Strigolactones promote flowering by inducing the miR319-LA-SFT module in tomato

. 2024 May 07 ; 121 (19) : e2316371121. [epub] 20240503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38701118

Grantová podpora
727929 EC | Horizon 2020 Framework Programme (H2020)
101000622 EC | Horizon 2020 Framework Programme (H2020)
101081858 EC | HORIZON EUROPE Framework Programme (Horizon Europe)
18/17441-3 FAPESP
CZ.02.1.01/0.0/0.0/16_019/0000738 EC | European Regional Development Fund (ERDF)

Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.

Zobrazit více v PubMed

Cho L.-H., Yoon J., An G., The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017). PubMed

Krieger U., Lippman Z. B., Zamir D., The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459–463 (2010). PubMed

Jarillo J. A., Piñeiro M., Timing is everything in plant development. The central role of floral repressors. Plant Sci. 181, 364–378 (2011). PubMed

Ó’Maoiléidigh D. S., Graciet E., Wellmer F., Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014). PubMed

Molinero-Rosales N., Latorre A., Jamilena M., Lozano R., SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218, 427–434 (2004). PubMed

Quinet M., et al. , Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytol. 170, 701–710 (2006). PubMed

Srikanth A., Schmid M., Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 68, 2013–2037 (2011). PubMed PMC

Turck F., Fornara F., Coupland G., Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008). PubMed

Lozano R., Giménez E., Cara B., Capel J., Angosto T., Genetic analysis of reproductive development in tomato. Int. J. Dev. Biol. 53, 1635–1648 (2009). PubMed

Silva G. F. F., et al. , Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytol. 221, 1328–1344 (2019). PubMed

Wang H., The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 8, 677–688 (2015). PubMed

Cui L., et al. , miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnol. J. 18, 1670–1682 (2020). PubMed PMC

Mutasa-Göttgens E., Hedden P., Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 60, 1979–1989 (2009). PubMed

García-Hurtado N., et al. , The characterization of transgenic tomato overexpressing Gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J. Exp. Bot. 63, 5803–5813 (2012). PubMed

Hauvermale A. L., Ariizumi T., Steber C. M., Gibberellin signaling: A theme and variations on DELLA repression. Plant Physiol. 160, 83–92 (2012). PubMed PMC

Porri A., Torti S., Romera-Branchat M., Coupland G., Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139, 2198–2209 (2012). PubMed

Serrano-Mislata A., et al. , DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants 9, 749–754 (2017). PubMed PMC

Burko Y., et al. , A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25, 2070–2083 (2013). PubMed PMC

Yanai O., Shani E., Russ D., Ori N., Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J. 68, 571–582 (2011). PubMed

Aquino B., Bradley J. M., Lumba S., On the outside looking in: Roles of endogenous and exogenous strigolactones. Plant J. 105, 322–334 (2021). PubMed

Cardinale F., Korwin Krukowski P., Schubert A., Visentin I., Strigolactones: Mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J. Exp. Bot. 69, 2291–2303 (2018). PubMed

Visentin I., et al. , A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. 43, 1613–1624 (2020). PubMed

Trasoletti M., Visentin I., Campo E., Schubert A., Cardinale F., Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant Cell Environ. 45, 3611–3630 (2022). PubMed PMC

Liu J., et al. , Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J. Exp. Bot. 64, 1967–1981 (2013). PubMed PMC

Pasare S. A., et al. , The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol. 198, 1108–1120 (2013). PubMed

Snowden K. C., et al. , The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759 (2005). PubMed PMC

Kohlen W., et al. , The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196, 535–547 (2012). PubMed

Vogel J. T., et al. , SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 61, 300–311 (2010). PubMed

Santoro V., et al. , Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9, 612 (2020). PubMed PMC

Santoro V., et al. , Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant Cell Environ. 44, 3628–3642 (2021). PubMed PMC

Santoro V., et al. , Tomato plant responses induced by sparingly available inorganic and organic phosphorus forms are modulated by strigolactones. Plant Soil 474, 355–372 (2022).

Visentin I., et al. , Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 212, 954–963 (2016). PubMed

Johnson X., et al. , Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026 (2006). PubMed PMC

Mazzucato A., Taddei A., Soressi G., The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125, 107–114 (1998). PubMed

Pesaresi P., Mizzotti C., Colombo M., Masiero M., Genetic regulation and structural changes during tomato fruit development and ripening. Front. Plant Sci. 5, 124 (2014). PubMed PMC

Cao K., et al. , Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front. Plant Sci. 6, 1213 (2016). PubMed PMC

Campos-Rivero G., et al. , Plant hormone signaling in flowering: An epigenetic point of view. J. Plant Physiol. 214, 16–27 (2017). PubMed

Meir Z., et al. , Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. Nat. Plants 7, 800–813 (2021). PubMed

Park S. J., Jiang K., Schatz M. C., Lippman Z. B., Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. U.S.A. 109, 639–644 (2012). PubMed PMC

Jiang X., et al. , FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Plant Cell 34, 1002–1019 (2022). PubMed PMC

Dielen V., et al. , UNIFLORA, a pivotal gene that regulates floral transition and meristem identity in tomato (Lycopersicon esculentum). New Phytol. 161, 393–400 (2004). PubMed

Ferreira e Silva G. F., et al. , MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 78, 604–618 (2014). PubMed

Hu G., et al. , The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nat. Plants 8, 419–433 (2022). PubMed

Wang Y., et al. , A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant 13, 923–932 (2020). PubMed

Stanic M., Hickerson N. M. N., Arunraj R., Samuel M. A., Gene-editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola). Plant J. 19, 639–641 (2021). PubMed PMC

Lifschitz E., et al. , The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. U.S.A. 103, 6398–6403 (2006). PubMed PMC

Shalit A., et al. , The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. U.S.A. 106, 8392–8397 (2009). PubMed PMC

Yang T., He Y., Niu S., Yan S., Zhang Y., Identification and characterization of the CONSTANS (CO)/CONSTANS-like (COL) genes related to photoperiodic signaling and flowering in tomato. Plant Sci. 301, 110653. (2020). PubMed

Périlleux C., Lobet G., Tocquin P., Inflorescence development in tomato: Gene functions within a zigzag model. Front. Plant Sci. 5, 121 (2014). PubMed PMC

Hedden P., Thomas S. G., Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012). PubMed

Ito S., et al. , Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol. 174, 1250–1259 (2017). PubMed PMC

Nakamura H., et al. , Molecular mechanism of strigolactone perception by DWARF14. Nat. Comm. 4, 2613 (2013). PubMed

Cucinotta M., Cavalleri A., Chandler J. W., Colombo L., Auxin and flower development: A blossoming field. Cold Spring Harb. Perspect. Biol. 13, a039974 (2021). PubMed PMC

Visentin I., et al. ., Effects of strigolactones on tomato leaf transcriptome under irrigated and repeated water stress conditions. GSE264066. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264066. Deposited 16 April 2024.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...