Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18154
Ministry of Education, Youth and Sports of Czech Republic
80NSSC18K0337
NASA, LCLUC Program NNH17ZDA001N-LCLUC
GAČR: 21-18532S
Czech Science Foundation
PubMed
36903862
PubMed Central
PMC10005651
DOI
10.3390/plants12051001
PII: plants12051001
Knihovny.cz E-zdroje
- Klíčová slova
- SLA, canopy, flavonoids, grasslands, orthophotos, phenolic compounds, remote sensing, secondary metabolism, species cover analysis, tundra,
- Publikační typ
- časopisecké články MeSH
The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonoše Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.
Biospheric Sciences Laboratory Building 33 NASA Goddard Space Flight Center Greenbelt MD 20771 USA
Department of Environmental Sciences University of Virginia Charlottesville VA 22904 USA
Global Change Research Institute Czech Academy of Sciences Bělidla 4a 60300 Brno Czech Republic
Zobrazit více v PubMed
Soukupová L., Krociánová M., Jeník J., Sekzra J. Artic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcon. 1995;32:5–88.
Galvánek D., Janák M. Management of Natura 2000 Habitats. 6230 *Species-Rich Nardus Grasslands; European Commission Natura 2000 Technichal Report. 2008. [(accessed on 11 November 2022)]. Available online: https://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/6230_Nardus_grasslands.pdf.
Štursa J. Research and management of the giant mountains’arctic-alpine tundra (Czech Republic) [(accessed on 16 January 2023)];AMBIO J. Hum. Environ. 1998 27:358–360. Available online: https://www.semanticscholar.org/paper/RESEARCH-AND-MANAGEMENT-OF-THE-GIANT-TUNDRA-%C5%A0tursa/9bb9e54762754b8f2002c7decbd127fe27755443.
Lokvenc T. Analysis of anthropogenic changes of woody plant stands above the alpine timber line in the Krkonose Mts. Opera Corcon. 1995;32:99–114.
Novák J., Petr L., Treml V. Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. Holocene. 2010;20:895–905. doi: 10.1177/0959683610365938. DOI
Brechtel H.M. Impact of Acid Deposition Caused by Air Pollution in Central Europe. In: Teller A., Mathy P., Jeffers J.N.R., editors. Responses of Forest Ecosystems to Environmental Changes. Springer; Dordrecht, The Netherlands: 1992. pp. 594–595.
Rusek J. Air-Pollution-Mediated Changes in Alpine Ecosystems and Ecotones. Ecol. Appl. 1993;3:409–416. doi: 10.2307/1941910. PubMed DOI
Myers-Smith I.H., Forbes B.C., Wilmking M., Hallinger M., Lantz T., Blok D., Tape K.D., Macias-Fauria M., Sass-Klaassen U., Lévesque E., et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011;6:045509. doi: 10.1088/1748-9326/6/4/045509. DOI
Myers-Smith I.H., Hik D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 2018;106:547–560. doi: 10.1111/1365-2745.12817. DOI
Müllerová J. Anthropogenous Vegetation Changes in Alpine Tundra, a Remote Sensing Study from the Krkonoše Mountains, Czech Republic. Preliminary Results; Proceedings of the EUROMAB-Symposium, Austrian Academy of Sciences; Vienna, Austria. 15–19 September 1999; pp. 39–41.
Málková J. Kůlová Impact of dolomitic limestone on changes of species diversity along roads of the eastern Krkonoše Mts. Opera Corcon. 1995;32:11–130.
Husáková J. Subalpine turf communities with Deschampsia cespitosa along the tracks and paths in the Krkonoše (-Giant Mountains) National Park. Preslia. 1986;58:231–246.
Müllerová J., Vítková M. Long-term human impact on Alpine Tundra—25 years of changes assessed by aerial photography. South-East. Eur. J. Earth Obs. Geomat. 2014;3:483–487.
