Physiological and molecular characteristics associated with the anti-senescence in Camellia oleifera Abel
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650640
PubMed Central
PMC11609776
DOI
10.32615/ps.2024.003
PII: PS62102
Knihovny.cz E-zdroje
- Klíčová slova
- Camellia oleifera, anti-ageing, anti-senescence, plant senescence,
- Publikační typ
- časopisecké články MeSH
This study analyzed physiological and molecular characteristics associated with the resistance to aging or anti-senescence in Camellia oleifera Abel. Trees over 100 years old (ancient trees) were compared with those about 30 years old (mature trees). Total chlorophylls, chlorophyll a/b ratio, and hydrogen peroxide concentrations in ancient tree leaves were significantly higher than in their counterparts. Significantly higher activities of superoxide dismutase, peroxidase, and catalase were detected in ancient tree leaves. Nine Chl a/b-binding protein genes, 15 antioxidant enzyme genes, 21 hormone-related genes, and 301 stress-related genes were upregulated, and 42 protein-degradation genes were downregulated in ancient tree leaves. By increasing chlorophyll content and antioxidant enzyme activities and regulating the ageing-related genes expression, ancient C. oleifera leaves maintained remarkable vitality. Although further research is needed, our study may shed some light on how ancient C. oleifera trees can resist ageing and sustain their healthy growth.
Zobrazit více v PubMed
Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. – Plant Physiol. 24: 1-15, 1949. 10.1104/pp.24.1.1 PubMed DOI PMC
Balazadeh S., Siddiqui H., Allu A.D. et al.: A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. – Plant J. 62: 250-264, 2010. 10.1111/j.1365-313X.2010.04151.x PubMed DOI
Batalova A.Y., Krutovsky K.V.: Genetic and epigenetic mechanisms of longevity in forest trees. – Int. J. Mol. Sci. 24: 10403, 2023. 10.3390/ijms241210403 PubMed DOI PMC
Bresson J., Bieker S., Riester L. et al.: A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. – J. Exp. Bot. 69: 769-786, 2018. 10.1093/jxb/erx246 PubMed DOI
Chang E., Zhang J., Yao X. et al.: De novo characterization of the Platycladus orientalis transcriptome and analysis of photosynthesis-related genes during aging. – Forests 10: 393, 2019. 10.3390/f10050393 DOI
Chen D., Wang S., Xiong B. et al.: Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. – PLoS ONE 10: e0137026, 2015b. 10.1371/journal.pone.0137026 PubMed DOI PMC
Chen Y., Dong H.: Mechanisms and regulation of senescence and maturity performance in cotton. – Field Crop. Res. 189: 1-9, 2016. 10.1016/j.fcr.2016.02.003 PubMed DOI
Chen Y., Wang B., Chen J. et al.: Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. – Front. Plant Sci. 6: 189, 2015a. 10.3389/fpls.2015.00189 PubMed DOI PMC
Chen Y., Xu Y., Luo W. et al.: The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. – Plant Physiol. 163: 1673-1685, 2013. 10.1104/pp.113.224527 PubMed DOI PMC
Chinchilla D., Zipfel C., Robatzek S. et al.: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. – Nature 448: 497-500, 2007. 10.1038/nature05999 PubMed DOI
Cruz de Carvalho M.H., d'Arcy-Lameta A., Roy-Macauley H. et al.: Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. – FEBS Lett. 492: 242-246, 2001. 10.1016/S0014-5793(01)02259-1 PubMed DOI
