Strigolactone insensitivity affects the hormonal homeostasis in barley
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BPI/STE/2023/1/00012/U/00001
International from the beginning - wsparcie umiędzynarodowienia
2020/38/E/NZ9/00346
Narodowe Centrum Nauki
2018/31/F/NZ2/03848
Narodowe Centrum Nauki
PubMed
40102576
PubMed Central
PMC11920428
DOI
10.1038/s41598-025-94430-2
PII: 10.1038/s41598-025-94430-2
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, Branching, Phytohormone cross-talk, Strigolactones,
- MeSH
- cytokininy metabolismus MeSH
- heterocyklické sloučeniny tricyklické * MeSH
- homeostáza MeSH
- ječmen (rod) * růst a vývoj metabolismus MeSH
- laktony * metabolismus MeSH
- mutace MeSH
- proteom analýza MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- GR24 strigolactone MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické * MeSH
- laktony * MeSH
- proteom MeSH
- regulátory růstu rostlin * MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
Zobrazit více v PubMed
Aliche, E. B., Screpanti, C., De Mesmaeker, A., Munnik, T. & Bouwmeester, H. J. Science and application of strigolactones. New Phytol.227, 1001–1011 (2020). PubMed PMC
Wang, M. Molecular regulatory network of BRANCHED1 (BRC1) expression in axillary bud of Rpsa sp. in response to sugar and auxin. (Agrocampus Ouest, 2019).
Aguilar-Martínez, J. A., Poza-Carrión, C. & Cubas, P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell19, 458–472 (2007). PubMed PMC
Mashiguchi, K. et al. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in arabidopsis. Biosci. Biotechnol. Biochem.73, 2460–2465 (2009). PubMed
Braun, N. et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol.158, 225–238 (2012). PubMed PMC
Dun, E. A., de Saint Germain, A., Rameau, C. & Beveridge, C. A. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol.158, 487–498 (2012). PubMed PMC
Stes, E. et al. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J. Exp. Botany66, 5123–5134 (2015). PubMed PMC
Muhr, M., Prüfer, N., Paulat, M. & Teichmann, T. Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture. New Phytologist212, 613–626 (2016). PubMed
Soundappan, I. et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in arabidopsis. Plant Cell27, 3143–3159 (2015). PubMed PMC
Wang, L. et al. Strigolactone signaling in arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell27, 3128–3142 (2015). PubMed PMC
Song, X. et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res.27, 1128–1141 (2017). PubMed PMC
Skoog, F. & Thimann, K. V. Further experiments on the inhibition of the development of lateral buds by growth hormone. Proc. Natl. Acad. Sci. USA20, 480–485 (1934). PubMed PMC
Snow, R. On the upward inhibiting effect of auxin in shoots. The New Phytologist37, 173–185 (1938).
Cline, M. G. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann. Botany78, 255–266 (1996).
Müller, D. & Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Botany107, 1203–1212 (2011). PubMed PMC
Adamowski, M. & Friml, J. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell27, 20–32 (2015). PubMed PMC
Bennett, T. et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol.16, 553–563 (2006). PubMed
Arite, T. et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J.51, 1019–1029 (2007). PubMed
Shinohara, N., Taylor, C. & Leyser, O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin Efflux Protein PIN1 from the plasma membrane. PLOS Biol.11, e1001474 (2013). PubMed PMC
Crawford, S. et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development137, 2905–2913 (2010). PubMed
Hayward, A., Stirnberg, P., Beveridge, C. & Leyser, O. Interactions between Auxin and Strigolactone in Shoot Branching Control. Plant Physiol.151, 400–412 (2009). PubMed PMC
Foo, E. et al. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell17, 464–474 (2005). PubMed PMC
Johnson, X. et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol.142, 1014–1026 (2006). PubMed PMC
Sorefan, K. et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev.17, 1469–1474 (2003). PubMed PMC
Fichtner, F. et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). The Plant J.92, 611–623 (2017). PubMed