Harčarik J. Management of the dwarf pine plantations on the naturally valuable localities in the Giant Mountains. Opera Corcon. 2007;36:363–369.
Hejcman M., Klaudisová M., Hejcmanová P., Pavlů V., Jones M. Expansion of Calamagrostis villosa in sub-alpine Nardus stricta grassland: Cessation of cutting management or high nitrogen deposition? Agric. Ecosyst. Environ. 2009;129:91–96. doi: 10.1016/j.agee.2008.07.007. DOI
Vacek S., Bastl M., Lepš J. Vegetation changes in forests of the Krkonoše Mts. over a period of air pollution stress (1980–1995) Plant Ecol. 1999;143:1–11. doi: 10.1023/A:1009833313509. DOI
Chambers F.M., Mauquoy D., Todd P.A. Recent rise to dominance of Molinia caerulea in environmentally sensitive areas: New perspectives from palaeoecological data. J. Appl. Ecol. 1999;36:719–733. doi: 10.1046/j.1365-2664.1999.00435.x. DOI
Pyšek P. What do we know about Calamagrostis villosa?—A review of the species behaviour in secondary habitats. Preslia. 1993;64:284–289.
Hejcman M., Pavlu V., Peterova J., Ricarova P. The expansion of Calamagrostis villosa in the Giant Mountains—Preliminary results. [(accessed on 16 November 2022)];Acta Agrar. Et Silvestria Ser. Agrar. 2003 Available online: https://www.infona.pl//resource/bwmeta1.element.agro-article-728d3f02-df5b-4b54-8b6d-25603886a947.
Lokvenc T., Vacek S., Štursa J. Výzkum a Management Ekosystémů na území KRNAP. VÚLHM; Opočno, Czech Republic: 1996. Vývoj zdravotního stavu a plodivosti kleče horské v Krkonoších; pp. 224–228.
Nadarajah K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:5208. doi: 10.3390/ijms21155208. PubMed DOI PMC
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Díaz S., Kattge J., Cornelissen J.H.C., Wright I.J., Lavorel S., Dray S., Reu B., Kleyer M., Wirth C., Colin Prentice I., et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI
Funk J.L., Larson J.E., Ames G.M., Butterfield B.J., Cavender-Bares J., Firn J., Laughlin D.C., Sutton-Grier A.E., Williams L., Wright J. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. doi: 10.1111/brv.12275. PubMed DOI
Palta J.P. Leaf chlorophyll content. Remote Sens. Rev. 1990;5:207–213. doi: 10.1080/02757259009532129. DOI
Demmig-Adams B., Gilmore A.M., Iii W.W.A. In vivo functions of carotenoids in higher plants. FASEB J. 1996;10:403–412. doi: 10.1096/fasebj.10.4.8647339. PubMed DOI
Grace S. Antioxidants and Reactive Oxygen Species in Plants. John Wiley & Sons; Hoboken, NJ, USA: 2008. Phenolics as antioxidants.