Dai X., Xu Y., Ma Q. et al.: Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. – Plant Physiol. 143: 1739-1751, 2007. 10.1104/pp.106.094532 PubMed DOI PMC
Dar R.A., Nisar S., Tahir I.: Ethylene: A key player in ethylene sensitive flower senescence: A review. – Sci. Hortic.-Amsterdam 290: 110491, 2021. 10.1016/j.scienta.2021.110491 DOI
Diaz-Mendoza M., Velasco-Arroyo B., Santamaria M.E. et al.: Plant senescence and proteolysis: two processes with one destiny. – Genet. Mol. Biol. 39: 329-338, 2016. 10.1590/1678-4685-GMB-2016-0015 PubMed DOI PMC
Ding Z., Li S., An X. et al.: Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. – J. Genet. Genomics 36: 17-29, 2009. 10.1016/S1673-8527(09)60003-5 PubMed DOI
Dong H., Niu Y., Li W., Zhang D.: Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. – J. Exp. Bot. 59: 1295-1304, 2008. 10.1093/jxb/ern035 PubMed DOI
Espinoza C., Medina C., Somerville S., Arce-Johnson P.: Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. – J. Exp. Bot. 58: 3197-3212, 2007. 10.1093/jxb/erm165 PubMed DOI
Fujii H., Zhu J.-K.: Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. – PNAS 106: 8380-8385, 2009. 10.1073/pnas.0903144106 PubMed DOI PMC
Gao F., Chen J.-M., Xiong A.-S. et al.: Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa. – Biol. Plantarum 53: 643-649, 2009. 10.1007/s10535-009-0117-9 DOI
Goff K.E., Ramonell K.M.: The role and regulation of receptor-like kinases in plant defense. – Gene Regul. Syst. Biol. 1: 167-175, 2007. 10.1177/117762500700100015 PubMed DOI PMC
Guo Y., Gan S.: AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. – Plant Physiol. 156: 1612-1619, 2011. 10.1104/pp.111.177022 PubMed DOI PMC
Guo Y., Ren G., Zhang K. et al.: Leaf senescence: progression, regulation, and application. – Mol. Hortic. 1: 5, 2021. 10.1186/s43897-021-00006-9 PubMed DOI PMC
Gupta S., Garg V., Kant C., Bhatia S.: Genome-wide survey and expression analysis of F-box genes in chickpea. – BMC Genomics 16: 67, 2015. 10.1186/s12864-015-1293-y PubMed DOI PMC
Gupta S.K., Rai A.K., Kanwar S.S., Sharma T.R.: Comparative analysis of zinc finger proteins involved in plant disease resistance. – PLoS ONE 7: e42578, 2012. 10.1371/journal.pone.0042578 PubMed DOI PMC
Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. – Arch. Biochem. Biophys . 125: 189-198, 1968. 10.1016/0003-9861(68)90654-1 PubMed DOI
Ho H.J.: Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. – J. Biodivers. Biopros. Dev. 2: 147, 2015. https://www.hilarispublisher.com/open-access/functional-roles-of-plant-protein-kinases-in-signal-transduction-pathways-during-abiotic-and-biotic-stress-2376-0214-1000147.pdf
Hou K., Wu W., Gan S.-S.: SAUR36, a SMALL AUXIN UP RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. – Plant Physiol. 161: 1002-1009, 2013. 10.1104/pp.112.212787 PubMed DOI PMC
Huang X.-S., Wang W., Zhang Q. et al.: A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. – Plant Physiol. 162: 1178-1194, 2013. 10.1104/pp.112.210740 PubMed DOI PMC
Jacob P., Hirt H., Bendahmane A.: The heat-shock protein/chaperone network and multiple stress resistance. – Plant Biotechnol. J. 15: 405-414, 2017. 10.1111/pbi.12659 PubMed DOI PMC
Jakhar S., Mukherjee D.: Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. – Physiol. Mol. Biol. Plants 20: 171-180, 2014. 10.1007/s12298-013-0219-x PubMed DOI PMC
Jeworutzki E., Roelfsema M.R.G., Anschütz U. et al.: Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+- associated opening of plasma membrane anion channels. – Plant J. 62: 367-378, 2010. 10.1111/j.1365-313X.2010.04155.x PubMed DOI
Kim J.I., Murphy A.S., Baek D. et al.: YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. – J. Exp. Bot. 62: 3981-3992, 2011. 10.1093/jxb/err094 PubMed DOI PMC
Klimešová J., Nobis M.P., Herben T.: Senescence, ageing and death of the whole plant: morphological prerequisites and constraints of plant immortality. – New Phytol. 206: 14-18, 2015. 10.1111/nph.13160 PubMed DOI
Kong X., Luo Z., Dong H. et al.: Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. – PLoS ONE 8: e69847, 2013. 10.1371/journal.pone.0069847 PubMed DOI PMC
Koyama T., Nii H., Mitsuda N. et al.: A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. – Plant Physiol. 162: 991-1005, 2013. 10.1104/pp.113.218115 PubMed DOI PMC
Kumar M., Brar A., Yadav M. et al.: Chitinases – potential candidates for enhanced plant resistance towards fungal pathogens. – Agriculture 8: 88, 2018. 10.3390/agriculture8070088 DOI
Kurepa J., Wang S., Li Y., Smalle J.: Proteasome regulation, plant growth and stress tolerance. – Plant Signal. Behav. 4: 924-927, 2009. 10.4161/psb.4.10.9469 PubMed DOI PMC
Le D.T., Nishiyama R., Watanabe Y. et al.: Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. – PLoS ONE 7: e42411, 2012. 10.1371/journal.pone.0042411 PubMed DOI PMC
Lee R.H., Chen S.-C.G.: Programmed cell death during rice leaf senescence is nonapoptotic. – New Phytol. 155: 25-32, 2002. 10.1046/j.1469-8137.2002.00443.x PubMed DOI
Lee S., Senthil-Kumar M., Kang M. et al.: The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. – Sci. Rep.-UK 7: 9260, 2017. 10.1038/s41598-017-08932-9 PubMed DOI PMC
Li H., Wang G., Liu S. et al.: Comparative changes in the antioxidant system in the flag leaf of early and normally senescing near-isogenic lines of wheat (Triticum aestivum L.). – Plant Cell Rep. 33: 1109-1120, 2014. 10.1007/s00299-014-1600-0 PubMed DOI
Li Z., Tan X., Liu Z. et al.: In vitro propagation of Camellia oleifera Abel. using hypocotyl, cotyledonary node, and radicle explants. – HortScience 51: 416-421, 2016. 10.21273/HORTSCI.51.4.416 DOI
Lim P.O., Kim H.J., Nam H.G.: Leaf senescence. – Annu. Rev. Plant Biol. 58: 115-136, 2007. 10.1146/annurev.arplant.57.032905.105316 PubMed DOI
Lin M., Pang C., Fan S. et al.: Global analysis of the Gossypium hirsutum L. transcriptome during leaf senescence by RNA-Seq. – BMC Plant Biol. 15: 43, 2015. 10.1186/s12870-015-0433-5 PubMed DOI PMC
Liu P., Zhang S., Zhou B. et al.: The histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis. – Plant Cell 31: 430-443, 2019. 10.1105/tpc.18.00693 PubMed DOI PMC
Liu Q., Wang Z., Xu X. et al.: Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). – PLoS ONE 10: e0134753, 2015. 10.1371/journal.pone.0134753 PubMed DOI PMC
Liu X., Fu Z.-X., Kang Z.-W. et al.: Identification and characterization of antioxidant enzyme genes in parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and expression profiling analysis under temperature stress. – Insects 13: 447, 2022. 10.3390/insects13050447 PubMed DOI PMC
Lu C., Lu Q., Zhang J., Kuang T.: Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. – J. Exp. Bot. 52: 1805-1810, 2001. 10.1093/jexbot/52.362.1805 PubMed DOI
Mase K., Ishihama N., Mori H. et al.: Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death. – Mol. Plant Microbe Interact. 26: 868-879, 2013. 10.1094/MPMI-10-12-0253-R PubMed DOI
Mátai A., Hideg É.: A comparison of colorimetric assays detecting hydrogen peroxide in leaf extracts. – Anal. Methods 9: 2357-2360, 2017. 10.1039/C7AY00126F DOI
Mishra S.K., Tripp J., Winkelhaus S. et al.: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. – Gene. Dev. 16: 1555-1567, 2002. 10.1101/gad.228802 PubMed DOI PMC
Ordiz M.I., Barbas C.F., Beachy R.N.: Regulation of transgene expression in plants with polydactyl zinc finger transcription factors. – PNAS 99: 13290-13295, 2002. 10.1073/pnas.202471899 PubMed DOI PMC
Pandey S.P., Somssich I.E.: The role of WRKY transcription factors in plant immunity. – Plant Physiol. 150: 1648-1655, 2009. 10.1104/pp.109.138990 PubMed DOI PMC
Park S.-Y., Yu J.-W., Park J.-S. et al.: The senescence-induced staygreen protein regulates chlorophyll degradation. – Plant Cell 19: 1649-1664, 2007. 10.1105/tpc.106.044891 PubMed DOI PMC
Ren H., Gray W.M.: SAUR proteins as effectors of hormonal and environmental signals in plant growth. – Mol. Plant 8: 1153-1164, 2015. 10.1016/j.molp.2015.05.003 PubMed DOI PMC
Riov J., Dagan E., Goren R., Yang S.F.: Characterization of abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues. – Plant Physiol. 92: 48-53, 1990. 10.1104/pp.92.1.48 PubMed DOI PMC
Saha G., Park J.-I., Jung H.-J. et al.: Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. – BMC Genomics 16: 178, 2015. 10.1186/s12864-015-1349-z PubMed DOI PMC
Shukla P.S., Agarwal P., Gupta K., Agarwal P.K.: Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. – AoB Plants 7: plv054, 2015. 10.1093/aobpla/plv054 PubMed DOI PMC
Singh K., Foley R.C., Oñate-Sánchez L.: Transcription factors in plant defense and stress responses. – Curr. Opin. Plant Biol. 5: 430-436, 2002. 10.1016/S1369-5266(02)00289-3 PubMed DOI
Sun Y., Oberley L.W., Li Y.: A simple method for clinical assay of superoxide dismutase. – Clin. Chem. 34: 497-500, 1988. 10.1093/clinchem/34.3.497 PubMed DOI
Takenaka Y., Nakano S., Tamoi M. et al.: Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. – Biosci. Biotech. Bioch. 73: 1066-1071, 2009. 10.1271/bbb.80837 PubMed DOI
Thomas H.: Senescence, ageing and death of the whole plant. – New Phytol. 197: 696-711, 2013. 10.1111/nph.12047 PubMed DOI
Turfan N., Ayan S., Yer Çelik E. et al.: Age-related changes of some chemical components in the leaves of sweet chestnut (Castanea sativa Mill.). – BioResources 15: 4337-4352, 2020. 10.15376/biores.15.2.4337-4352 DOI
Umezawa T., Okamoto M., Kushiro T. et al.: CYP707A3, a major ABA 8’- hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. – Plant J. 46: 171-182, 2006. 10.1111/j.1365-313X.2006.02683.x PubMed DOI
Vannini C., Campa M., Iriti M. et al.: Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. – Plant Sci. 173: 231-239, 2007. 10.1016/j.plantsci.2007.05.007 DOI
Wan Y., Mao M., Wan D. et al.: Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. – BMC Plant Biol. 18: 31, 2018. 10.1186/s12870-018-1235-3 PubMed DOI PMC
Wang B., Chen J., Chen L. et al.: Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. – Trees 29: 1483-1492, 2015. 10.1007/s00468-015-1229-9 DOI
