Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31475023
PubMed Central
PMC6703096
DOI
10.3389/fpls.2019.01026
Knihovny.cz E-zdroje
- Klíčová slova
- light quality, metabolomics, morphology, photosynthesis, root system architecture,
- Publikační typ
- časopisecké články MeSH
Light quality modulates plant growth, development, physiology, and metabolism through a series of photoreceptors perceiving light signal and related signaling pathways. Although the partial mechanisms of the responses to light quality are well understood, how plants orchestrate these impacts on the levels of above- and below-ground tissues and molecular, physiological, and morphological processes remains unclear. However, the re-allocation of plant resources can substantially adjust plant tolerance to stress conditions such as reduced water availability. In this study, we investigated in two spring barley genotypes the effect of ultraviolet-A (UV-A), blue, red, and far-red light on morphological, physiological, and metabolic responses in leaves and roots. The plants were grown in growth units where the root system develops on black filter paper, placed in growth chambers. While the growth of above-ground biomass and photosynthetic performance were enhanced mainly by the combined action of red, blue, far-red, and UV-A light, the root growth was stimulated particularly by supplementary far-red light to red light. Exposure of plants to the full light spectrum also stimulates the accumulation of numerous compounds related to stress tolerance such as proline, secondary metabolites with antioxidative functions or jasmonic acid. On the other hand, full light spectrum reduces the accumulation of abscisic acid, which is closely associated with stress responses. Addition of blue light induced accumulation of γ-aminobutyric acid (GABA), sorgolactone, or several secondary metabolites. Because these compounds play important roles as osmolytes, antioxidants, UV screening compounds, or growth regulators, the importance of light quality in stress tolerance is unequivocal.
Centro de Investigación Ecológica y Aplicaciones Forestales Barcelona Spain
Department of Soil Science Kasetsart University Bangkok Thailand
Global Change Research Institute Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Agati G., Azzarello E., Pollastri S., Tattini M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196, 67–76. 10.1016/j.plantsci.2012.07.014 PubMed DOI
Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol. Biochem. 72, 35–45. 10.1016/j.plaphy.2013.03.014 PubMed DOI
Ahanger M. A., Ashraf M., Bajguz A., Ahmad P. (2018). Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J. Plant Growth Regul. 37, 1007–1024. 10.1007/s00344-018-9855-2 DOI
Anderson M., Gorley R. N., Clarke R. K. (2008). Permanova+ for primer: guide to software and statistical methods. Primer-E Limited; Lutton, UK.
Aphalo P. J., Lehto T. (2001). Effect of lateral far-red light supplementation on the growth and morphology of birch seedlings and its interaction with mineral nutrition. Trees 15, 297–303. 10.1007/s004680100100 DOI
Ballaré C. L. (2009). Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32, 713–725. 10.1111/j.1365-3040.2009.01958.x PubMed DOI
Bian Z. H., Yang Q. C., Liu W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric. 95, 869–877. 10.1002/jsfa.6789 PubMed DOI
Biswas D. K., Jansen M. A. K. (2012). Natural variation in UV-B protection amongst Arabidopsis thaliana accessions. Emir. J. Food Agric. 246, 621–631. 10.9755/ejfa.v24i6.14681 DOI
