Strigolactones promote flowering by inducing the miR319-LA-SFT module in tomato
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
727929
EC | Horizon 2020 Framework Programme (H2020)
101000622
EC | Horizon 2020 Framework Programme (H2020)
101081858
EC | HORIZON EUROPE Framework Programme (Horizon Europe)
18/17441-3
FAPESP
CZ.02.1.01/0.0/0.0/16_019/0000738
EC | European Regional Development Fund (ERDF)
PubMed
38701118
PubMed Central
PMC11087791
DOI
10.1073/pnas.2316371121
Knihovny.cz E-zdroje
- Klíčová slova
- LANCEOLATE, flowering, miR319, strigolactones, tomato,
- MeSH
- gibereliny metabolismus farmakologie MeSH
- květy * účinky léků růst a vývoj metabolismus genetika MeSH
- laktony * metabolismus farmakologie MeSH
- listy rostlin metabolismus účinky léků MeSH
- mikro RNA * genetika metabolismus MeSH
- regulace genové exprese u rostlin * účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- rostlinné proteiny metabolismus genetika MeSH
- Solanum lycopersicum * genetika růst a vývoj metabolismus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gibereliny MeSH
- laktony * MeSH
- mikro RNA * MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.
Zobrazit více v PubMed
Cho L.-H., Yoon J., An G., The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017). PubMed
Krieger U., Lippman Z. B., Zamir D., The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459–463 (2010). PubMed
Jarillo J. A., Piñeiro M., Timing is everything in plant development. The central role of floral repressors. Plant Sci. 181, 364–378 (2011). PubMed
Ó’Maoiléidigh D. S., Graciet E., Wellmer F., Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014). PubMed
Molinero-Rosales N., Latorre A., Jamilena M., Lozano R., SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218, 427–434 (2004). PubMed
Quinet M., et al. , Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytol. 170, 701–710 (2006). PubMed
Srikanth A., Schmid M., Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 68, 2013–2037 (2011). PubMed PMC
Turck F., Fornara F., Coupland G., Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008). PubMed
Lozano R., Giménez E., Cara B., Capel J., Angosto T., Genetic analysis of reproductive development in tomato. Int. J. Dev. Biol. 53, 1635–1648 (2009). PubMed
Silva G. F. F., et al. , Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytol. 221, 1328–1344 (2019). PubMed
Wang H., The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 8, 677–688 (2015). PubMed
Cui L., et al. , miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnol. J. 18, 1670–1682 (2020). PubMed PMC
Mutasa-Göttgens E., Hedden P., Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 60, 1979–1989 (2009). PubMed
García-Hurtado N., et al. , The characterization of transgenic tomato overexpressing Gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J. Exp. Bot. 63, 5803–5813 (2012). PubMed
Hauvermale A. L., Ariizumi T., Steber C. M., Gibberellin signaling: A theme and variations on DELLA repression. Plant Physiol. 160, 83–92 (2012). PubMed PMC
Porri A., Torti S., Romera-Branchat M., Coupland G., Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139, 2198–2209 (2012). PubMed
Serrano-Mislata A., et al. , DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants 9, 749–754 (2017). PubMed PMC
Burko Y., et al. , A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25, 2070–2083 (2013). PubMed PMC
Yanai O., Shani E., Russ D., Ori N., Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J. 68, 571–582 (2011). PubMed
Aquino B., Bradley J. M., Lumba S., On the outside looking in: Roles of endogenous and exogenous strigolactones. Plant J. 105, 322–334 (2021). PubMed
Cardinale F., Korwin Krukowski P., Schubert A., Visentin I., Strigolactones: Mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J. Exp. Bot. 69, 2291–2303 (2018). PubMed
Visentin I., et al. , A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. 43, 1613–1624 (2020). PubMed
Trasoletti M., Visentin I., Campo E., Schubert A., Cardinale F., Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant Cell Environ. 45, 3611–3630 (2022). PubMed PMC
Liu J., et al. , Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J. Exp. Bot. 64, 1967–1981 (2013). PubMed PMC
Pasare S. A., et al. , The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol. 198, 1108–1120 (2013). PubMed
Snowden K. C., et al. , The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759 (2005). PubMed PMC
Kohlen W., et al. , The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196, 535–547 (2012). PubMed
Vogel J. T., et al. , SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 61, 300–311 (2010). PubMed
Santoro V., et al. , Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9, 612 (2020). PubMed PMC
Santoro V., et al. , Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant Cell Environ. 44, 3628–3642 (2021). PubMed PMC
Santoro V., et al. , Tomato plant responses induced by sparingly available inorganic and organic phosphorus forms are modulated by strigolactones. Plant Soil 474, 355–372 (2022).
Visentin I., et al. , Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 212, 954–963 (2016). PubMed
Johnson X., et al. , Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026 (2006). PubMed PMC
Mazzucato A., Taddei A., Soressi G., The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125, 107–114 (1998). PubMed
Pesaresi P., Mizzotti C., Colombo M., Masiero M., Genetic regulation and structural changes during tomato fruit development and ripening. Front. Plant Sci. 5, 124 (2014). PubMed PMC
Cao K., et al. , Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front. Plant Sci. 6, 1213 (2016). PubMed PMC
Campos-Rivero G., et al. , Plant hormone signaling in flowering: An epigenetic point of view. J. Plant Physiol. 214, 16–27 (2017). PubMed
Meir Z., et al. , Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. Nat. Plants 7, 800–813 (2021). PubMed
Park S. J., Jiang K., Schatz M. C., Lippman Z. B., Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. U.S.A. 109, 639–644 (2012). PubMed PMC
Jiang X., et al. , FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Plant Cell 34, 1002–1019 (2022). PubMed PMC
Dielen V., et al. , UNIFLORA, a pivotal gene that regulates floral transition and meristem identity in tomato (Lycopersicon esculentum). New Phytol. 161, 393–400 (2004). PubMed
Ferreira e Silva G. F., et al. , MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 78, 604–618 (2014). PubMed
Hu G., et al. , The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nat. Plants 8, 419–433 (2022). PubMed
Wang Y., et al. , A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant 13, 923–932 (2020). PubMed
Stanic M., Hickerson N. M. N., Arunraj R., Samuel M. A., Gene-editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola). Plant J. 19, 639–641 (2021). PubMed PMC
Lifschitz E., et al. , The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. U.S.A. 103, 6398–6403 (2006). PubMed PMC
Shalit A., et al. , The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. U.S.A. 106, 8392–8397 (2009). PubMed PMC
Yang T., He Y., Niu S., Yan S., Zhang Y., Identification and characterization of the CONSTANS (CO)/CONSTANS-like (COL) genes related to photoperiodic signaling and flowering in tomato. Plant Sci. 301, 110653. (2020). PubMed
Périlleux C., Lobet G., Tocquin P., Inflorescence development in tomato: Gene functions within a zigzag model. Front. Plant Sci. 5, 121 (2014). PubMed PMC
Hedden P., Thomas S. G., Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012). PubMed
Ito S., et al. , Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol. 174, 1250–1259 (2017). PubMed PMC
Nakamura H., et al. , Molecular mechanism of strigolactone perception by DWARF14. Nat. Comm. 4, 2613 (2013). PubMed
Cucinotta M., Cavalleri A., Chandler J. W., Colombo L., Auxin and flower development: A blossoming field. Cold Spring Harb. Perspect. Biol. 13, a039974 (2021). PubMed PMC
Visentin I., et al. ., Effects of strigolactones on tomato leaf transcriptome under irrigated and repeated water stress conditions. GSE264066. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264066. Deposited 16 April 2024.