Multi-omics insights into the positive role of strigolactone perception in barley drought response
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2018/31/F/NZ2/03848
Narodowe Centrum Nauki
2018/31/F/NZ2/03848
Narodowe Centrum Nauki
2018/31/F/NZ2/03848
Narodowe Centrum Nauki
ME 3356/7-1
Deutsche Forschungsgemeinschaft
ME 3356/7-1
Deutsche Forschungsgemeinschaft
PubMed
37735356
PubMed Central
PMC10515045
DOI
10.1186/s12870-023-04450-1
PII: 10.1186/s12870-023-04450-1
Knihovny.cz E-zdroje
- Klíčová slova
- Abscisic acid, Barley (Hordeum vulgare), Drought, Phytohormone, Proteome, Strigolactone, Transcriptome,
- MeSH
- ječmen (rod) * genetika MeSH
- multiomika MeSH
- období sucha MeSH
- percepce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GR24 strigolactone MeSH Prohlížeč
BACKGROUND: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response. RESULTS: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley. CONCLUSIONS: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.
Zobrazit více v PubMed
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368:266–269. PubMed
Waters MT, Gutjahr C, Bennett T, Nelson DC. Strigolactone Signaling and Evolution. Annu Rev Plant Biol. 2017;68:291–322. PubMed
Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol. 2012;22:2032–2036. PubMed
Stirnberg P, van de Sande K, Leyser HMO. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development. 2002;129:1131–1141. PubMed
Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536:469–473. PubMed
Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, et al. SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27:3143–3159. PubMed PMC
Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature. 2020;583:277–281. PubMed
Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 2014;164:424–439. PubMed PMC
Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA. 2014;111:851–856. PubMed PMC
Sedaghat M, Tahmasebi-Sarvestani Z, Emam Y, Mokhtassi-Bidgoli A. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol Biochem. 2017;119:59–69. PubMed
Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, et al. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem. 2019;135:99–110. PubMed
Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development. 2012;139:1285–1295. PubMed
Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. Strigolactone/MAX2-Induced Degradation of Brassinosteroid Transcriptional Effector BES1 Regulates Shoot Branching. Dev Cell. 2013;27:681–688. PubMed
Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, et al. Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis. Plant Physiol. 2014;165:1221–1232. PubMed PMC
Li S, Chen L, Li Y, Yao R, Wang F, Yang M, et al. Effect of GR24 Stereoisomers on Plant Development in Arabidopsis. Mol Plant. 2016;9:1432–1435. PubMed
Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, et al. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot. 2018;69:2403–2414. PubMed
Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, et al. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta. 2015;241:1435–1451. PubMed
Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, et al. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016;212:954–963. PubMed
Marzec M, Daszkowska-Golec A, Collin A, Melzer M, Eggert K, Szarejko I. Barley strigolactone signaling mutant hvd14.d reveals the role of strigolactones in ABA-dependent response to drought. Plant Cell Environ. 2020. 10.1111/pce.13815. PubMed
Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, et al. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 2020;103:111–127. PubMed
Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, et al. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. 2020;43:1613–1624. PubMed
Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, et al. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. 2018;217:290–304. PubMed
Marzec M, Gruszka D, Tylec P, Szarejko I. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol Plant. 2016;158:341–355. PubMed
Chwialkowska K, Nowakowska U, Mroziewicz A, Szarejko I, Kwasniewski M. Water-deficiency conditions differently modulate the methylome of roots and leaves in barley ( Hordeum vulgare L.) EXBOTJ. 2016;67:1109–21. PubMed PMC
Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol. 2021;42:1–14. PubMed
Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant. 2002;115:428–441. PubMed
Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci. 2000;97:10625–10630. PubMed PMC
De Ollas C, Arbona V, Gómez-Cadenas A, Dodd IC. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. J Exp Bot. 2018;69:2103–2116. PubMed PMC
Reichholf B, Herzog VA, Fasching N, Manzenreither RA, Sowemimo I, Ameres SL. Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. Mol Cell. 2019;75:756–768.e7. PubMed PMC
Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza LP, Fernie AR, et al. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep. 2022;12:533. PubMed PMC
Kudo T, Kiba T, Sakakibara H. Metabolism and Long-distance Translocation of Cytokinins. J Integr Plant Biol. 2010;52:53–60. PubMed
Daszkowska-Golec A, Karcz J, Plociniczak T, Sitko K, Szarejko I. Cuticular waxes—A shield of barley mutant in CBP20 (Cap-Binding Protein 20) gene when struggling with drought stress. Plant Sci. 2020;300:110593. PubMed
Richardson A, Wojciechowski T, Franke R, Schreiber L, Kerstiens G, Jarvis M, et al. Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. Planta. 2007;225:1471–1481. PubMed
Hu P, Tirelli N. Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chem. 2012;23:438–449. PubMed
Daudi A, O’Brien JA. Detection of Hydrogen Peroxide by DAB Staining in Arabidopsis Leaves. Bio Protoc. 2012;2:e263. PubMed PMC
Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR. Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends Plant Sci. 2019;24:625–635. PubMed
Yin X, Bai Y-L, Ye T, Yu M, Wu Y, Feng Y-Q. Cinnamoyl coA:NADP oxidoreductase like 1 regulates abscisic acid response by modulating phaseic acid homeostasis in Arabidopsis thaliana. J Exp Bot. 2021;73:erab474. PubMed
Ferrero M, Pagliarani C, Novák O, Ferrandino A, Cardinale F, Visentin I, et al. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. J Exp Bot. 2018;69:2391–2401. PubMed PMC
Yoshida K, Kondoh Y, Nakano T, Bolortuya B, Kawabata S, Iwahashi F, et al. New Abscisic Acid Derivatives Revealed Adequate Regulation of Stomatal, Transcriptional, and Developmental Responses to Conquer Drought. ACS Chem Biol. 2021;16:1566–1575. PubMed
Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J. ABI1 Protein Phosphatase 2C Is a Negative Regulator of Abscisic Acid Signaling. Plant Cell. 1999;11:1897–1909. PubMed PMC
Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, et al. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. 2004;37:354–369. PubMed
Xiong X, James VA, Zhang H, Altpeter F. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge) Mol Breeding. 2010;25:419–432.
Janiak A, Kwasniewski M, Sowa M, Kuczyńska A, Mikołajczak K, Ogrodowicz P, et al. Insights into Barley Root Transcriptome under Mild Drought Stress with an Emphasis on Gene Expression Regulatory Mechanisms. IJMS. 2019;20:6139. PubMed PMC
Daszkowska-Golec A, Collin A, Sitko K, Janiak A, Kalaji HM, Szarejko I. Genetic and Physiological Dissection of Photosynthesis in Barley Exposed to Drought Stress. IJMS. 2019;20:6341. PubMed PMC
Korwin Krukowski P, Visentin I, Russo G, Minerdi D, Bendahmane A, Schubert A, et al. Transcriptome Analysis Points to BES1 as a Transducer of Strigolactone Effects on Drought Memory in Arabidopsis thaliana. Plant Cell Physiol. 2023;63:1873–1889. PubMed
Wang T, Huang S, Zhang A, Guo P, Liu Y, Xu C, et al. JMJ17–WRKY40 and HY5–ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytol. 2021;230:567–584. PubMed
Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 1995;7:2115–2127. PubMed PMC
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant, Cell Environ. 2022;45:3611–3630. PubMed PMC
Qiu C-W, Zhang C, Wang N-H, Mao W, Wu F. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.) Environmental Pollution. 2021;273:116486. PubMed
Koramutla MK, Negi M, Ayele BT. Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes. 2021;12:1620. PubMed PMC
Xu Y, Burgess P, Huang B. Transcriptional regulation of hormone-synthesis and signaling pathways by overexpressing cytokinin-synthesis contributes to improved drought tolerance in creeping bentgrass. Physiol Plant. 2017;161:235–256. PubMed
Jahan MS, Nozulaidi M, Khairi M, Mat N. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. J Plant Physiol. 2016;195:1–8. PubMed
Halder T, Upadhyaya G, Basak C, Das A, Chakraborty C, Ray S. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants. Front Plant Sci. 2018;9:136. PubMed PMC
Labhilili M, Joudrier P, Gautier M-F. Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci. 1995;112:219–230.
Choi D-W, Zhu B, Close TJ. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet. 1999;98:1234–47.
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, et al. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci. 2019;20:368–395. PubMed
Kurowska MM, Wiecha K, Gajek K, Szarejko I. Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. PLoS ONE. 2019;14:e0226423. PubMed PMC
Dai M, Zhou N, Zhang Y, Zhang Y, Ni K, Wu Z, et al. Genome-wide analysis of the SBT gene family involved in drought tolerance in cotton. Front Plant Sci. 2023;13:1097732. PubMed PMC
Cui H, Zhou G, Ruan H, Zhao J, Hasi A, Zong N. Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Plants. 2023;12:369. PubMed PMC
Roberts IN, Veliz CG, Criado MV, Signorini A, Simonetti E, Caputo C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. J Plant Physiol. 2017;211:70–80. PubMed
Sebastián D, Fernando FD, Raúl DG, Gabriela GM. Overexpression of Arabidopsis aspartic protease APA1 gene confers drought tolerance. Plant Sci. 2020;292:110406. PubMed
Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, Jelonek J, Chmielewska B, Kurowska MM, et al. HorTILLUS-A Rich and Renewable Source of Induced Mutations for Forward/Reverse Genetics and Pre-breeding Programs in Barley (Hordeum vulgare L.) Frontiers Plant Science. 2018;9:216. PubMed PMC
Leutert M, Rodríguez‐Mias RA, Fukuda NK, Villén J. R2‐P2 rapid‐robotic phosphoproteomics enables multidimensional cell signaling studies. Mol Syst Biol. 2019;15:e9021. PubMed PMC
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–2319. PubMed
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–740. PubMed
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, et al. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. PubMed PMC
Kolano B, Plucienniczak A, Kwasniewski M, Maluszynska J. Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J Appl Genet. 2008;49:313–320. PubMed
Braszewska-Zalewska A, Bernas T, Maluszynska J. Epigenetic chromatin modifications in Brassica genomes. Genome. 2010;53:203–210. PubMed
Braszewska-Zalewska AJ, Wolny EA, Smialek L, Hasterok R. Tissue-Specific Epigenetic Modifications in Root Apical Meristem Cells of Hordeum vulgare. PLoS ONE. 2013;8:e69204. PubMed PMC
Wolny E, Braszewska-Zalewska A, Hasterok R. Spatial distribution of epigenetic modifications in Brachypodium distachyon embryos during seed maturation and germination. PLoS ONE. 2014;9:e101246. PubMed PMC