Agati G., Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186:786–793. doi: 10.1111/j.1469-8137.2010.03269.x. PubMed DOI
Dixon R., Paiva N. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC
Gould K.S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. J. Biomed. Biotechnol. 2004;2004:314–320. doi: 10.1155/S1110724304406147. PubMed DOI PMC
Jansen M.A.K., Hectors K., O’Brien N.M., Guisez Y., Potters G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 2008;175:449–458. doi: 10.1016/j.plantsci.2008.04.010. DOI
Míka V., Kubáň V., Klejdus B., Odstrčilová V., Nerušil P. Phenolic compounds as chemical markers of low taxonomic levels in the family Poaceae. Plant Soil Environ. 2005;51:506. doi: 10.17221/3624-PSE. DOI
Venn S.E., Green K., Pickering C.M., Morgan J.W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 2011;212:1491–1499. doi: 10.1007/s11258-011-9923-1. DOI
Kupková L., Červená L., Suchá R., Jakešová L., Zagajewski B., Březina S., Albrechtová J. Classification of Tundra Vegetation in the Krkonoše Mts. National Park Using APEX, AISA Dual and Sentinel-2A Data. Eur. J. Remote Sens. 2017;50:29–46. doi: 10.1080/22797254.2017.1274573. DOI
Müllerová J. Use of digital aerial photography for sub-alpine vegetation mapping: A case study from the Krkonoše Mts., Czech Republic. Plant Ecol. 2005;175:259–272. doi: 10.1007/s11258-005-0063-3. DOI
Gitelson A.A., Merzlyak M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997;18:2691–2697. doi: 10.1080/014311697217558. DOI
Lillesand T.M., Kiefer R.W., Chipman J. Remote Sensing and Image Interpretation. 6th ed. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Hejcman M., Češková M., Pavlů V. Control of Molinia caerulea by cutting management on sub-alpine grassland. Flora-Morphol. Distrib. Funct. Ecol. Plants. 2010;205:577–582. doi: 10.1016/j.flora.2010.04.019. DOI
Björkman O., Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins | SpringerLink. Planta. 1987;170:489–504. doi: 10.1007/BF00402983. PubMed DOI
Johnson G.N., Young A.J., Scholes J.D., Horton P. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 1993;16:673–679. doi: 10.1111/j.1365-3040.1993.tb00485.x. DOI
Lawson T., Vialet-Chabrand S. Chlorophyll Fluorescence Imaging. In: Covshoff S., editor. Photosynthesis. Volume 1770. Humana Press; New York, NY, USA: 2018. pp. 121–140. Methods in Molecular Biology. PubMed DOI
Bantis F., Früchtenicht E., Graap J., Ströll S., Reininger N., Schäfer L., Pollastrini M., Holland V., Bussotti F., Radoglou K., et al. Special issue in honour of Prof. Reto J. Strasser—The JIP-test as a tool for forestry in times of climate change. Photosynthetica. 2020;58:409–421. doi: 10.32615/ps.2019.173. DOI
Ceppi M.G., Oukarroum A., Çiçek N., Strasser R.J., Schansker G. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol. Plant. 2012;144:277–288. doi: 10.1111/j.1399-3054.2011.01549.x. PubMed DOI
Çiçek N., Oukarroum A., Strasser R., Schansker G. Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth. Res. 2018;136:291–301. doi: 10.1007/s11120-017-0463-y. PubMed DOI
Oukarroum A., Schansker G., Strasser R. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 2009;137:188–199. doi: 10.1111/j.1399-3054.2009.01273.x. PubMed DOI
Çiçek N., Kalaji H.M., Ekmekçi Y. Probing the photosynthetic efficiency of some European and Anatolian Scots pine populations under UV-B radiation using polyphasic chlorophyll a fluorescence transient. Photosynthetica. 2020;58:468–478. doi: 10.32615/ps.2019.151. DOI
Armstrong R.H., Common T.G., Davies G.J. The prediction of the in vivodigestibility of the diet of sheep and cattle grazing indigenous hill plant communities by in vitrodigestion, faecal nitrogen concentration or indigestible’ acid-detergent fibre—ARMSTRONG—1989—Grass and Forage Science—Wiley Online Library. Grass Forage Sci. 1989;44:303–313.
Leuschner C., Ellenberg H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats: Vegetation Ecology of Central Europe, Volume II. Volume 2. Springer; Berlin/Heidelberg, Germany: 2017.
Ceulemans T., Merckx R., Hens M., Honnay O. Plant species loss from European semi-natural grasslands following nutrient enrichment—Is it nitrogen or is it phosphorus? Glob. Ecol. Biogeogr. 2013;22:73–82. doi: 10.1111/j.1466-8238.2012.00771.x. DOI
CHAPIN F.S. Effects of Plant Traits on Ecosystem and Regional Processes: A Conceptual Framework for Predicting the Consequences of Global Change. Ann. Bot. 2003;91:455–463. doi: 10.1093/aob/mcg041. PubMed DOI PMC
Jin Y., Lai S., Chen Z., Jian C., Zhou J., Niu F., Xu B. Leaf Photosynthetic and Functional Traits of Grassland Dominant Species in Response to Nutrient Addition on the Chinese Loess Plateau. Plants. 2022;11:2921. doi: 10.3390/plants11212921. PubMed DOI PMC
Zorić N. Master’s Thesis. Norwegian University of Life Sciences; Ås, Norway: 2013. [(accessed on 10 November 2022)]. Level and distribution of genetic diversity in the European species Nardus stricta L. (Poaceae) inferred from chloroplast DNA and nuclear amplified fragment length polymorphism markers. Available online: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/189603.
Ehleringer J.R., Comstock J. Leaf absorptance and leaf angle: Mechanisms for stress avoidance. In: Tenhunen J.D., Catarino F.M., Lange O.L., Oechel W.C., editors. Plant Response to Stress. Springer; Berlin/Heidelberg, Germany: 1987. pp. 55–76.
Lloyd K.M., Pollock M.L., Mason N.W.H., Lee W.G. Leaf trait-palatability relationships differ between ungulate species: Evidence from cafeteria experiments using naïve tussock grasses. N. Z. J. Ecol. 2010;34:219–226.
Smith W.K., Vogelmann T.C., DeLucia E.H., Bell D.T., Shepherd K.A. Leaf Form and Photosynthesis. BioScience. 1997;47:785–793. doi: 10.2307/1313100. DOI
Hunt L., Klem K., Lhotáková Z., Vosolsobě S., Oravec M., Urban O., Špunda V., Albrechtová J. Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants. 2021;10:385. doi: 10.3390/antiox10030385. PubMed DOI PMC
Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. Int. J. Exp. Plant Biol. 2012;196:67–76. doi: 10.1016/j.plantsci.2012.07.014. PubMed DOI
Ryan K.G., Swinny E.E., Markham K.R., Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry. 2002;59:23–32. doi: 10.1016/S0031-9422(01)00404-6. PubMed DOI
Agati G., Stefano G., Biricolti S., Tattini M. Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann. Bot. 2009;104:853–861. doi: 10.1093/aob/mcp177. PubMed DOI PMC
Klimeš L., Klimešová J. The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: Do they promote plant coexistence in species-rich meadows? Evol. Ecol. 2002;15:363–382. doi: 10.1023/A:1016041100087. DOI
Clayton W.D., Vorontsova M.S., Harman K.T., Williamson H. GrassBase—The Online World Grass Flora. 2006. [(accessed on 24 October 2022)]. Available online: http://www.kew.org/data/grasses-db.html.
Grant S.A., Torvell L., Sim E.M., Small J.L., Armstrong R.H. Controlled Grazing Studies on Nardus Grassland: Effects of Between-Tussock Sward Height and Species of Grazer on Nardus utilization and Floristic Composition in Two Fields in Scotland. J. Appl. Ecol. 1996;33:1053–1064. doi: 10.2307/2404685. DOI
Jones L.I. Studies on Hill Land in Wales. Welsh Plant Breeding Station; Aberystwyth, UK: 1967.