Dierck, R. et al. Change in auxin and cytokinin levels coincides with altered expression of branching genes during axillary bud outgrowth in chrysanthemum. PLOS One11, e0161732 (2016). PubMed PMC
Minakuchi, K. et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol.51, 1127–1135 (2010). PubMed PMC
Helliwell, C. A. et al. The arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. The Plant Cell13, 2115–2125 (2001). PubMed PMC
Chen, S. et al. The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum. J. Exp. Botany74, 5722–5735 (2023). PubMed PMC
Tanaka, M., Takei, K., Kojima, M., Sakakibara, H. & Mori, H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant J.45, 1028–1036 (2006). PubMed
Marzec, M., Gruszka, D., Tylec, P. & Szarejko, I. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol. Plantarum.158, 341–355 (2016). PubMed
Daszkowska-Golec, A. et al. Multi-omics insights into the positive role of strigolactone perception in barley drought response. BMC Plant Biol.23, 445 (2023). PubMed PMC
Xu, P., Chen, H. & Cai, W. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep.21, e48967 (2020). PubMed PMC
Noguero, M., Atif, R. M., Ochatt, S. & Thompson, R. D. The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci.209, 32–45 (2013). PubMed
Kang, H.-G. & Singh, K. B. Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects. The Plant J.21, 329–339 (2000). PubMed
Jha, P. & Kumar, V. BABY BOOM (BBM): A candidate transcription factor gene in plant biotechnology. Biotechnol. Lett.40, 1467–1475 (2018). PubMed
Scheres, B. & Krizek, B. A. Coordination of growth in root and shoot apices by AIL/PLT transcription factors. Curr. Opin. Plant Biol.41, 95–101 (2018). PubMed
Galinha, C. et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature449, 1053–1057 (2007). PubMed
Li, M. et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol.188, 1095–1110 (2022). PubMed PMC
Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell14, 1737–1749 (2002). PubMed PMC
Bowman, J. L. & Moyroud, E. Reflections on the ABC model of flower development. The Plant Cell36, 1334. 10.1093/plcell/koae044 (2024). PubMed PMC
Wang, L. et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature583, 277–281 (2020). PubMed
Assuero, S. G. & Tognetti, J. A. Tillering regulation by endogenous and environmental factors and its agricultural management. Am. J. Plant Sci. Biotechnol.4, 35–48 (2010).
Hussien, A. et al. Genetics of Tillering in Rice and Barley. The Plant Genome7, plantgenome2013.10.0032 (2014).
Dun, E. A., Brewer, P. B., Gillam, E. M. J. & Beveridge, C. A. Strigolactones and shoot branching: What Is the real hormone and how does it work?. Plant Cell Physiol.64, 967–983 (2023). PubMed PMC
Korek, M., Uhrig, R. G. & Marzec, M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J. Appl. Genetics10.1007/s13353-024-00885-w (2024). PubMed PMC
Altmann, M. et al. Extensive signal integration by the phytohormone protein network. Nature583, 271–276 (2020). PubMed
Yao, C. & Finlayson, S. A. Abscisic acid is a general negative regulator of arabidopsis axillary bud growth1[OPEN]. Plant Physiol.169, 611–626 (2015). PubMed PMC
González-Grandío, E. et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci.114, E245–E254 (2017). PubMed PMC
Cheng, Y. et al. Jasmonic acid negatively regulates branch growth in pear. Front. Plant Sci.14, (2023). PubMed PMC
Hong, S.-Y. et al. Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling. Proc. Natl. Acad. Sci.117, 26197–26205 (2020). PubMed PMC
Shimizu-Sato, S., Tanaka, M. & Mori, H. Auxin–cytokinin interactions in the control of shoot branching. Plant Mol. Biol.69, 429–435 (2009). PubMed
Balla, J., Kalousek, P., Reinöhl, V., Friml, J. & Procházka, S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. The Plant J.65, 571–577 (2011). PubMed
Xu, J. et al. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep.34, 1647–1662 (2015). PubMed
Wani, A. B., Chadar, H., Wani, A. H., Singh, S. & Upadhyay, N. Salicylic acid to decrease plant stress. Environ. Chem. Lett.15, 101–123 (2017).
Abdelkader, M. & Hamad,. Response of growth, yield and chemical constituents of Roselle plant to foliar application of Ascorbic Acid and Salicylic Acid. Glob. J. Agric. Food Saf. Sci.1, 126–136 (2014).
Abou El-Yazeid, A. Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Res. J. Agric. Biol. Sci., 423–433 (2011).
Hesami, S., Nabizadeh, E., Rahimi, A. & Rokhzadi, A. Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions.
Li, L. et al. Protein degradation rate in arabidopsis thaliana leaf growth and development. The Plant Cell29, 207–228 (2017). PubMed PMC
Creelman, R. A., Bell, E. & Mullet, J. E. Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis 1. Plant Physiol.99, 1258–1260 (1992). PubMed PMC
Korek, M. & Marzec, M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC Plant Biol.23, 314 (2023). PubMed PMC
Marzec, M. et al. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought. Plant Cell Environ.43, 2239–2253 (2020). PubMed
van Es, S. W. et al. A gene regulatory network critical for axillary bud dormancy directly controlled by Arabidopsis BRANCHED1. New Phytologist241, 1193–1209 (2024). PubMed
Wasternack, C. & Hause, B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development An update to the 2007 review in Annals of Botany. Ann. Botany111, 1021–1058 (2013). PubMed PMC
Viswanath, K. K. et al. Plant lipoxygenases and their role in plant physiology. J. Plant Biol.63, 83–95 (2020).
Bell, E., Creelman, R. A. & Mullet, J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci.92, 8675–8679 (1995). PubMed PMC
Lim, C. W. et al. The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol.56, 930–942 (2015). PubMed
Hou, S., Lin, L., Lv, Y., Xu, N. & Sun, X. Responses of lipoxygenase, jasmonic acid, and salicylic acid to temperature and exogenous phytohormone treatments in Gracilariopsis lemaneiformis (Rhodophyta). J. Appl. Phycol.30, 3387–3394 (2018).
Bhardwaj, P. K., Kaur, J., Sobti, R. C., Ahuja, P. S. & Kumar, S. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene483, 49–53 (2011). PubMed
Melan, M. A. et al. An arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol.101, 441–450 (1993). PubMed PMC
Gaillochet, C. et al. A molecular network for functional versatility of HECATE transcription factors. The Plant J.95, 57–70 (2018). PubMed
Zhu, K. et al. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. J. Exp. Botany72, 3137–3154 (2021). PubMed
Shanks, C. M. et al. Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. Plant J.95, 458–473 (2018). PubMed
Pruneda-Paz, J. L., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the arabidopsis circadian clock. Science323, 1481–1485 (2009). PubMed PMC
Robertson, F. C., Skeffington, A. W., Gardner, M. J. & Webb, A. A. R. Interactions between circadian and hormonal signalling in plants. Plant Mol. Biol.69, 419–427 (2009). PubMed
Wang, F. et al. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell32, 3124–3138 (2020). PubMed PMC
Guo, Y., Qin, G., Gu, H. & Qu, L.-J. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in arabidopsis. The Plant Cell21, 3518–3534 (2009). PubMed PMC
Agusti, J. et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl. Acad. Sci.108, 20242–20247 (2011). PubMed PMC
Yin, Y. et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in arabidopsis. Cell120, 249–259 (2005). PubMed
Hu, J., Ji, Y., Hu, X., Sun, S. & Wang, X. BES1 functions as the Co-regulator of D53-like SMXLs to Inhibit BRC1 expression in strigolactone-regulated shoot branching in arabidopsis. Plant Commun.1, 100014 (2019). PubMed PMC
Liu, X. et al. A multifaceted module of BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (BES1)-MYB88 in growth and stress tolerance of apple. Plant Physiol.185, 1903–1923 (2021). PubMed PMC
Šimura, J. et al. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol.177, 476–489 (2018). PubMed PMC
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 525–527 (2016). PubMed
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC
Leutert, M., Rodríguez-Mias, R. A., Fukuda, N. K. & Villén, J. R2–P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies. Mol. Syst. Biol.15, e9021 (2019). PubMed PMC
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc.11, 2301–2319 (2016). PubMed
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods13, 731–740 (2016). PubMed