A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery

. 2020 Jul ; 43 (7) : 1613-1624. [epub] 20200330

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32196123

miR156 is a conserved microRNA whose role and induction mechanisms under stress are poorly known. Strigolactones are phytohormones needed in shoots for drought acclimation. They promote stomatal closure ABA-dependently and independently; however, downstream effectors for the former have not been identified. Linkage between miR156 and strigolactones under stress has not been reported. We compared ABA accumulation and sensitivity as well as performances of wt and miR156-overexpressing (miR156-oe) tomato plants during drought. We also quantified miR156 levels in wt, strigolactone-depleted and strigolactone-treated plants, exposed to drought stress. Under irrigated conditions, miR156 overexpression and strigolactone treatment led to lower stomatal conductance and higher ABA sensitivity. Exogenous strigolactones were sufficient for miR156 accumulation in leaves, while endogenous strigolactones were required for miR156 induction by drought. The "after-effect" of drought, by which stomata do not completely re-open after rewatering, was enhanced by both strigolactones and miR156. The transcript profiles of several miR156 targets were altered in strigolactone-depleted plants. Our results show that strigolactones act as a molecular link between drought and miR156 in tomato, and identify miR156 as a mediator of ABA-dependent effect of strigolactones on the after-effect of drought on stomata. Thus, we provide insights into both strigolactone and miR156 action on stomata.

Komentář v

PubMed

Zobrazit více v PubMed

Andreo-Jimenez, B., Ruyter-Spira, C., Bouwmeester, H. J., & Lopez-Raez, J. A. (2015). Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 394, 1-19.

Arshad, M., Feyissa, B., Amyot, L., Aung, B., & Hannoufa, A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 258, 122-136.

Axtell, M. J., & Meyers, B. C. (2018). Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell, 30(2), 272-284.

Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A., … Hedrich, R. (2013). The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology, 23(1), 53-57.

Bayraktar, R., Van Roosbroeck, K., & Calin, G. A. (2017). Cell-to-cell communication: microRNAs as hormones. Molecular Oncology, 11(12), 1673-1686.

Bhogale, S., Mahajan, A. S., Natarajan, B., Rajabhoj, M., Thulasiram, H. V., & Banerjee, A. K. (2014). MicroRNA156: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology, 164(2), 1011-1027.

Brun, G., Thoiron, S., Braem, L., Pouvreau, J. B., Montiel, G., Lechat, M. M., … Delavault, P. (2019). CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants. Plant, Cell & Environment, 42(9), 2612-2626.

Bu, Q., Lv, T., Shen, H., Luong, P., Wang, J., Wang, Z., … Huq, E. (2014). Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiology, 164(1), 424-439.

Cardinale, F., Korwin Krukowski, P., Schubert, A., & Visentin, I. (2018). Strigolactones: Mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. Journal of Experimental Botany, 69(9), 2291-2303.

Cui, L. G., Shan, J. X., Shi, M., Gao, J. P., & Lin, H. X. (2014). The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal, 80(6), 1108-1117.

Curaba, J., Singh, M. B., & Bhalla, P. L. (2014). miRNAs in the crosstalk between phytohormone signalling pathways. Journal of Experimental Botany, 65(6), 1425-1438.

Dai, X., & Zhao, P. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39, W155-W159.

Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought 'train’ transcriptional responses in Arabidopsis. Nature Communications, 3, 740.

Ding, Y., Tao, Y., & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany, 64(1), 3077-3086.

Ferreira de Silva, G. F., Silva, E. M., Azevedo Mda, S., Guivin, M. A., Ramiro, D. A., Figueiredo, C. R., … Nogueira, F. T. (2014). MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant Journal, 78(4), 604-618.

Ferrero, M., Pagliarani, C., Novak, O., Ferrandino, A., Cardinale, F., Visentin, I., & Schubert, A. (2018). Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of Experimental Botany, 69(9), 2391-2401.

Galmes, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175(1), 81-93.

Ha, C. V., Leyva-Gonzalez, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., … Tran, L. S. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 851-856.

Haider, I., Andreo-Jimenez, B., Bruno, M., Bimbo, A., Flokova, K., Abuauf, H., … Ruyter-Spira, C. (2018). The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of Experimental Botany, 69(9), 2403-2414.

Hopper, D. W., Ghan, R., & Cramer, G. R. (2014). A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Horticulture Research, 1, 2.

Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., … Chiou, T. J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology, 151(4), 2120-2132.

Jones-Rhoades, M., & Bartel, D. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14, 787-799.

Kerr, S. C., & Beveridge, C. A. (2017). IPA1: A direct target of SL signaling. Cell Research, 27, 1191-1192.

Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 1819(2), 137-148.

Kuromori, T., Sugimoto, E., & Shinozaki, K. (2014). Inter-tissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiology, 164, 1587-1592.

Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18(1), 124.

Lanfranco, L., Fiorilli, V., Venice, F., & Bonfante, P. (2018). Strigolactones cross the kingdoms: Plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 69(9), 2175-2188.

Lechat, M. M., Pouvreau, J. B., Peron, T., Gauthier, M., Montiel, G., Veronesi, C., … Delavault, P. (2012). PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. Journal of Experimental Botany, 63(14), 5311-5322.

Li, W., Nguyen, K. H., Chu, H. D., Ha, C. V., Watanabe, Y., Osakabe, Y., … Tran, L. P. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13(11), e1007076.

Lian, C., Yao, K., Duan, H., Li, Q., Liu, C., Yin, W., & Xia, X. (2018). Exploration of ABA-responsive miRNAs reveals a new hormone signaling crosstalk pathway regulating root growth of Populus euphratica. International Journal of Molecular Sciences, 19(5), 1481.

Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5), 836-843.

Liu, J., Cheng, X., Liu, P., & Sun, J. (2017). miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology, 174(3), 1931-1948.

Liu, J., He, H., Vitali, M., Visentin, I., Charnikhova, T., Haider, I., … Cardinale, F. (2015). Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 241(6), 1435-1451.

Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., & Ouyang, B. (2017). Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics, 18(1), 481.

Lopez-Raez, J. A. (2016). How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta, 243(6), 1375-1385.

Lovisolo, C., Perrone, I., Hartung, W., & Schubert, A. (2008). An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytologist, 180(3), 642-651.

Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., … Wang, G. (2018). Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist, 217(1), 290-304.

Marzec, M., & Muszynska, A. (2015). In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. International Journal of Molecular Sciences, 16(4), 6757-6782.

Matthews, J. S. A., Vialet-Chabrand, S. R. M., & Lawson, T. (2017). Diurnal variation in gas exchange: The balance between carbon fixation and water loss. Plant Physiology, 174(2), 614-623.

May, P., Liao, W., Wu, Y., Shuai, B., McCombie, W. R., Zhang, M. Q., & Liu, Q. A. (2013). The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nature Communications, 4, 2145.

McAdam, S. A. M., & Brodribb, T. J. (2018). Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves. Plant Physiology, 177(3), 911-917.

Merilo, E., Yarmolinsky, D., Jalakas, P., Parik, H., Tulva, I., Rasulov, B., … Kollist, H. (2018). Stomatal VPD response: There is more to the story than ABA. Plant Physiology, 176(1), 851-864.

Nozawa, M., Miura, S., & Nei, M. (2012). Origins and evolution of microRNA genes in plant species. Genome Biology and Evolution, 4(3), 230-239.

Pagliarani, C., Vitali, M., Ferrero, M., Vitulo, N., Incarbone, M., Lovisolo, C., … Schubert, A. (2017). The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiology, 173(4), 2180-2195.

Salinas, M., Xing, S., Hohmann, S., Berndtgen, R., & Huijser, P. (2012). Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 235(6), 1171-1184.

Scaffidi, A., Waters, M. T., Sun, Y. K., Skelton, B. W., Dixon, K. W., Ghisalberti, E. L., … Smith, S. M. (2014). Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiology, 165(3), 1221-1232.

Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148, 339-346.

Silva, G. F. F., Silva, E. M., Correa, J. P. O., Vicente, M. H., Jiang, N., Notini, M. M., … Nogueira, F. T. S. (2019). Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist, 221(3), 1328-1344.

Song, X., Lu, Z., Yu, H., Shao, G., Xiong, J., Meng, X., … Li, J. (2017). IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research, 27(9), 1128-1141.

Speth, C., Willing, E. M., Rausch, S., Schneeberger, K., & Laubinger, S. (2013). RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant Journal, 76(3), 433-445.

Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Baurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 26(4), 1792-1807.

Tardieu, F. (2016). Too many partners in root-shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? New Phytologist, 212(4), 802-804.

Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733-759.

Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., & Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant and Cell Physiology, 53(1), 107-117.

Turečková, V., Novák, O., & Strnad, M. (2009). Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta, 80(1), 390-399.

Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novak, O., … Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212(4), 954-963.

Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., … Klee, H. J. (2010). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant Journal, 61(2), 300-311.

Wang, H., & Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant, 8(5), 677-688.

Waters, M. T., Gutjahr, C., Bennett, T., & Nelson, D. C. (2017). Strigolactone signaling and evolution. Annual Review of Plant Biology, 68, 291-322.

Xu, Y., Zhang, L., & Wu, G. (2018). Epigenetic regulation of juvenile-to-adult transition in plants. Frontiers in Plant Science, 9, 1048.

Yan, J., Wang, P., Wang, B., Hsu, C. C., Tang, K., Zhang, H., … Zhu, J. K. (2017). The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genetics, 13(4), e1006753.

Zhang, X., Zou, Z., Zhang, J., Zhang, Y., Han, Q., Hu, T., … Ye, Z. (2011). Over-expression of Sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters, 585(2), 435-439.

Zhang, Y., Lv, S., & Wang, G. (2018). Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signaling & Behavior, 13(3), e1444322.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...