Krahulec F., Skálová H., Herben T., Hadincová V., Wildová R., Pecháčková S. Vegetation changes following sheep grazing in abandoned mountain meadows. Appl. Veg. Sci. 2001;4:97–102. doi: 10.1111/j.1654-109X.2001.tb00239.x. DOI
Mašková Z., Doležal J., Květ J., Zemek F. Long-term functioning of a species-rich mountain meadow under different management regimes. Agric. Ecosyst. Environ. 2009;132:192–202. doi: 10.1016/j.agee.2009.04.002. DOI
Ma Y.-Z., Holt N.E., Li X.-P., Niyogi K.K., Fleming G.R. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl. Acad. Sci. USA. 2003;100:4377–4382. doi: 10.1073/pnas.0736959100. PubMed DOI PMC
Barrere J., Collet C., Saïd S., Bastianelli D., Verheyden H., Courtines H., Bonnet A., Segrestin J., Boulanger V. Do trait responses to simulated browsing in Quercus robur saplings affect their attractiveness to Capreolus capreolus the following year? Environ. Exp. Bot. 2022;194:104743. doi: 10.1016/j.envexpbot.2021.104743. DOI
Cornelissen J.H.C., Quested H.M., Gwynn-Jones D., Van Logtestijn R.S.P., De Beus M.A.H., Kondratchuk A., Callaghan T.V., Aerts R. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 2004;18:779–786. doi: 10.1111/j.0269-8463.2004.00900.x. DOI
Lee D.W., Lowry J.B., Stone B.C. Abaxial Anthocyanin Layer in Leaves of Tropical Rain Forest Plants: Enhancer of Light Capture in Deep Shade. Biotropica. 1979;11:70–77. doi: 10.2307/2388175. DOI
Hughes N.M., Vogelmann T.C., Smith W.K. Optical effects of abaxial anthocyanin on absorption of red wavelengths by understorey species: Revisiting the back-scatter hypothesis. J. Exp. Bot. 2008;59:3435–3442. doi: 10.1093/jxb/ern193. PubMed DOI PMC
Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol. 2002;155:349–361. doi: 10.1046/j.1469-8137.2002.00482.x. PubMed DOI
Sun J., Nishio J.N., Vogelmann T.C. High-light effects on CO2 fixation gradients across leaves. Plant Cell Environ. 1996;19:1261–1271. doi: 10.1111/j.1365-3040.1996.tb00004.x. DOI
Kovinich N., Kayanja G., Chanoca A., Otegui M.S., Grotewold E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 2015;10:e1027850. doi: 10.1080/15592324.2015.1027850. PubMed DOI PMC
Cobbina J., Miller M.H. Purpling in Maize Hybrids as Influenced by Temperature and Soil Phosphorus. Agron. J. 1987;79:576–582. doi: 10.2134/agronj1987.00021962007900030035x. DOI
Chalker-Scott L. Do Anthocyanins Function of Osmoregulators in Leaf Tissues? Adv. Bot. Res. 2002;37:103–127.
Veresoglou D.S., Fitter A.H. Spatial and Temporal Patterns of Growth and Nutrient Uptake of Five Co-Existing Grasses. J. Ecol. 1984;72:259. doi: 10.2307/2260018. DOI
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019;144:135–143. doi: 10.1016/j.plaphy.2019.09.039. PubMed DOI
Hunt L., Fuksa M., Klem K., Lhotáková Z., Oravec M., Urban O., Albrechtová J. Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions. Plants. 2021;10:2533. doi: 10.3390/plants10112533. PubMed DOI PMC
Lin C.-M., Chen C.-T., Lee H.-H., Lin J.-K. Prevention of Cellular ROS Damage by Isovitexin and Related Flavonoids. Planta Med. 2002;68:365–367. doi: 10.1055/s-2002-26753. PubMed DOI
Ibaraki Y., Murakami J. Distribution of chlorophyll fluorescence parameter fv/fm within individual plants under various stress conditions. Acta Hortic. 2007;761:255–260. doi: 10.17660/ActaHortic.2007.761.33. DOI
Baker N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI
Sharma D.K., Andersen S.B., Ottosen C.-O., Rosenqvist E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015;153:284–298. doi: 10.1111/ppl.12245. PubMed DOI
Rizza F., Pagani D., Stanca A.M., Cattivelli L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 2001;120:389–396. doi: 10.1046/j.1439-0523.2001.00635.x. DOI
Dias M.C., Correia S., Serôdio J., Silva A.M.S., Freitas H., Santos C. Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic. 2018;231:31–35. doi: 10.1016/j.scienta.2017.12.007. DOI