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., et al. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39. 10.1038/nature03184 PubMed DOI
Boccalandro H. E., Giordano C. V., Ploschuk E. L., Piccoli P. N., Bottini R., Casal J. J. (2012). Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol. 158, 1475–1484. 10.1104/pp.111.187237 PubMed DOI PMC
Bolouri-Moghaddam M. R., Roy K. L., Xiang L., Rolland F., Van den Ende W. (2010). Sugar signalling and antioxidant network connections in plant cells. FEBS J. 277, 2022–2037. 10.1111/j.1742-4658.2010.07633.x PubMed DOI
Bouché N., Fromm H. (2004). GABA in plants: just a metabolite? Trends Plant Sci. 9, 110–115. 10.1016/j.tplants.2004.01.006 PubMed DOI
Brossa R., López-Carbonell M., Jubany-Marí T., Alegre L. (2011). Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J. Plant Growth Regul. 30, 322–333. 10.1007/s00344-011-9194-z DOI
Burchard P., Bilger W., Weissenbock G. (2000). Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2312, 1373–1380. 10.1046/j.1365-3040.2000.00633.x DOI
Campos M. L., Yoshida Y., Major I. T., de Oliveira Ferreira D., Weraduwage S. M., Froehlich J. E., et al. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth–defense tradeoffs. Nat. Commun. 7, 12570. 10.1038/ncomms12570 PubMed DOI PMC
Canamero R. C., Bakrim N., Bouly J.-P., Garay A., Dudkin E. E., Habricot Y., et al. (2006). Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana . Planta 224, 995–1003. 10.1007/s00425-006-0280-6 PubMed DOI
Casal J. J., Sánchez R. A., Botto J. F. (1998). Modes of action of phytochromes. J. Exp. Bot. 49, 127–138. 10.1093/jxb/49.319.127 DOI
Catalá R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis . Proc. Natl. Acad. Sci. U. S. A. 108, 16475–16480. 10.1073/pnas.1107161108 PubMed DOI PMC
Cerrudo I., Keller M. M., Cargnel M. D., Demkura P. V., de Wit M., Patitucci M. S., et al. (2012). Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10–dependent, salicylic acid–independent mechanism. Plant Physiol. 158, 2042–2052. 10.1104/pp.112.193359 PubMed DOI PMC
Chen M., Chory J., Fankhauser C. (2004). Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117. 10.1146/annurev.genet.38.072902.092259 PubMed DOI
Cho Y.-H., Yoo S.-D. (2011). Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana . PLoS Genet. 7, e1001263. 10.1371/journal.pgen.1001263 PubMed DOI PMC
Cooley N. M., Higgins J. T., Holmes M. G., Attridge T. H. (2001). Ecotypic differences in responses of Arabidopsis thaliana L. to elevated polychromatic UV-A and UV-B+A radiation in the natural environment: a positive correlation between UV-B+A inhibition and growth rate. J. Photochem. Photobiol. B, Biol. 60, 143–150. 10.1016/S1011-1344(01)00140-3 PubMed DOI
Das P. K., Shin D. H., Choi S.-B., Park Y.-I. (2012). Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol. Cells 34, 501–507. 10.1007/s10059-012-0151-x PubMed DOI PMC
de Lucas M., Prat S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol. 202, 1126–1141. 10.1111/nph.12725 PubMed DOI
de Lucas M., Davière J.-M., Rodríguez-Falcón M., Pontin M., Iglesias-Pedraz J. M., Lorrain S., et al. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484. 10.1038/nature06520 PubMed DOI
de Simone S., Oka Y., Inoue Y. (2000). Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants. J. Plant Res. 113, 63–69. 10.1007/PL00013917 DOI
Demmig-Adams B., Adams W. W., III, Barker D. H., Logan B. A., Bowling D. R., Verhoeven A. S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98, 253–264. 10.1034/j.1399-3054.1996.980206.x DOI
Diaz C., Purdy S., Christ A., Morot-Gaudry J.-F., Wingler A., Masclaux-Daubresse C. (2005). Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiol. 138, 898–908. 10.1104/pp.105.060764 PubMed DOI PMC
Falcone Ferreyra M. L., Rius S. P., Casati P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3(222), 1–15. 10.3389/fpls.2012.00222 PubMed DOI PMC
Farré E. M. (2012). The regulation of plant growth by the circadian clock. Plant Biol. 14, 401–410. 10.1111/j.1438-8677.2011.00548.x PubMed DOI
Folta K. M., Childers K. S. (2008). Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. Hortscience 43, 1957–1964. 10.21273/HORTSCI.43.7.1957 DOI
Folta K. M., Pontin M. A., Karlin-Neumann G., Bottini R., Spalding E. P. (2003). Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J. 36, 203–214. 10.1046/j.1365-313X.2003.01870.x PubMed DOI
Foyer C. H., Noctor G., Verrier P. (2018). Photosynthetic carbon–nitrogen interactions: modelling inter-pathway control and signalling. Annu. Rev. Plant Biol. 22, 325–347. 10.1002/9780470988640 DOI
Franklin K. A. (2008). Shade avoidance. New Phytol. 179, 930–944. 10.1111/j.1469-8137.2008.02507.x PubMed DOI
Galvão V. C., Fankhauser C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34, 46–53. 10.1016/j.conb.2015.01.013 PubMed DOI
Gelderen van K., Kang C., Paalman R., Keuskamp D., Hayes S., Pierik R. (2018. a). Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor. Plant Cell 30, 101–116. 10.1105/tpc.17.00771 PubMed DOI PMC
Gelderen van K., Kang C., Pierik R. (2018. b). Light signaling, root development, and plasticity. Plant Physiol. 176, 1049–1060. 10.1104/pp.17.01079 PubMed DOI PMC
Goins G. D., Yorio N. C., Sanwo M. M., Brown C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48, 1407–1413. 10.1093/jxb/48.7.1407 PubMed DOI
Granot D., Kelly G. (2019). Evolution of guard-cell theories: the story of sugars. Trends Plant Sci. 24, 507–518. 10.1016/j.tplants.2019.02.009 PubMed DOI
Granot D., Kelly G., Stein O., David-Schwartz R. (2014). Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J. Exp. Bot. 65, 809–819. 10.1093/jxb/ert400 PubMed DOI
Green-Tracewicz E., Page E. R., Swanton C. J. (2012). Light quality and the critical period for weed control in soybean. Weed Sci. 60, 86–91. 10.1614/WS-D-11-00072.1 DOI
Gundel P. E., Pierik R., Mommer L., Ballaré C. L. (2014). Competing neighbors: light perception and root function. Oecologia 176, 1–10. 10.1007/s00442-014-2983-x PubMed DOI
Gyula P., Schäfer E., Nagy F. (2003). Light perception and signalling in higher plants. Curr. Opin. Plant Biol. 6, 446–452. 10.1016/S1369-5266(03)00082-7 PubMed DOI
Ha C. V., Leyva-González M. A., Osakabe Y., Tran U. T., Nishiyama R., Watanabe Y., et al. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U. S. A. 111, 851–856. 10.1073/pnas.1322135111 PubMed DOI PMC
Hernández R., Kubota C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121, 66–74. 10.1016/j.envexpbot.2015.04.001 DOI
Hideg E., Jansen M. A. K., Strid A. (2013). UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 182, 107–115. 10.1016/j.tplants.2012.09.003 PubMed DOI
Hogewoning S. W., Trouwborst G., Maljaars H., Poorter H., van Leperen W., Harbinson J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61, 3107–3117. 10.1093/jxb/erq132 PubMed DOI PMC
Horacio P., Martinez-Noel G. (2013). Sucrose signaling in plants: a world yet to be explored. Plant Signal. Behav. 8, e23316. 10.4161/psb.23316 PubMed DOI PMC
Horai H., Arita M., Kanaya S., Nihei Y., Ikeda T., Suwa K., et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714. 10.1002/jms.1777 PubMed DOI
Huché-Thélier L., Crespel L., Gourrierec J. L., Morel P., Sakr S., Leduc N. (2016). Light signaling and plant responses to blue and UV radiations—perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. 10.1016/j.envexpbot.2015.06.009 DOI
Kami C., Lorrain S., Hornitschek P., Fankhauser C. (2010). “Chapter two—light-regulated plant growth and development,” in Current Topics in Developmental Biology Plant Development. Ed. Timmermans M. C. P. (Academic Press; ), 29–66. 10.1016/S0070-2153(10)91002-8 PubMed DOI
Kanehisa M., Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. 10.1093/nar/28.1.27 PubMed DOI PMC
Kang W. H., Park J. S., Park K. S., Son J. E. (2016). Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Hortic. Environ. Biotechnol. 57, 573–579. 10.1007/s13580-016-0093-x DOI
Kangasjärvi S., Neukermans J., Li S., Aro E.-M., Noctor G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63, 1619–1636. 10.1093/jxb/err402 PubMed DOI
Karapetyan S., Dong X. (2018). Redox and the circadian clock in plant immunity: a balancing act. Free Radic. Biol. Med. 119, 56–61. 10.1016/j.freeradbiomed.2017.12.024 PubMed DOI PMC
Kasperbauer M. J. (1987). Far-red light reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiol. 85, 350–354. 10.1104/pp.85.2.350 PubMed DOI PMC
Kebrom T. H., Brutnell T. P. (2007). The molecular analysis of the shade avoidance syndrome in the grasses has begun. J. Exp. Bot. 58, 3079–3089. 10.1093/jxb/erm205 PubMed DOI
Keller M. M., Jaillais Y., Pedmale U. V., Moreno J. E., Chory J., Ballaré C. L. (2011). Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67, 195–207. 10.1111/j.1365-313X.2011.04598.x PubMed DOI PMC
Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656. 10.1038/414656a PubMed DOI
Kircher S., Schopfer P. (2012). Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis . Proc. Natl. Acad. Sci. U. S. A. 109, 11217–11221. 10.1073/pnas.1203746109 PubMed DOI PMC
Klem K., Ač A., Holub P., Kováč D., Špunda V., Robson T. M., et al. (2012). Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 75, 52–64. 10.1016/j.envexpbot.2011.08.008 DOI
Klem K., Holub P., Štroch M., Nezval J., Špunda V., Tříska J., et al. (2015). Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol. Biochem. 93, 74–83. 10.1016/j.plaphy.2015.01.001 PubMed DOI
Kopsell D. A., Sams C. E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 138, 31–37. 10.21273/JASHS.138.1.31 DOI
Krizek D. T. (2004). UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem. Photobiol. 79, 217. 10.1111/j.1751-1097.2004.tb00400.x PubMed DOI
Kruse J., Hänsch R., Mendel R. R., Rennenberg H. (2010). The role of root nitrate reduction in the systemic control of biomass partitioning between leaves and roots in accordance to the C/N-status of tobacco plants. Plant Soil 332, 387–403. 10.1007/s11104-010-0305-6 DOI
Kurepin L. V., Walton L. J., Yeung E. C., Chinnappa C. C., Reid D. M. (2010). The interaction of light irradiance with ethylene in regulating growth of Helianthus annuus shoot tissues. Plant Growth Regul. 62, 43–50. 10.1007/s10725-010-9483-8 DOI
Lancien M., Roberts M. R. (2006). Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant Cell Environ. 29, 1430–1436. 10.1111/j.1365-3040.2006.01526.x PubMed DOI
Lanoue J., Leonardos E. D., Grodzinski B. (2018). Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Front. Plant Sci. 9 (756), 1–14. 10.3389/fpls.2018.00756 PubMed DOI PMC
Lastdrager J., Hanson J., Smeekens S. (2014). Sugar signals and the control of plant growth and development. J. Exp. Bot. 65, 799–807. 10.1093/jxb/ert474 PubMed DOI
Lau O. S., Deng X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 135, 571–577. 10.1016/j.pbi.2010.07.001 PubMed DOI
Lavenus J., Goh T., Roberts I., Guyomarc’h S., de Lucas M., Smet I., et al. (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18, 450–458. 10.1016/j.tplants.2013.04.006 PubMed DOI
Lee M.-J., Park S.-Y., Oh M.-M. (2015). Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Hortic. Environ. Biotechnol. 56, 186–194. 10.1007/s13580-015-0130-1 DOI
Li X., Kim Y. B., Uddin M. R., Lee S., Kim S.-J., Park S. U. (2013). Influence of light on the free amino acid content and γ-aminobutyric acid synthesis in Brassica juncea seedlings. J. Agric. Food Chem. 61 (36), 8624–8631. 10.1021/jf401956v PubMed DOI
Li Y., Xin G., Wei M., Shi Q., Yang F., Wang X. (2017). Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci. Hortic. 225, 490–497. 10.1016/j.scienta.2017.07.053 DOI
Ljung K., Nemhauser J. L., Perata P. (2015). New mechanistic links between sugar and hormone signalling networks. Curr. Opin. Plant Biol. 25, 130–137. 10.1016/j.pbi.2015.05.022 PubMed DOI
McLaren J. S., Smith H. (1978). Phytochrome control of the growth and development of Rumex obtusifolius under simulated canopy light environments. Plant Cell Environ. 1, 61–67. 10.1111/j.1365-3040.1978.tb00748.x DOI
Mekonnen D. W., Flügge U.-I., Ludewig F. (2016). Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana . Plant Sci. 245, 25–34. 10.1016/j.plantsci.2016.01.005 PubMed DOI
Michaeli S., Fromm H. (2015). Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front. Plant Sci. 6 (419), 1–7. 10.3389/fpls.2015.00419 PubMed DOI PMC
Mishra B. S., Singh M., Aggrawal P., Laxmi A. (2009). Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4, e4502. 10.1371/journal.pone.0004502 PubMed DOI PMC
Morales L. O., Tegelberg R., Brosché M., Keinänen M., Lindfors A., Aphalo P. J. (2010). Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 30, 923–934. 10.1093/treephys/tpq051 PubMed DOI
Murphy G. P., Dudley S. A. (2009). Kin recognition: competition and cooperation in Impatiens (Balsaminaceae). Am. J. Bot. 96, 1990–1996. 10.3732/ajb.0900006 PubMed DOI
Nawkar G. M., Maibam P., Park J. H., Sahi V. P., Lee S. Y., Kang C. H. (2013). UV-induced cell death in plants. Int. J. Mol. Sci. 14, 1608–1628. 10.3390/ijms14011608 PubMed DOI PMC
Nunes-Nesi A., Fernie A. R., Stitt M. (2010). Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 36, 973–996. 10.1093/mp/ssq049 PubMed DOI
Obata T., Fernie A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225–3243. 10.1007/s00018-012-1091-5 PubMed DOI PMC
Ohashi-Kaneko K., Matsuda R., Goto E., Fujiwara K., Kurata K. (2006). Growth of rice plants under red light with or without supplemental blue light. Soil Sci. Plant Nutr. 52, 444–452. 10.1111/j.1747-0765.2006.00063.x PubMed DOI
Ouzounis T., Rosenqvist E., Ottosen C.-O. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: a review. Hortscience 50, 1128–1135. 10.21273/HORTSCI.50.8.1128 DOI
Park Y., Runkle E. S. (2017). Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 136, 41–49. 10.1016/j.envexpbot.2016.12.013 DOI
Péret B., Larrieu A., Bennett M. J. (2009). Lateral root emergence: a difficult birth. J. Exp. Bot. 60, 3637–3643. 10.1093/jxb/erp232 PubMed DOI
Poorter H., Niklas K. J., Reich P. B., Oleksyn J., Poot P., Mommer L. (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50. 10.1111/j.1469-8137.2011.03952.x PubMed DOI
Procko C., Crenshaw C. M., Ljung K., Noel J. P., Chory J. (2014). Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa . Plant Physiol. 165, 1285–1301. 10.1104/pp.114.241844 PubMed DOI PMC
Rattanapichai W., Klem K. (2016). Two-dimensional root phenotyping system based on root growth on black filter paper and recirculation micro-irrigation. Czech J. Genet. Plant Breed. 52, 64–70. 10.17221/121/2015-CJGPB DOI
Roberts M. R. (2007). Does GABA act as a signal in plants? Hints from molecular studies. Plant Signal. Behav. 2, 408–409. 10.4161/psb.2.5.4335 PubMed DOI PMC
Robson T. M., Klem K., Urban O., Jansen M. A. K. (2015). Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 385, 856–866. 10.1111/pce.12374 PubMed DOI
Royer M., Larbat R., Le Bot J., Adamowicz S., Robin C. (2013). Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato? Phytochemistry 88, 25–33. 10.1016/j.phytochem.2012.12.003 PubMed DOI
Ruiz-Vera U. M., De Souza A. P., Long S. P., Ort D. R. (2017). The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum L. at elevated CO2 concentration. Front. Plant Sci. 8 (998), 1–12. 10.3389/fpls.2017.00998 PubMed DOI PMC
Sadras V. O., Hall A. J., Trapani N., Vilella F. (1989). Dynamics of rooting and root-length: leaf-area relationships as affected by plant population in sunflower crops. Field Crops Res. 22, 45–57. 10.1016/0378-4290(89)90088-9 DOI
Saini S., Sharma I., Kaur N., Pati P. K. (2013). Auxin: a master regulator in plant root development. Plant Cell Rep. 32, 741–757. 10.1007/s00299-013-1430-5 PubMed DOI
Seto Y., Kameoka H., Yamaguchi S., Kyozuka J. (2012). Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol. 53, 1843–1853. 10.1093/pcp/pcs142 PubMed DOI
Smith C. A., Want E. J., O’Maille G., Abagyan R., Siuzdak G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787. 10.1021/ac051437y PubMed DOI
Stewart J. L., Maloof J. N., Nemhauser J. L. (2011). PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS One 6, e19894. 10.1371/journal.pone.0019894 PubMed DOI PMC
Suzuki A., Suriyagoda L., Shigeyama T., Tominaga A., Sasaki M., Hiratsuka Y., et al. (2011). Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc. Natl. Acad. Sci. U. S. A. 108, 16837–16842. 10.1073/pnas.1105892108 PubMed DOI PMC
Svyatyna K., Riemann M. (2012). Light-dependent regulation of the jasmonate pathway. Protoplasma 249, 137–145. 10.1007/s00709-012-0409-3 PubMed DOI
Tilbrook K., Arongaus A. B., Binkert M., Heijde M., Yin R., Ulm R. (2013). The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11 (e0164), 1–21. 10.1199/tab.0164 PubMed DOI PMC
Uchytilová T., Krejza J., Veselá B., Holub P., Urban O., Horáček P., et al. (2019). Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiol. Biochem. 134, 103–112. 10.1016/j.plaphy.2018.07.038 PubMed DOI
Verdaguer D., Jansen M. A. K., Llorens L., Morales L. O., Neugart S. (2017). UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci. 255, 72–81. 10.1016/j.plantsci.2016.11.014 PubMed DOI
Walter S., Nicholson P., Doohan F. M. (2010). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol., 185, 54–66. 10.1111/j.1469-8137.2009.03041.x PubMed DOI
Wang J., Lu W., Tong Y., Yang Q. (2016). Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 7 (250), 1–10 . 10.3389/fpls.2016.00250 PubMed DOI PMC
Wang L., Ruan Y.-L. (2016). Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. Funct. Plant Biol. 43, 105–113. 10.1071/FP15249 PubMed DOI
Yang C., Li L. (2017). Hormonal regulation in shade avoidance. Front. Plant Sci. 8 (1527), 1–8. 10.3389/fpls.2017.01527 PubMed DOI PMC
Zhang L., Allen L. H., Vaughan M. M., Hauser B. A., Boote K. J. (2014). Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agric. For. Meteorol. 184, 170–178. 10.1016/j.agrformet.2013.09.011 DOI
Single and interactive effects of variables associated with climate change on wheat metabolome
Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance
The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley
Light and CO2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves