.2015.23. PubMed DOI PMC

Wang J., Mei J., Ren G. Plant MicroRNAs: Biogenesis, Homeostasis, and Degradation. Front. Plant Sci. 2019;10:360. doi: 10.3389/fpls.2019.00360. PubMed DOI PMC

Sen G.L., Blau H.M. A Brief History of RNAi: The Silence of the Genes. FASEB J. 2006;20:1293–1299. doi: 10.1096/fj.06-6014rev. PubMed DOI

Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell. 1990;2:279–289. doi: 10.2307/3869076. PubMed DOI PMC

Romano N., Macino G. Quelling: Transient Inactivation of Gene Expression in Neurospora Crassa by Transformation with Homologous Sequences. Mol. Microbiol. 1992;6:3343–3353. doi: 10.1111/j.1365-2958.1992.tb02202.x. PubMed DOI

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-Jones S., Marshall M., et al. A Uniform System for MicroRNA Annotation. RNA. 2003;9:277–279. doi: 10.1261/rna.2183803. PubMed DOI PMC

Gebert L.F.R., MacRae I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC

Garcia D. A MiRacle in Plant Development: Role of MicroRNAs in Cell Differentiation and Patterning. Semin. Cell Dev. Biol. 2008;19:586–595. doi: 10.1016/j.semcdb.2008.07.013. PubMed DOI

Millar A.A. The Function of MiRNAs in Plants. Plants. 2020;9:198. doi: 10.3390/plants9020198. PubMed DOI PMC

Muhammad T., Zhang F., Zhang Y., Liang Y. RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells. 2019;8:38. doi: 10.3390/cells8010038. PubMed DOI PMC

Wang W., Galili G. Tuning the Orchestra: MiRNAs in Plant Immunity. Trends Plant Sci. 2019;24:189–191. doi: 10.1016/j.tplants.2019.01.009. PubMed DOI

Cui C., Wang J.-J., Zhao J.-H., Fang Y.-Y., He X.-F., Guo H.-S., Duan C.-G. A Brassica MiRNA Regulates Plant Growth and Immunity through Distinct Modes of Action. Mol. Plant. 2020;13:231–245. doi: 10.1016/j.molp.2019.11.010. PubMed DOI

Mengistu A.A., Tenkegna T.A. The Role of MiRNA in Plant–Virus Interaction: A Review. Mol. Biol. Rep. 2021;48:2853–2861. doi: 10.1007/s11033-021-06290-4. PubMed DOI

Pagano L., Rossi R., Paesano L., Marmiroli N., Marmiroli M. MiRNA Regulation and Stress Adaptation in Plants. Environ. Exp. Bot. 2021;184:104369. doi: 10.1016/j.envexpbot.2020.104369. DOI

Nevo E. Advance in Barley Sciences. Springer; Dordrecht, The Netherlands: 2013. Evolution of Wild Barley and Barley Improvement; pp. 1–23.

Pourkheirandish M., Komatsuda T. The Importance of Barley Genetics and Domestication in a Global Perspective. Ann. Bot. 2007;100:999–1008. doi: 10.1093/aob/mcm139. PubMed DOI PMC

Ullrich S.E. Barley: Production, Improvement, and Uses. John Wiley & Sons; New York, NY, USA: 2010.

Tosh S.M., Bordenave N. Emerging Science on Benefits of Whole Grain Oat and Barley and Their Soluble Dietary Fibers for Heart Health, Glycemic Response, and Gut Microbiota. Nutr. Rev. 2020;78:13–20. doi: 10.1093/nutrit/nuz085. PubMed DOI

Lahouar L., El-Bok S., Achour L. Therapeutic Potential of Young Green Barley Leaves in Prevention and Treatment of Chronic Diseases: An Overview. Am. J. Chin. Med. 2015;43:1311–1329. doi: 10.1142/S0192415X15500743. PubMed DOI

Pech R., Volná A., Hunt L., Bartas M., Červeň J., Pečinka P., Špunda V., Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int. J. Mol. Sci. 2022;23:6533. doi: 10.3390/ijms23126533. PubMed DOI PMC

Harwood W.A. Barley. Humana Press; New York, NY, UAS: 2019. An Introduction to Barley: The Crop and the Model; pp. 1–5. PubMed

Sato K. History and Future Perspectives of Barley Genomics. DNA Res. 2020;27:dsaa023. doi: 10.1093/dnares/dsaa023. PubMed DOI PMC

Saski C., Lee S.-B., Fjellheim S., Guda C., Jansen R.K., Luo H., Tomkins J., Rognli O.A., Daniell H., Clarke J.L. Complete Chloroplast Genome Sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and Comparative Analyses with Other Grass Genomes. Theor. Appl. Genet. 2007;115:571–590. doi: 10.1007/s00122-007-0567-4. PubMed DOI PMC

Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., Mcveigh R., O’Neill K., Robbertse B. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database. 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC

Sato F., Tsuchiya S., Meltzer S.J., Shimizu K. MicroRNAs and Epigenetics. FEBS J. 2011;278:1598–1609. doi: 10.1111/j.1742-4658.2011.08089.x. PubMed DOI

Shapulatov U., van Hoogdalem M., Schreuder M., Bouwmeester H., Abdurakhmonov I.Y., van der Krol A.R. Functional Intron-Derived MiRNAs and Host-Gene Expression in Plants. Plant Methods. 2018;14:83. doi: 10.1186/s13007-018-0351-2. PubMed DOI PMC

Wu X., Hornyik C., Bayer M., Marshall D., Waugh R., Zhang R. In Silico Identification and Characterization of Conserved Plant MicroRNAs in Barley. Open Life Sci. 2014;9:841–852. doi: 10.2478/s11535-014-0308-z. DOI

Baldrich P., Hsing Y.-I.C., San Segundo B. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice. Genome. Biol. Evol. 2016;8:1104–1114. doi: 10.1093/gbe/evw062. PubMed DOI PMC

Zou Q., Mao Y., Hu L., Wu Y., Ji Z. MiRClassify: An Advanced Web Server for MiRNA Family Classification and Annotation. Comput. Biol. Med. 2014;45:157–160. doi: 10.1016/j.compbiomed.2013.12.007. PubMed DOI

O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Zhang S., Dou Y., Li S., Ren G., Chevalier D., Zhang C., Yu B. DAWDLE Interacts with DICER-LIKE Proteins to Mediate Small RNA Biogenesis. Plant Physiol. 2018;177:1142–1151. doi: 10.1104/pp.18.00354. PubMed DOI PMC

Zhang L., Xiang Y., Chen S., Shi M., Jiang X., He Z., Gao S. Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Front. Plant Sci. 2022;13:844149. doi: 10.3389/fpls.2022.844149. PubMed DOI PMC

Yu B., Yang Z., Li J., Minakhina S., Yang M., Padgett R.W., Steward R., Chen X. Methylation as a Crucial Step in Plant MicroRNA Biogenesis. Science. 2005;307:932–935. doi: 10.1126/science.1107130. PubMed DOI PMC

Djami-Tchatchou A.T., Sanan-Mishra N., Ntushelo K., Dubery I.A. Functional Roles of MicroRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection. Front. Plant Sci. 2017;8:378. doi: 10.3389/fpls.2017.00378. PubMed DOI PMC

Li M., Yu B. Recent Advances in the Regulation of Plant MiRNA Biogenesis. RNA Biol. 2021;18:2087–2096. doi: 10.1080/15476286.2021.1899491. PubMed DOI PMC

Medley J.C., Panzade G., Zinovyeva A.Y. MicroRNA Strand Selection: Unwinding the Rules. Wiley Interdiscip. Rev. RNA. 2021;12:e1627. doi: 10.1002/wrna.1627. PubMed DOI PMC

Meijer H.A., Smith E.M., Bushell M. Regulation of MiRNA Strand Selection: Follow the Leader? Biochem. Soc. Trans. 2014;42:1135–1140. doi: 10.1042/BST20140142. PubMed DOI

Vimalraj S., Selvamurugan N. MicroRNAs: Synthesis, Gene Regulation and Osteoblast Differentiation. Curr. Issues Mol. Biol. 2013;15:7–18. doi: 10.21775/cimb.015.007. PubMed DOI

Forman J.J., Coller H.A. The Code within the Code: MicroRNAs Target Coding Regions. Cell Cycle. 2010;9:1533–1541. doi: 10.4161/cc.9.8.11202. PubMed DOI PMC

Yu B., Wang H. Translational Inhibition by MicroRNAs in Plants. Prog. Mol. Subcell. Biol. 2010;50:41–57. doi: 10.1007/978-3-642-03103-8_3. PubMed DOI

Liu Y., Teng C., Xia R., Meyers B.C. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. Plant Cell. 2020;32:3059–3080. doi: 10.1105/tpc.20.00335. PubMed DOI PMC

Araki S., Le N.T., Koizumi K., Villar-Briones A., Nonomura K.-I., Endo M., Inoue H., Saze H., Komiya R. MiR2118-Dependent U-Rich PhasiRNA Production in Rice Anther Wall Development. Nat. Commun. 2020;11:3115. doi: 10.1038/s41467-020-16637-3. PubMed DOI PMC

Xia R., Chen C., Pokhrel S., Ma W., Huang K., Patel P., Wang F., Xu J., Liu Z., Li J., et al. 24-Nt Reproductive PhasiRNAs Are Broadly Present in Angiosperms. Nat. Commun. 2019;10:627. doi: 10.1038/s41467-019-08543-0. PubMed DOI PMC

Xie Z., Khanna K., Ruan S. Expression of MicroRNAs and Its Regulation in Plants. Semin. Cell Dev. Biol. 2010;21:790–797. doi: 10.1016/j.semcdb.2010.03.012. PubMed DOI PMC

Chhabra R. MiRNA and Methylation: A Multifaceted Liaison. ChemBioChem. 2015;16:195–203. doi: 10.1002/cbic.201402449. PubMed DOI

Świda-Barteczka A., Krieger-Liszkay A., Bilger W., Voigt U., Hensel G., Szweykowska-Kulinska Z., Krupinska K. The Plastid-Nucleus Located DNA/RNA Binding Protein WHIRLY1 Regulates MicroRNA-Levels during Stress in Barley (Hordeum vulgare L.) RNA Biol. 2018;15:886–891. doi: 10.1080/15476286.2018.1481695. PubMed DOI PMC

Zhao Y., Mo B., Chen X. Mechanisms That Impact MicroRNA Stability in Plants. RNA Biol. 2012;9:1218–1223. doi: 10.4161/rna.22034. PubMed DOI PMC

Gallego-Bartolomé J. DNA Methylation in Plants: Mechanisms and Tools for Targeted Manipulation. New Phytol. 2020;227:38–44. doi: 10.1111/nph.16529. PubMed DOI

Wu L., Zhou H., Zhang Q., Zhang J., Ni F., Liu C., Qi Y. DNA Methylation Mediated by a MicroRNA Pathway. Mol. Cell. 2010;38:465–475. doi: 10.1016/j.molcel.2010.03.008. PubMed DOI

Bao N., Lye K.-W., Barton M.K. MicroRNA Binding Sites in Arabidopsis Class III HD-ZIP MRNAs Are Required for Methylation of the Template Chromosome. Dev. Cell. 2004;7:653–662. doi: 10.1016/j.devcel.2004.10.003. PubMed DOI

Vasudevan S. Posttranscriptional Upregulation by MicroRNAs. WIREs RNA. 2012;3:311–330. doi: 10.1002/wrna.121. PubMed DOI

Lauressergues D., Couzigou J.-M., Clemente H.S., Martinez Y., Dunand C., Bécard G., Combier J.-P. Primary Transcripts of MicroRNAs Encode Regulatory Peptides. Nature. 2015;520:90–93. doi: 10.1038/nature14346. PubMed DOI

Prasad A., Sharma N., Prasad M. Noncoding but Coding: Pri-MiRNA into the Action. Trends Plant Sci. 2021;26:204–206. doi: 10.1016/j.tplants.2020.12.004. PubMed DOI

Sharma A., Badola P.K., Bhatia C., Sharma D., Trivedi P.K. Primary Transcript of MiR858 Encodes Regulatory Peptide and Controls Flavonoid Biosynthesis and Development in Arabidopsis. Nat. Plants. 2020;6:1262–1274. doi: 10.1038/s41477-020-00769-x. PubMed DOI

Couzigou J.-M., André O., Guillotin B., Alexandre M., Combier J.-P. Use of MicroRNA-Encoded Peptide MiPEP172c to Stimulate Nodulation in Soybean. New Phytol. 2016;211:379–381. doi: 10.1111/nph.13991. PubMed DOI

Chen Q., Deng B., Gao J., Zhao Z., Chen Z., Song S., Wang L., Zhao L., Xu W., Zhang C., et al. A MiRNA-Encoded Small Peptide, Vvi-MiPEP171d1, Regulates Adventitious Root Formation. Plant Physiol. 2020;183:656–670. doi: 10.1104/pp.20.00197. PubMed DOI PMC

Wong C.E., Zhao Y.-T., Wang X.-J., Croft L., Wang Z.-H., Haerizadeh F., Mattick J.S., Singh M.B., Carroll B.J., Bhalla P.L. MicroRNAs in the Shoot Apical Meristem of Soybean. J. Exp. Bot. 2011;62:2495–2506. doi: 10.1093/jxb/erq437. PubMed DOI

Choudhary A., Kumar A., Kaur H., Kaur N. MiRNA: The Taskmaster of Plant World. Biologia. 2021;76:1551–1567. doi: 10.1007/s11756-021-00720-1. DOI

Waheed S., Zeng L. The Critical Role of MiRNAs in Regulation of Flowering Time and Flower Development. Genes. 2020;11:319. doi: 10.3390/genes11030319. PubMed DOI PMC

Curaba J., Spriggs A., Taylor J., Li Z., Helliwell C. MiRNA Regulation in the Early Development of Barley Seed. BMC Plant Biol. 2012;12:120. doi: 10.1186/1471-2229-12-120. PubMed DOI PMC

Curaba J., Talbot M., Li Z., Helliwell C. Over-Expression of MicroRNA171 Affects Phase Transitions and Floral Meristem Determinancy in Barley. BMC Plant Biol. 2013;13:6. doi: 10.1186/1471-2229-13-6. PubMed DOI PMC

Smoczynska A., Szweykowska-Kulinska Z. MicroRNA-Mediated Regulation of Flower Development in Grasses. Acta Biochim. Pol. 2016;63:687–692. doi: 10.18388/abp.2016_1358. PubMed DOI

Nair S.K., Wang N., Turuspekov Y., Pourkheirandish M., Sinsuwongwat S., Chen G., Sameri M., Tagiri A., Honda I., Watanabe Y., et al. Cleistogamous Flowering in Barley Arises from the Suppression of MicroRNA-Guided HvAP2 MRNA Cleavage. Proc. Natl. Acad. Sci. USA. 2010;107:490–495. doi: 10.1073/pnas.0909097107. PubMed DOI PMC

Anwar N., Ohta M., Yazawa T., Sato Y., Li C., Tagiri A., Sakuma M., Nussbaumer T., Bregitzer P., Pourkheirandish M., et al. MiR172 Downregulates the Translation of Cleistogamy 1 in Barley. Ann. Bot. 2018;122:251–265. doi: 10.1093/aob/mcy058. PubMed DOI PMC

Yuan W., Suo J., Shi B., Zhou C., Bai B., Bian H., Zhu M., Han N. The Barley MiR393 Has Multiple Roles in Regulation of Seedling Growth, Stomatal Density, and Drought Stress Tolerance. Plant Physiol. Biochem. 2019;142:303–311. doi: 10.1016/j.plaphy.2019.07.021. PubMed DOI

Tombuloglu H. Genome-Wide Analysis of the Auxin Response Factors (ARF) Gene Family in Barley (Hordeum vulgare L.) J. Plant Biochem. Biotechnol. 2019;28:14–24. doi: 10.1007/s13562-018-0458-6. DOI

Shriram V., Kumar V., Devarumath R.M., Khare T.S., Wani S.H. MicroRNAs as Potential Targets for Abiotic Stress Tolerance in Plants. Front. Plant Sci. 2016;7:817. doi: 10.3389/fpls.2016.00817. PubMed DOI PMC

Barczak-Brzyżek A., Brzyżek G., Koter M., Siedlecka E., Gawroński P., Filipecki M. Plastid Retrograde Regulation of MiRNA Expression in Response to Light Stress. BMC Plant Biol. 2022;22:150. doi: 10.1186/s12870-022-03525-9. PubMed DOI PMC

Subburaj S., Ha H.-J., Jin Y.-T., Jeon Y., Tu L., Kim J.-B., Kang S.-Y., Lee G.-J. Identification of γ-Radiation-Responsive MicroRNAs and Their Target Genes in Tradescantia (BNL Clone 4430) J. Plant Biol. 2017;60:116–128. doi: 10.1007/s12374-016-0433-5. DOI

Visentin I., Pagliarani C., Deva E., Caracci A., Turečková V., Novák O., Lovisolo C., Schubert A., Cardinale F. A Novel Strigolactone-MiR156 Module Controls Stomatal Behaviour during Drought Recovery. Plant Cell Environ. 2020;43:1613–1624. doi: 10.1111/pce.13758. PubMed DOI

Saminathan T., Alvarado A., Lopez C., Shinde S., Gajanayake B., Abburi V.L., Vajja V.G., Jagadeeswaran G., Raja Reddy K., Nimmakayala P., et al. Elevated Carbon Dioxide and Drought Modulate Physiology and Storage-Root Development in Sweet Potato by Regulating MicroRNAs. Funct. Integr. Genom. 2019;19:171–190. doi: 10.1007/s10142-018-0635-7. PubMed DOI

Deng P., Wang L., Cui L., Feng K., Liu F., Du X., Tong W., Nie X., Ji W., Weining S. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS ONE. 2015;10:e0137990. doi: 10.1371/journal.pone.0137990. PubMed DOI PMC

Kuang L., Yu J., Shen Q., Fu L., Wu L. Identification of MicroRNAs Responding to Aluminium, Cadmium and Salt Stresses in Barley Roots. Plants. 2021;10:2754. doi: 10.3390/plants10122754. PubMed DOI PMC

Liu B., Sun G. Micro RNA s Contribute to Enhanced Salt Adaptation of the Autopolyploid Hordeum bulbosum Compared with Its Diploid Ancestor. Plant J. 2017;91:57–69. doi: 10.1111/tpj.13546. PubMed DOI

Kuang L., Shen Q., Wu L., Yu J., Fu L., Wu D., Zhang G. Identification of MicroRNAs Responding to Salt Stress in Barley by High-Throughput Sequencing and Degradome Analysis. Environ. Exp. Bot. 2019;160:59–70. doi: 10.1016/j.envexpbot.2019.01.006. DOI

Smoczynska A., Pacak A.M., Nuc P., Swida-Barteczka A., Kruszka K., Karlowski W.M., Jarmolowski A., Szweykowska-Kulinska Z. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes. 2020;11:488. doi: 10.3390/genes11050488. PubMed DOI PMC

Ferdous J., Sanchez-Ferrero J.C., Langridge P., Milne L., Chowdhury J., Brien C., Tricker P.J. Differential Expression of MicroRNAs and Potential Targets under Drought Stress in Barley. Plant Cell Environ. 2017;40:11–24. doi: 10.1111/pce.12764. PubMed DOI

Kantar M., Unver T., Budak H. Regulation of Barley MiRNAs upon Dehydration Stress Correlated with Target Gene Expression. Funct. Integr. Genom. 2010;10:493–507. doi: 10.1007/s10142-010-0181-4. PubMed DOI

Hackenberg M., Gustafson P., Langridge P., Shi B.-J. Differential Expression of MicroRNAs and Other Small RNAs in Barley between Water and Drought Conditions. Plant Biotechnol. J. 2015;13:2–13. doi: 10.1111/pbi.12220. PubMed DOI PMC

Qiu C.-W., Liu L., Feng X., Hao P.-F., He X., Cao F., Wu F. Genome-Wide Identification and Characterization of Drought Stress Responsive MicroRNAs in Tibetan Wild Barley. Int. J. Mol. Sci. 2020;21:2795. doi: 10.3390/ijms21082795. PubMed DOI PMC

Grabowska A., Smoczynska A., Bielewicz D., Pacak A., Jarmolowski A., Szweykowska-Kulinska Z. Barley MicroRNAs as Metabolic Sensors for Soil Nitrogen Availability. Plant Sci. 2020;299:110608. doi: 10.1016/j.plantsci.2020.110608. PubMed DOI

Ozhuner E., Eldem V., Ipek A., Okay S., Sakcali S., Zhang B., Boke H., Unver T. Boron Stress Responsive MicroRNAs and Their Targets in Barley. PLoS ONE. 2013;8:e59543. doi: 10.1371/journal.pone.0059543. PubMed DOI PMC

Hackenberg M., Huang P.-J., Huang C.-Y., Shi B.-J., Gustafson P., Langridge P. A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions. DNA Res. 2013;20:109–125. doi: 10.1093/dnares/dss037. PubMed DOI PMC

Sega P., Kruszka K., Bielewicz D., Karlowski W., Nuc P., Szweykowska-Kulinska Z., Pacak A. Pi-Starvation Induced Transcriptional Changes in Barley Revealed by a Comprehensive RNA-Seq and Degradome Analyses. BMC Genom. 2021;22:165. doi: 10.1186/s12864-021-07481-w. PubMed DOI PMC

Bai B., Bian H., Zeng Z., Hou N., Shi B., Wang J., Zhu M., Han N. MiR393-Mediated Auxin Signaling Regulation Is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. Plant Cell Physiol. 2017;58:426–439. doi: 10.1093/pcp/pcw211. PubMed DOI

Wu L., Yu J., Shen Q., Huang L., Wu D., Zhang G. Identification of MicroRNAs in Response to Aluminum Stress in the Roots of Tibetan Wild Barley and Cultivated Barley. BMC Genom. 2018;19:560. doi: 10.1186/s12864-018-4953-x. PubMed DOI PMC

Yu J., Wu L., Fu L., Shen Q., Kuang L., Wu D., Zhang G. Genotypic Difference of Cadmium Tolerance and the Associated MicroRNAs in Wild and Cultivated Barley. Plant Growth Regul. 2019;87:389–401. doi: 10.1007/s10725-019-00479-1. DOI

Chen F., He J., Jin G., Chen Z.-H., Dai F. Identification of Novel MicroRNAs for Cold Deacclimation in Barley. Plant Growth Regul. 2020;92:389–400. doi: 10.1007/s10725-020-00646-9. DOI

Kruszka K., Pacak A., Swida-Barteczka A., Nuc P., Alaba S., Wroblewska Z., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Transcriptionally and Post-Transcriptionally Regulated MicroRNAs in Heat Stress Response in Barley. J. Exp. Bot. 2014;65:6123–6135. doi: 10.1093/jxb/eru353. PubMed DOI PMC

Schreiber A.W., Shi B.-J., Huang C.-Y., Langridge P., Baumann U. Discovery of Barley MiRNAs through Deep Sequencing of Short Reads. BMC Genom. 2011;12:129. doi: 10.1186/1471-2164-12-129. PubMed DOI PMC

Lv S., Nie X., Wang L., Du X., Biradar S.S., Jia X., Weining S. Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing. Int. J. Mol. Sci. 2012;13:2973–2984. doi: 10.3390/ijms13032973. PubMed DOI PMC

Kruszka K., Pacak A., Swida-Barteczka A., Stefaniak A.K., Kaja E., Sierocka I., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Developmentally Regulated Expression and Complex Processing of Barley Pri-MicroRNAs. BMC Genom. 2013;14:34. doi: 10.1186/1471-2164-14-34. PubMed DOI PMC

Liu J., Cheng X., Liu D., Xu W., Wise R., Shen Q.-H. The MiR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling. PLoS Genet. 2014;10:e1004755. doi: 10.1371/journal.pgen.1004755. PubMed DOI PMC

Kis A., Tholt G., Ivanics M., Várallyay É., Jenes B., Havelda Z. Polycistronic Artificial MiRNA-Mediated Resistance to Wheat Dwarf Virus in Barley Is Highly Efficient at Low Temperature. Mol. Plant Pathol. 2016;17:427–437. doi: 10.1111/mpp.12291. PubMed DOI PMC

Deng P., Bian J., Yue H., Feng K., Wang M., Du X., Weining S., Nie X. Characterization of MicroRNAs and Their Targets in Wild Barley (Hordeum vulgare Subsp. Spontaneum) Using Deep Sequencing. Genome. 2016;59:339–348. doi: 10.1139/gen-2015-0224. PubMed DOI

Pacak A.M., Kruszka K., Świda-Barteczka A., Nuc P., Karlowski W., Jarmołowski A., Szweykowska-Kulińska Z. Developmental Changes in Barley MicroRNA Expression Profiles Coupled with MiRNA Targets Analysis. Acta Biochim. Pol. 2016;63:799–809. doi: 10.18388/abp.2016_1347. PubMed DOI

Bai B., Shi B., Hou N., Cao Y., Meng Y., Bian H., Zhu M., Han N. MicroRNAs Participate in Gene Expression Regulation and Phytohormone Cross-Talk in Barley Embryo during Seed Development and Germination. BMC Plant Biol. 2017;17:150. doi: 10.1186/s12870-017-1095-2. PubMed DOI PMC

Smith O., Palmer S.A., Clapham A.J., Rose P., Liu Y., Wang J., Allaby R.G. Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment. Mol. Biol. Evol. 2017;34:2555–2562. doi: 10.1093/molbev/msx175. PubMed DOI PMC

Tripathi R.K., Bregitzer P., Singh J. Genome-Wide Analysis of the SPL/MiR156 Module and Its Interaction with the AP2/MiR172 Unit in Barley. Sci. Rep. 2018;8:7085. doi: 10.1038/s41598-018-25349-0. PubMed DOI PMC

Plaksenkova I., Kokina I., Petrova A., Jermaļonoka M., Gerbreders V., Krasovska M. The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and MiRNA Expression in Barley (Hordeum vulgare L.) Seedlings. Sci. World J. 2020;2020:6649746. doi: 10.1155/2020/6649746. PubMed DOI PMC

Ye Z., Zeng J., Long L., Ye L., Zhang G. Identification of MicroRNAs in Response to Low Potassium Stress in the Shoots of Tibetan Wild Barley and Cultivated. Curr. Plant Biol. 2021;25:100193. doi: 10.1016/j.cpb.2020.100193. DOI

Puchta M., Groszyk J., Małecka M., Koter M.D., Niedzielski M., Rakoczy-Trojanowska M., Boczkowska M. Barley Seeds MiRNome Stability during Long-Term Storage and Aging. Int. J. Mol. Sci. 2021;22:4315. doi: 10.3390/ijms22094315. PubMed DOI PMC

Yao X., Wang Y., Yao Y., Bai Y., Wu K., Qiao Y. Identification MicroRNAs and Target Genes in Tibetan Hulless Barley to BLS Infection. Agron. J. 2021;113:2273–2292. doi: 10.1002/agj2.20649. DOI

Wang N.-H., Zhou X.-Y., Shi S.-H., Zhang S., Chen Z.-H., Ali M.A., Ahmed I.M., Wang Y., Wu F. An MiR156-Regulated Nucleobase-Ascorbate Transporter 2 Confers Cadmium Tolerance via Enhanced Anti-Oxidative Capacity in Barley. J. Adv. Res. 2022 doi: 10.1016/j.jare.2022.04.001. in press . PubMed DOI PMC

Liao P., Li S., Cui X., Zheng Y. A Comprehensive Review of Web-Based Resources of Non-Coding RNAs for Plant Science Research. Int. J. Biol. Sci. 2018;14:819–832. doi: 10.7150/ijbs.24593. PubMed DOI PMC

Yi X., Zhang Z., Ling Y., Xu W., Su Z. PNRD: A Plant Non-Coding RNA Database. Nucleic Acids Res. 2015;43:D982–D989. doi: 10.1093/nar/gku1162. PubMed DOI PMC

Guo Z., Kuang Z., Zhao Y., Deng Y., He H., Wan M., Tao Y., Wang D., Wei J., Li L. PmiREN2.0: From Data Annotation to Functional Exploration of Plant MicroRNAs. Nucleic Acids Res. 2022;50:D1475–D1482. doi: 10.1093/nar/gkab811. PubMed DOI PMC

Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC

Lunardon A., Johnson N.R., Hagerott E., Phifer T., Polydore S., Coruh C., Axtell M.J. Integrated Annotations and Analyses of Small RNA–Producing Loci from 47 Diverse Plants. Genome Res. 2020;30:497–513. doi: 10.1101/gr.256750.119. PubMed DOI PMC

Szcześniak M.W., Makalowska I. MiRNEST 2.0: A Database of Plant and Animal MicroRNAs. Nucleic Acids Res. 2014;42:D74–D77. doi: 10.1093/nar/gkt1156. PubMed DOI PMC

Liu J., Liu X., Zhang S., Liang S., Luan W., Ma X. TarDB: An Online Database for Plant MiRNA Targets and MiRNA-Triggered Phased SiRNAs. BMC Genom. 2021;22:348. doi: 10.1186/s12864-021-07680-5. PubMed DOI PMC

Dou X., Zhou Z., Zhao L. Identification and Expression Analysis of MiRNAs in Germination and Seedling Growth of Tibetan Hulless Barley. Genomics. 2021;113:3735–3749. doi: 10.1016/j.ygeno.2021.08.019. PubMed DOI

Xing S., Salinas M., Höhmann S., Berndtgen R., Huijser P. MiR156-Targeted and Nontargeted SBP-Box Transcription Factors Act in Concert to Secure Male Fertility in Arabidopsis. Plant Cell. 2010;22:3935–3950. doi: 10.1105/tpc.110.079343. PubMed DOI PMC

Cui L., Zheng F., Wang J., Zhang C., Xiao F., Ye J., Li C., Ye Z., Zhang J. MiR156a-Targeted SBP-Box Transcription Factor SlSPL13 Regulates Inflorescence Morphogenesis by Directly Activating SFT in Tomato. Plant Biotechnol. J. 2020;18:1670–1682. doi: 10.1111/pbi.13331. PubMed DOI PMC

Liu J., Cheng X., Liu P., Sun J. MiR156-Targeted SBP-Box Transcription Factors Interact with DWARF53 to Regulate TEOSINTE BRANCHED1 and BARREN STALK1 Expression in Bread Wheat. Plant Physiol. 2017;174:1931–1948. doi: 10.1104/pp.17.00445. PubMed DOI PMC

Millar A.A., Lohe A., Wong G. Biology and Function of MiR159 in Plants. Plants. 2019;8:255. doi: 10.3390/plants8080255. PubMed DOI PMC

Csukasi F., Donaire L., Casañal A., Martínez-Priego L., Botella M.A., Medina-Escobar N., Llave C., Valpuesta V. Two Strawberry MiR159 Family Members Display Developmental-Specific Expression Patterns in the Fruit Receptacle and Cooperatively Regulate Fa-GAMYB. New Phytol. 2012;195:47–57. doi: 10.1111/j.1469-8137.2012.04134.x. PubMed DOI

da Silva E.M., Silva G.F.F.E., Bidoia D.B., da Silva Azevedo M., de Jesus F.A., Pino L.E., Peres L.E.P., Carrera E., López-Díaz I., Nogueira F.T.S. Micro RNA 159-Targeted Sl GAMYB Transcription Factors Are Required for Fruit Set in Tomato. Plant J. 2017;92:95–109. doi: 10.1111/tpj.13637. PubMed DOI

Yadav A., Kumar S., Verma R., Lata C., Sanyal I., Rai S.P. MicroRNA 166: An Evolutionarily Conserved Stress Biomarker in Land Plants Targeting HD-ZIP Family. Physiol. Mol. Biol. Plants. 2021;27:2471–2485. doi: 10.1007/s12298-021-01096-x. PubMed DOI PMC

Chen H., Fang R., Deng R., Li J. The OsmiRNA166b-OsHox32 Pair Regulates Mechanical Strength of Rice Plants by Modulating Cell Wall Biosynthesis. Plant Biotechnol. J. 2021;19:1468–1480. doi: 10.1111/pbi.13565. PubMed DOI PMC

Javed M., Solanki M., Sinha A., Shukla L.I. Position Based Nucleotide Analysis of MiR168 Family in Higher Plants and Its Targets in Mammalian Transcripts. MicroRNA. 2017;6:136–142. doi: 10.2174/2211536606666170215154151. PubMed DOI

Um T., Choi J., Park T., Chung P.J., Jung S.E., Shim J.S., Kim Y.S., Choi I.-Y., Park S.C., Oh S.-J. Rice MicroRNA171f/SCL6 Module Enhances Drought Tolerance by Regulation of Flavonoid Biosynthesis Genes. Plant Direct. 2022;6:e374. doi: 10.1002/pld3.374. PubMed DOI PMC

Huang S., Zhou J., Gao L., Tang Y. Plant MiR397 and Its Functions. Funct. Plant Biol. 2020;48:361–370. doi: 10.1071/FP20342. PubMed DOI

Dong C.-H., Pei H. Over-Expression of MiR397 Improves Plant Tolerance to Cold Stress in Arabidopsis Thaliana. J. Plant Biol. 2014;57:209–217. doi: 10.1007/s12374-013-0490-y. DOI

Pegler J.L., Oultram J.M., Grof C.P., Eamens A.L. Molecular Manipulation of the MiR399/PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis Thaliana. Plants. 2020;10:73. doi: 10.3390/plants10010073. PubMed DOI PMC

Kim W., Ahn H.J., Chiou T.-J., Ahn J.H. The Role of the MiR399-PHO2 Module in the Regulation of Flowering Time in Response to Different Ambient Temperatures in Arabidopsis Thaliana. Mol. Cells. 2011;32:83–88. doi: 10.1007/s10059-011-1043-1. PubMed DOI PMC

Yan Y., Wang H., Hamera S., Chen X., Fang R. MiR444a Has Multiple Functions in the Rice Nitrate-Signaling Pathway. Plant J. 2014;78:44–55. doi: 10.1111/tpj.12446. PubMed DOI

Wang H., Jiao X., Kong X., Hamera S., Wu Y., Chen X., Fang R., Yan Y. A Signaling Cascade from MiR444 to RDR1 in Rice Antiviral RNA Silencing Pathway. Plant Physiol. 2016;170:2365–2377. doi: 10.1104/pp.15.01283. PubMed DOI PMC

Jiao X., Wang H., Yan J., Kong X., Liu Y., Chu J., Chen X., Fang R., Yan Y. Promotion of BR Biosynthesis by MiR444 Is Required for Ammonium-Triggered Inhibition of Root Growth. Plant Physiol. 2020;182:1454–1466. doi: 10.1104/pp.19.00190. PubMed DOI PMC

Sun L., Sun G., Shi C., Sun D. Transcriptome Analysis Reveals New MicroRNAs-Mediated Pathway Involved in Anther Development in Male Sterile Wheat. BMC Genom. 2018;19:333. doi: 10.1186/s12864-018-4727-5. PubMed DOI PMC

Bano N., Fakhrah S., Nayak S.P., Bag S.K., Mohanty C.S. Identification of MiRNA and Their Target Genes in Cestrum nocturnum L. and Cestrum diurnum L. in Stress Responses. Physiol. Mol. Biol. Plants. 2022;28:31–49. doi: 10.1007/s12298-022-01127-1. PubMed DOI PMC

Li T., Ma L., Geng Y., Hao C., Chen X., Zhang X. Small RNA and Degradome Sequencing Reveal Complex Roles of MiRNAs and Their Targets in Developing Wheat Grains. PLoS ONE. 2015;10:e0139658. doi: 10.1371/journal.pone.0139658. PubMed DOI PMC

Liu Y., Wang X., Yuan L., Liu Y., Shen T., Zhang Y. Comparative Small RNA Profiling and Functional Exploration on Wheat with High-and Low-Cadmium Accumulation. Front. Genet. 2021;12:635599. doi: 10.3389/fgene.2021.635599. PubMed DOI PMC

Samad A.F.A., Sajad M., Nazaruddin N., Fauzi I.A., Murad A.M.A., Zainal Z., Ismail I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Front. Plant Sci. 2017;8:565. doi: 10.3389/fpls.2017.00565. PubMed DOI PMC

Van Bel M., Diels T., Vancaester E., Kreft L., Botzki A., Van de Peer Y., Coppens F., Vandepoele K. PLAZA 4.0: An Integrative Resource for Functional, Evolutionary and Comparative Plant Genomics. Nucleic Acids Res. 2018;46:D1190–D1196. doi: 10.1093/nar/gkx1002. PubMed DOI PMC

Van Bel M., Silvestri F., Weitz E.M., Kreft L., Botzki A., Coppens F., Vandepoele K. PLAZA 5.0: Extending the Scope and Power of Comparative and Functional Genomics in Plants. Nucleic Acids Res. 2022;50:D1468–D1474. doi: 10.1093/nar/gkab1024. PubMed DOI PMC

Zhang H.-M., Kuang S., Xiong X., Gao T., Liu C., Guo A.-Y. Transcription Factor and MicroRNA Co-Regulatory Loops: Important Regulatory Motifs in Biological Processes and Diseases. Brief. Bioinform. 2015;16:45–58. doi: 10.1093/bib/bbt085. PubMed DOI

Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread Changes in Protein Synthesis Induced by MicroRNAs. Nature. 2008;455:58–63. doi: 10.1038/nature07228. PubMed DOI

Baldrich P., Beric A., Meyers B.C. Despacito: The Slow Evolutionary Changes in Plant MicroRNAs. Curr. Opin. Plant Biol. 2018;42:16–22. doi: 10.1016/j.pbi.2018.01.007. PubMed DOI

Liu Y., Wang L., Chen D., Wu X., Huang D., Chen L., Li L., Deng X., Xu Q. Genome-Wide Comparison of MicroRNAs and Their Targeted Transcripts among Leaf, Flower and Fruit of Sweet Orange. BMC Genom. 2014;15:695. doi: 10.1186/1471-2164-15-695. PubMed DOI PMC

Baldrich P., Campo S., Wu M.-T., Liu T.-T., Hsing Y.-I.C., Segundo B.S. MicroRNA-Mediated Regulation of Gene Expression in the Response of Rice Plants to Fungal Elicitors. RNA Biol. 2015;12:847–863. doi: 10.1080/15476286.2015.1050577. PubMed DOI PMC

Banks I.R., Zhang Y., Wiggins B.E., Heck G.R., Ivashuta S. RNA Decoys. Plant Signal. Behav. 2012;7:1188–1193. doi: 10.4161/psb.21299. PubMed DOI PMC

Ma X., Liu C., Gu L., Mo B., Cao X., Chen X. TarHunter, a Tool for Predicting Conserved MicroRNA Targets and Target Mimics in Plants. Bioinformatics. 2018;34:1574–1576. doi: 10.1093/bioinformatics/btx797. PubMed DOI PMC

Unver T., Tombuloglu H. Barley Long Non-Coding RNAs (LncRNA) Responsive to Excess Boron. Genomics. 2020;112:1947–1955. doi: 10.1016/j.ygeno.2019.11.007. PubMed DOI

Yu J., Cheng Y., Feng K., Ruan M., Ye Q., Wang R., Li Z., Zhou G., Yao Z., Yang Y., et al. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2016;7:1215. doi: 10.3389/fpls.2016.01215. PubMed DOI PMC

Lewis B.P., Burge C.B., Bartel D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI

Ni W.-J., Leng X.-M. Dynamic MiRNA–MRNA Paradigms: New Faces of MiRNAs. Biochem. Biophys. Rep. 2015;4:337–341. doi: 10.1016/j.bbrep.2015.10.011. PubMed DOI PMC

Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC

Kerpedjiev P., Hammer S., Hofacker I.L. Forna (Force-Directed RNA): Simple and Effective Online RNA Secondary Structure Diagrams. Bioinformatics. 2015;31:3377–3379. doi: 10.1093/bioinformatics/btv372. PubMed DOI PMC

Jones-Rhoades M.W., Bartel D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced MiRNA. Mol. Cell. 2004;14:787–799. doi: 10.1016/j.molcel.2004.05.027. PubMed DOI

Sun Y.-H., Lu S., Shi R., Chiang V.L. RNAi and Plant Gene Function Analysis. Humana Press; Totowa, NJ, USA: 2011. Computational Prediction of Plant MiRNA Targets; pp. 175–186. PubMed

Dai X., Zhuang Z., Zhao P.X. Computational Analysis of MiRNA Targets in Plants: Current Status and Challenges. Brief. Bioinform. 2011;12:115–121. doi: 10.1093/bib/bbq065. PubMed DOI

Fahlgren N., Carrington J.C. Plant MicroRNAs. Humana Press; Totowa, NJ, USA: 2010. MiRNA Target Prediction in Plants; pp. 51–57. PubMed

Pandey P., Srivastava P.K., Pandey S.P. Plant MicroRNAs. Humana Press; Totowa, NJ, USA: 2019. Prediction of Plant MiRNA Targets; pp. 99–107. PubMed

Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B., Bartel D.P. Prediction of Plant MicroRNA Targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI

Llave C., Xie Z., Kasschau K.D., Carrington J.C. Cleavage of Scarecrow-like MRNA Targets Directed by a Class of Arabidopsis MiRNA. Science. 2002;297:2053–2056. doi: 10.1126/science.1076311. PubMed DOI

Riolo G., Cantara S., Marzocchi C., Ricci C. MiRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020;4:1. doi: 10.3390/mps4010001. PubMed DOI PMC

Patel P., Yadav K., Ganapathi T.R., Penna S. Plant MiRNAome: Cross Talk in Abiotic Stressful Times. In: Rajpal V.R., Sehgal D., Kumar A., Raina S.N., editors. Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity; Springer International Publishing; Cham, Switzesland: 2019. pp. 25–52.

Zhang B., Wang Q. MicroRNA-Based Biotechnology for Plant Improvement. J. Cell. Physiol. 2015;230:1–15. doi: 10.1002/jcp.24685. PubMed DOI

Zhang B. MicroRNA: A New Target for Improving Plant Tolerance to Abiotic Stress. J. Exp. Bot. 2015;66:1749–1761. doi: 10.1093/jxb/erv013. PubMed DOI PMC

Ferdous J., Whitford R., Nguyen M., Brien C., Langridge P., Tricker P.J. Drought-Inducible Expression of Hv-MiR827 Enhances Drought Tolerance in Transgenic Barley. Funct. Integr. Genom. 2017;17:279–292. doi: 10.1007/s10142-016-0526-8. PubMed DOI

Li N., Yang T., Guo Z., Wang Q., Chai M., Wu M., Li X., Li W., Li G., Tang J., et al. Maize MicroRNA166 Inactivation Confers Plant Development and Abiotic Stress Resistance. Int. J. Mol. Sci. 2020;21:9506. doi: 10.3390/ijms21249506. PubMed DOI PMC

Chung P.J., Chung H., Oh N., Choi J., Bang S.W., Jung S.E., Jung H., Shim J.S., Kim J.-K. Efficiency of Recombinant CRISPR/RCas9-Mediated MiRNA Gene Editing in Rice. Int. J. Mol. Sci. 2020;21:9606. doi: 10.3390/ijms21249606. PubMed DOI PMC

Hua K., Tao X., Zhu J.-K. Expanding the Base Editing Scope in Rice by Using Cas9 Variants. Plant Biotechnol. J. 2019;17:499–504. doi: 10.1111/pbi.12993. PubMed DOI PMC

Ó’Maoiléidigh D.S., van Driel A.D., van Singh A., Sang Q., LeBec N., Vincent C., de Olalla E.B.G., Vayssières A., Branchat M.R., Severing E., et al. Systematic Analyses of the MIR172 Family Members of Arabidopsis Define Their Distinct Roles in Regulation of APETALA2 during Floral Transition. PLoS Biol. 2021;19:e3001043. doi: 10.1371/journal.pbio.3001043. PubMed DOI PMC

Deng F., Zeng F., Shen Q., Abbas A., Cheng J., Jiang W., Chen G., Shah A.N., Holford P., Tanveer M., et al. Molecular Evolution and Functional Modification of Plant MiRNAs with CRISPR. Trends Plant Sci. 2022;27:890–907. doi: 10.1016/j.tplants.2022.01.009. PubMed DOI

Dalakouras A., Wassenegger M., Dadami E., Ganopoulos I., Pappas M.L., Papadopoulou K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiol. 2020;182:38–50. doi: 10.1104/pp.19.00570. PubMed DOI PMC

Mujtaba M., Wang D., Carvalho L.B., Oliveira J.L., Espirito Santo Pereira A.D., Sharif R., Jogaiah S., Paidi M.K., Wang L., Ali Q., et al. Nanocarrier-Mediated Delivery of MiRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agric. Sci. Technol. 2021;1:417–435. doi: 10.1021/acsagscitech.1c00146. DOI

Ražná K., Rataj V., Macák M., Galambošová J. MicroRNA-Based Markers as a Tool to Monitor the Barley (Hordeum vulgare L.) Response to Soil Compaction. Acta Fytotech. Zootech. 2020;23:139–146. doi: 10.15414/afz.2020.23.03.139-146. DOI

Gurjar A.K.S., Panwar A.S., Gupta R., Mantri S.S. PmiRExAt: Plant MiRNA Expression Atlas Database and Web Applications. Database. 2016;2016:baw060. doi: 10.1093/database/baw060. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...