Schansker G., Tóth S.Z., Strasser R.J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta BBA-Bioenerg. 2005;1706:250–261. doi: 10.1016/j.bbabio.2004.11.006. PubMed DOI
Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014;81:16–25. doi: 10.1016/j.plaphy.2014.03.029. PubMed DOI
Semelová V., Hejcman M., Pavlů V., Vacek S., Podrázský V. The Grass Garden in the Giant Mts. (Czech Republic): Residual effect of long-term fertilization after 62 years. Agric. Ecosyst. Environ. 2008;123:337–342. doi: 10.1016/j.agee.2007.07.005. DOI
Chadwick M.J. Nardus stricta L. J. Ecol. 1960;48:255–267. doi: 10.2307/2257324. DOI
Peñuelas J., Fernández-Martínez M., Ciais P., Jou D., Piao S., Obersteiner M., Vicca S., Janssens I.A., Sardans J. The bioelements, the elementome, and the biogeochemical niche. Ecology. 2019;100:e02652. doi: 10.1002/ecy.2652. PubMed DOI
Ahmad-Ramli M.F., Cornulier T., Johnson D. Partitioning of soil phosphorus regulates competition between Vaccinium vitis-idaea and Deschampsia cespitosa. Ecol. Evol. 2013;3:4243–4252. doi: 10.1002/ece3.771. PubMed DOI PMC
Alonso I., Hartley S.E., Thurlow M. Competition between heather and grasses on Scottish moorlands: Interacting effects of nutrient enrichment and grazing regime. J. Veg. Sci. 2001;12:249–260. doi: 10.2307/3236609. DOI
Schelfhout S., Wasof S., Mertens J., Vanhellemont M., Demey A., Haegeman A., DeCock E., Moeneclaey I., Vangansbeke P., Viaene N., et al. Effects of bioavailable phosphorus and soil biota on typical Nardus grassland species in competition with fast-growing plant species. Ecol. Indic. 2021;120:106880. doi: 10.1016/j.ecolind.2020.106880. DOI
Lepš J.J.P., Grime J.G. Hodgson and R. Hunt Comparative plant ecology. Folia Geobot. Phytotaxon. 1990;25:216. doi: 10.1007/BF02912743. DOI
Sochorová L., Jansa J., Verbruggen E., Hejcman M., Schellberg J., Kiers E.T., Johnson N.C. Long-term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric. Ecosyst. Environ. 2016;220:104–114. doi: 10.1016/j.agee.2015.12.026. DOI
Clein J.S., Schimel J.P. Nitrogen turnover and availability during succession from alder to poplar in Alaskan taiga forests. Soil Biol. Biochem. 1995;27:743–752. doi: 10.1016/0038-0717(94)00232-P. DOI
Meier C.L., Bowman W.D. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia. 2008;158:95–107. doi: 10.1007/s00442-008-1124-9. PubMed DOI
Beamish A., Raynolds M.K., Epstein H., Frost G.V., Macander M.J., Bergstedt H., Bartsch A., Kruse S., Miles V., Tanis C.M., et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 2020;246:111872. doi: 10.1016/j.rse.2020.111872. DOI
Heijmans M.M.P.D., Magnússon R., Lara M.J., Frost G.V., Myers-Smith I.H., van Huissteden J., Jorgenson M.T., Fedorov A.N., Epstein H.E., Lawrence D.M., et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 2022;3:68–84. doi: 10.1038/s43017-021-00233-0. DOI
Franke A.K., Feilhauer H., Bräuning A., Rautio P., Braun M. Remotely sensed estimation of vegetation shifts in the polar and alpine tree-line ecotone in Finnish Lapland during the last three decades. For. Ecol. Manag. 2019;454:117668. doi: 10.1016/j.foreco.2019.117668. DOI
Meng B., Ge J., Liang T., Yang S., Gao J., Feng Q., Cui X., Huang X., Xie H. Evaluation of Remote Sensing Inversion Error for the Above-Ground Biomass of Alpine Meadow Grassland Based on Multi-Source Satellite Data. Remote Sens. 2017;9:372. doi: 10.3390/rs9040372. DOI
Červená L., Pinlová G., Lhotáková Z., Neuwirthová E., Kupková L., Potůčková M., Lysák J., Campbell P., Albrechtová J. Determination of Chlorophyll Content in Selected Grass Communities of Krkonoše Mts. Tundra Based on Laboratory Spectroscopy and Aerial Hyperspectral data; Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 XXIV ISPRS Congress (2022 edition); Nice, France. 6–11 June 2022; pp. 381–388.
Chen J.M., Black T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992;15:421–429. doi: 10.1111/j.1365-3040.1992.tb00992.x. DOI
Ustin S.L., Gitelson A.A., Jacquemoud S., Schaepman M., Asner G.P., Gamon J.A., Zarco-Tejada P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009;113:S67–S77. doi: 10.1016/j.rse.2008.10.019. DOI
Gitelson A.A., Chivkunova O.B., Merzlyak M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009;96:1861–1868. doi: 10.3732/ajb.0800395. PubMed DOI
Chlus A., Townsend P.A. Characterizing seasonal variation in foliar biochemistry with airborne imaging spectroscopy. Remote Sens. Environ. 2022;275:113023. doi: 10.1016/j.rse.2022.113023. DOI
Bussotti F., Gerosa G., Digrado A., Pollastrini M. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol. Indic. 2020;108:105686. doi: 10.1016/j.ecolind.2019.105686. DOI
Mancinelli A.L., Yang C.-P.H., Lindquist P., Anderson O.R., Rabino I. Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin 1. Plant Physiol. 1975;55:251–257. doi: 10.1104/pp.55.2.251. PubMed DOI PMC
Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J. Exp. Bot. 2008;59:3903–3911. doi: 10.1093/jxb/ern230. PubMed DOI PMC
Fossen T., Slimestad R., Øvstedal D.O., Andersen Ø.M. Anthocyanins of grasses. Biochem. Syst. Ecol. 2002;30:855. doi: 10.1016/S0305-1978(02)00028-5. DOI
Singleton V.L., Rossi J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16:144–158.
Porra R., Thompson W., Kriedemann P. Determination of Accurate Extinction Coefficients and Simultaneous-Equations for Assaying Chlorophyll-a and Chlorophyll-B Extracted with 4 Different Solvents—Verification of the Concentration. Biochim. Biophys. Acta. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Brauns F.E. The Chemistry of Lignin. Academic Press Inc.; New York, NY, USA: 1952.
Gardner R.O. Vanillin-Hydrochloric Acid as a Histochemical Test for Tannin. Stain Technol. 1975;50:315–317. doi: 10.3109/10520297509117081. PubMed DOI
Hutzler P., Fischbach R., Heller W., Jungblut T.P., Reuber S., Schmitz R., Veit M., Weissenböck G., Schnitzler J.-P. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 1998;49:953–965. doi: 10.1093/jxb/49.323.953. DOI
Tattini M., Guidi L., Morassi-Bonzi L., Pinelli P., Remorini D., Degl’Innocenti E., Giordano C., Massai R., Agati G. On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol. 2005;167:457–470. doi: 10.1111/j.1469-8137.2005.01442.x. PubMed DOI
Tang Y., Horikoshi M., Li W. ggfortify: Unified Interface to Visualize Statistical Results of Popular R Packages. R J. 2016;8:474–485. doi: 10.32614/RJ-2016-060. DOI
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021. [(accessed on 11 November 2022)]. Available online: https://www.R-project.org/