Wang F., Liu J., Zhou L. et al.: Senescence-specific change in ROS scavenging enzyme activities and regulation of various SOD isozymes to ROS levels in psf mutant rice leaves. – Plant Physiol. Biochem. 109: 248-261, 2016. 10.1016/j.plaphy.2016.10.005 PubMed DOI
Wang L., Cui J., Jin B. et al.: Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. – PNAS 117: 2201-2210, 2020. 10.1073/pnas.1916548117 PubMed DOI PMC
Watanabe M., Balazadeh S., Tohge T. et al.: Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. – Plant Physiol. 162: 1290-1310, 2013. 10.1104/pp.113.217380 PubMed DOI PMC
Wei X., Chen J., Zhang C., Pan D.: Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. – Front. Plant Sci. 7: 1594, 2016. 10.3389/fpls.2016.01594 PubMed DOI PMC
Wingler A., von Schaewen A., Leegood R.C. et al.: Regulation of leaf senescence by cytokinin, sugars, and light: effects on NADH-dependent hydroxypyruvate reductase. – Plant Physiol. 116: 329-335, 1998. 10.1104/pp.116.1.329 DOI
Wu A., Allu A.D., Garapati P. et al.: JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. – Plant Cell 24: 482-506, 2012. 10.1105/tpc.111.090894 PubMed DOI PMC
Wu L., Li J., Li Z. et al.: Transcriptomic analyses of Camellia oleifera ‘Huaxin’ leaf reveal candidate genes related to long-term cold stress. – Int. J. Mol. Sci. 21: 846, 2020. 10.3390/ijms21030846 PubMed DOI PMC
Xu Y., Gianfagna T., Huang B.: Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. – J. Exp. Bot. 61: 3273-3289, 2010. 10.1093/jxb/erq149 PubMed DOI PMC
Yan J., Zhang S., Tong M. et al.: Physiological and genetic analysis of leaves from the resprouters of an old Ginkgo biloba tree. – Forests 12: 1255, 2021. 10.3390/f12091255 DOI
Yang S.-D., Seo P.J., Yoon H.-K., Park C.-M.: The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. – Plant Cell 23: 2155-2168, 2011. 10.1105/tpc.111.084913 PubMed DOI PMC
Ye Y., Ding Y., Jiang Q. et al.: The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. – Plant Cell Rep. 36: 235-242, 2017. 10.1007/s00299-016-2084-x PubMed DOI
Yin W., Hu Z., Hu J. et al.: Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes. – Plant Growth Regul. 83: 55-68, 2017. 10.1007/s10725-017-0283-2 DOI
Zang D., Li H., Xu H. et al.: An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. – Front. Plant Sci. 7: 1272, 2016. 10.3389/fpls.2016.01272 PubMed DOI PMC
Zhang H., Zhou C.: Signal transduction in leaf senescence. – Plant Mol. Biol. 82: 539-545, 2013. 10.1007/s11103-012-9980-4 PubMed DOI
Zhang Y., Liang C., Xu Y. et al.: Effects of ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. – J. Am. Soc. Hortic. Sci. 135: 108-115, 2010. 10.21273/JASHS.135.2.108 DOI
Zhang Y., Luo M., Cheng L. et al.: Identification of the cytosolic glucose-6-phosphate dehydrogenase gene from strawberry involved in cold stress response. – Int. J. Mol. Sci. 21: 7322, 2020. 10.3390/ijms21197322 PubMed DOI PMC
Zhou Q., Jiang Z., Zhang X. et al.: Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). – PeerJ 7: e6766, 2019. 10.7717/peerj.6766 PubMed DOI PMC
Zhu M., Meng X., Cai J. et al.: Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. – BMC Plant Biol. 18: 83, 2018. 10.1186/s12870-018-1299-0 PubMed DOI PMC
Zieslin N., Ben-Zaken R.: Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. – Plant Growth Regul. 11: 53-57, 1992. 10.1007/BF00024433 DOI