Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-23702S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
PubMed
33807526
PubMed Central
PMC7999350
DOI
10.3390/antiox10030385
PII: antiox10030385
Knihovny.cz E-zdroje
- Klíčová slova
- barley, elevated CO2, flavonoids, histochemical localization, hydroxybenzoic acids, hydroxycinnamic acids, image analysis, irradiance, phenolic compounds, plant stress,
- Publikační typ
- časopisecké články MeSH
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
Zobrazit více v PubMed
Zohary D., Hopf M. Domestication of Plants in the Old World. Oxford University Press; Oxford, UK: 2000.
FAOSTAT . Crops/Regions/World List/Production Quantity for Barley. UN Food and Agriculture Organization Corporate Statistical Database; Rome, Italy: 2019.
Kamiyama M., Shibamoto T. Flavonoids with potent antioxidant activity found in young green barley leaves. J. Agric. Food Chem. 2021;60:6260–6267. doi: 10.1021/jf301700j. PubMed DOI
Baik B.K., Ullrich S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008;48:233–242. doi: 10.1016/j.jcs.2008.02.002. DOI
Kruse J. Estimating Demand for Agricultural Commodities to 2050. Global Harvest Initiative; Washington, DC, USA: 2011. Report No. 3-16-10.
Cammarano D., Ceccarelli S., Grando S., Romagosa I., Benbelkacem A., Akar T., Al-Yassin A., Pecchioni N., Francia E., Ronga D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019;106:1–11. doi: 10.1016/j.eja.2019.03.002. DOI
Xie W., Xiong W., Pan J., Ali T., Cui Q., Guan D., Meng J., Mueller N.D., Lin E., Davis S.J. Decreases in global beer supply due to extreme drought and heat. Nat. Plants. 2018;4:964–973. doi: 10.1038/s41477-018-0263-1. PubMed DOI
Jansen M.A., Hectors K., O′Brien N.M., Guisez Y., Potters G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 2008;175:449–485. doi: 10.1016/j.plantsci.2008.04.010. DOI
De Gara L., Locato V., Dipierro S., de Pinto M.C. Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respir. Physiol. Neurobiol. 2010;173:S13–S19. doi: 10.1016/j.resp.2010.02.007. PubMed DOI
Foyer C., Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC
Foyer C.H., Lelandais M., Kunert K.J. Photooxidative stress in plants. Physiol. Plant. 1994;92:696–717. doi: 10.1111/j.1399-3054.1994.tb03042.x. DOI
Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct morphological, physiological, and biochemical responses to light quality in barley leaves and roots. Front. Plant Sci. 2019;10:1026. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC
Fayez K.A., Bazaid S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014;13:45–55. doi: 10.1016/j.jssas.2013.01.001. DOI
Corcuera L.J. Biochemical basis for the resistance of barley to aphids. Phytochemistry. 1993;33:741–747. doi: 10.1016/0031-9422(93)85267-U. DOI
Pfanz H., Oppmann B., Wolf P., Lomsky B. Detoxification of air pollutants in the presence of apoplastic phenols. Ishs Acta Hortic. 1994;381:360–366. doi: 10.17660/ActaHortic.1994.381.44. DOI
Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006;15:523–530.
Caldwell M.M., Robberecht R., Flint S.D. Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plant. 1983;58:445–450. doi: 10.1111/j.1399-3054.1983.tb04206.x. DOI
Rice-Evans C., Miller N., Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–159. doi: 10.1016/S1360-1385(97)01018-2. DOI
Chen J.W., Zhu Z.Q., Hu T.X., Zhu D.Y. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol. Sin. 2002;23:667–672. PubMed
Cuvelier M.E., Richard H., Berset C. Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci. Biotechnol. Biochem. 1992;56:324–325. doi: 10.1271/bbb.56.324. DOI
Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013;72:35–45. doi: 10.1016/j.plaphy.2013.03.014. PubMed DOI
Hernández I., Alegre L., Van Breusegem F., Munné-Bosch S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 2009;14:125–132. doi: 10.1016/j.tplants.2008.12.003. PubMed DOI
Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012;196:67–76. doi: 10.1016/j.plantsci.2012.07.014. PubMed DOI
Akhtar T.A., Lees H.A., Lampi M.A., Enstone D., Brain R.A., Greenberg B.M. Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemma gibba. Plant Cell Environ. 2010;33:1205–1219. PubMed
Hutzler P., Fischbach R., Heller W., Jungblut T.P., Reuber S., Schmitz R., Veit M., Weissenböck G., Schnitzler J.P. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 1998;49:953–965. doi: 10.1093/jxb/49.323.953. DOI
Burchard P., Bilger W., Weissenböck G. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2000;23:1373–1380. doi: 10.1046/j.1365-3040.2000.00633.x. DOI
Csepregi K., Neugart S., Schreiner M., Hideg É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules. 2016;21:208. doi: 10.3390/molecules21020208. PubMed DOI PMC
Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC
Ibrahim M.H., Jaafar H.Z., Rahmat A., Rahman Z.A. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization. Molecules. 2011;16:162–174. doi: 10.3390/molecules16010162. PubMed DOI PMC
Wu Y.X., Tiedemann A.V. Light-dependent oxidative stress determines physiological leaf spot formation in barley. Phytopathology. 2004;94:584–592. doi: 10.1094/PHYTO.2004.94.6.584. PubMed DOI
Klem K., Ač A., Holub P., Kováč D., Špunda V., Robson T.M., Urban O. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 2012;75:52–64. doi: 10.1016/j.envexpbot.2011.08.008. DOI
Hartman I. Quality of malting barley grain in the Czech Republic, crop 2017. Kvasny Prumysl. 2018;64:64–69. doi: 10.18832/kp201834. DOI
Kofroň P., Skoblík R., Enge J., Sekora M. Testing of malting barley—Variety bojos. Kvasny Prumysl. 2006;52:179–184. doi: 10.18832/kp2006016. DOI
Agrární Komora České Republiky . Ústrědní Kontrolní a Zkušební Ústav Zemědělsý: Obilniny 2018. Národní odrůový úřad; Brno, Czech Republic: 2018.
Arenas-Corraliza M.G., Rolo V., López-Díaz M.L., Moreno G. Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Sci. Rep. 2019;9:9547. doi: 10.1038/s41598-019-46027-9. PubMed DOI PMC
Philips M. The Chemistry of Lignin. Waverly Press; New York, NY, USA: 1934.
Gardner R. Vanillin-hydrochloric acid as a histochemical test for tannin. Stain Technol. 1975;50:315–317. doi: 10.3109/10520297509117081. PubMed DOI
Neu R. Chelates of diarylboric acids with aliphatic oxyalkylamines as reagents for the detection of oxyphenyl-benzo-γ-pyrones. Die Nat. 1957;44:181–182. doi: 10.1007/BF00599857. DOI
Valette C., Andary C., Geiger J.P., Sarah J.L., Nicole M. Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology. 1998;88:1141–1148. doi: 10.1094/PHYTO.1998.88.11.1141. PubMed DOI
Lichtenthaler H.K., Schweiger J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998;152:272–282. doi: 10.1016/S0176-1617(98)80142-9. DOI
Albrechtová J., Kubínová Z., Soukup A., Janáček J. Image analysis: Basic procedures for description of plant structures. Methods Mol. Biol. 2014;1080:67–76. PubMed
Agati G., Cerovic Z.G., Pinelli P., Tattini M. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ. Exp. Bot. 2011;73:3–9. doi: 10.1016/j.envexpbot.2010.10.002. DOI
Goulas Y., Cerovic Z.G., Cartelat A., Moya I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004;43:4488–4496. doi: 10.1364/AO.43.004488. PubMed DOI
Smilauer P., Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2nd ed. Cambridge University Press; Cambridge, UK: 2014.
Day T.A., Martin G., Vogelmann T.C. Penetration of UV-B radiation in foliage: Evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ. 1993;16:735–741. doi: 10.1111/j.1365-3040.1993.tb00493.x. DOI
McClendon J.H., Fukshanksky L. On the interpretation of absorption spectra of leaves—II. The non-absorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf. Photochem. Photobiol. 1990;51:211–216. doi: 10.1111/j.1751-1097.1990.tb01705.x. DOI
Kolb C.A., Pfündel E.E. Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant Cell Environ. 2005;25:580–590. doi: 10.1111/j.1365-3040.2005.01302.x. DOI
Li B., Neumann E.K., Ge J., Gao W., Yang H., Li P., Sweedler J.V. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant Cell Environ. 2018;41:2693–2703. doi: 10.1111/pce.13395. PubMed DOI
Bogucka-Kocka A., Zidorn C., Kasprzycka M., Zyna Szymczak G., Szewczyk K. Phenolic acid content, antioxidant and cytotoxic activities of four Kalanchoë species. Saudi J. Biol. Sci. 2016;25:622–630. doi: 10.1016/j.sjbs.2016.01.037. PubMed DOI PMC
Hrazdina G., Wagner G. Metabolic pathways as enzyme complexes: Evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 1985;237:88–100. doi: 10.1016/0003-9861(85)90257-7. PubMed DOI
McNally D.J., Wurms K.V., Labbé C., Bélanger R.R. Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Physiol. Mol. Plant Pathol. 2003;63:293–303. doi: 10.1016/j.pmpp.2004.03.005. DOI
Schmitz-Hoerner R., Weissenböck G. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry. 2003;64:243–255. doi: 10.1016/S0031-9422(03)00203-6. PubMed DOI
Mubarakshina M.M., Ivanov B.N., Naydov I.A., Hillier W., Badger M.R., Krieger-Liszkay A. Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 2010;61:3577–3587. doi: 10.1093/jxb/erq171. PubMed DOI
Zhao J., Dixon R.A. MATE transporters facilitate vacuolar uptake of epicatechin 3j-O-glucoside for proanthocyanidin biosynthesis in medicago truncatula and Arabidopsis. Plant Cell. 2009;21:2323–2340. doi: 10.1105/tpc.109.067819. PubMed DOI PMC
Tattini M., Galardi C., Pinelli P., Massai R., Remorini D., Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004;163:547–561. doi: 10.1111/j.1469-8137.2004.01126.x. PubMed DOI
Liu L., Gitz D.C., McClure J.W. Effects of UV-B on flavonoids, ferulic add, growth and photosynthesis in barley primary leaves. Physiol. Plant. 1995;93:725–733. doi: 10.1111/j.1399-3054.1995.tb05123.x. DOI
Reuber S., Bornman J.F., Weissenböck G. Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale). Light response of their metabolism and the possible role in UV-B protection. Physiol. Plant. 1996;97:160–168. doi: 10.1111/j.1399-3054.1996.tb00492.x. DOI
Knogge W., Weissenböck G. Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L. Planta. 1986;167:196–205. doi: 10.1007/BF00391415. PubMed DOI
Semerdjieva S.I., Sheffield E., Phoenix G.K., Gwynn-Jones D., Callaghan T.V., Johnson G.N. Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. Plant Cell Environ. 2003;26:957–964. doi: 10.1046/j.1365-3040.2003.01029.x. PubMed DOI
Donaldson L. Autofluorescence in plants. Molecules. 2020;25:2393. doi: 10.3390/molecules25102393. PubMed DOI PMC
Harris P.J., Hartley R.D. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 1980;8:153–160. doi: 10.1016/0305-1978(80)90008-3. DOI
Peltonen P.A., Vapaavuori E., Julkunen-Tiitto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob. Chang. Biol. 2005;11:1305–1324. doi: 10.1111/j.1365-2486.2005.00979.x. DOI
Kowalczewski P.L., Radzikowska D., Ivanišová E., Szwengiel A., Kačániová M., Sawinska Z. Influence of abiotic stress factors on the antioxidant properties and polyphenols profile composition of green barley (Hordeum vulgare L.) Int. J. Mol. Sci. 2020;21:397. doi: 10.3390/ijms21020397. PubMed DOI PMC
Tattini M., Guidi L., Morassi-Bonzi L., Pinelli P., Remorini D., DeglÍnnocenti E., Giordano C., Massai R., Agati G. On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol. 2005;167:457–470. doi: 10.1111/j.1469-8137.2005.01442.x. PubMed DOI
Grace S.G., Logan B.A. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos. Trans. R. Soc. B. 2000;355:1499–1510. doi: 10.1098/rstb.2000.0710. PubMed DOI PMC
Delmas R.J., Ascencio J.M., Legrand M. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature. 1980;284:155–157. doi: 10.1038/284155a0. DOI
Ehleringer J.R., Cerling T.E. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol. 1995;15:105–111. doi: 10.1093/treephys/15.2.105. PubMed DOI
Fatichi S., Leuzinger S., Körner C. Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytol. 2014;201:1086–1095. doi: 10.1111/nph.12614. PubMed DOI
Palacio S., Hoch G., Sala A., Körner C., Millard P. Dies carbon storage limit tree growth? New Phytol. 2014;201:1096–1100. doi: 10.1111/nph.12602. PubMed DOI
Jaafar H.Z., Ibrahim M.H., Karimi E. Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO2 in Labisia pumila (Myrisinaceae) Molecules. 2012;17:6331–6347. doi: 10.3390/molecules17066331. PubMed DOI PMC
Lhotáková Z., Urban O., Dubánková M., Cvikrová M., Tomášková I., Kubínová L., Zvára K., Marek M.V., Albrechtová J. The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): Photosynthetic performance, needle anatomy and phenolics accumulation. Plant Sci. 2012;188–189:60–70. PubMed
Peñuelas J., Estiarte M., Kimball B.A., Idso S.B., Pinter P.J., Wall G.W., Garcia R.L., Hansaker D.J., LaMorte R.L., Hendrix D.L. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 1996;47:1463–1467.
Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009;182:565–588. doi: 10.1111/j.1469-8137.2009.02830.x. PubMed DOI
Yi Z., Cui J., Fu Y., Liu H. Effect of different light intensity on physiology, antioxidant capacity and photosynthetic characteristics on wheat seedlings under high CO2 concentration in a closed artificial ecosystem. Photosynth. Res. 2020;144:23–34. doi: 10.1007/s11120-020-00726-x. PubMed DOI
Holub P., Nezval J., Štroch M., Špunda V., Urban O., Jansen M.A., Klem K. Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype. Plant Physiol. Biochem. 2019;134:81–93. doi: 10.1016/j.plaphy.2018.08.012. PubMed DOI
Klepacka J., Gujska E., Michalak J. Phenolic compounds as cultivar- and variety-distinguishing factors in some plant products. Plant Foods Hum. Nutr. 2011;66:64–69. doi: 10.1007/s11130-010-0205-1. PubMed DOI PMC
Walters D., Mitchella A., Hampson J., McPherson A. The induction of systemic resistance in barley to powdery mildew infection using salicylates and various phenolic acids. Ann. Appl. Biol. 1993;122:451–456. doi: 10.1111/j.1744-7348.1993.tb04048.x. DOI
Oliver G., editor. The Oxford Companion to Beer. Oxford University Press; Oxford, UK: 2011.
Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland
Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance
Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions