Differential physiological and production responses of C3 and C4 crops to climate factor interactions

. 2024 ; 15 () : 1345462. [epub] 20240202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38371407

This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.

Zobrazit více v PubMed

Abdelhakim L. O. A., Zhou R., Ottosen C.-O. (2022). Physiological responses of plants to combined drought and heat under elevated CO2 . Agronomy 12 2526. doi: 10.3390/agronomy12102526 PubMed DOI

Anjum S. A., Wang L. C., Farooq M., Hussain M., Xue L. L., Zou C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 197, 177–185. doi: 10.1111/j.1439-037X.2010.00459.x DOI

Bellasio C., Quirk J., Beerling D. J. (2018). Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2 . Plant Sci. 274, 181–192. doi: 10.1016/j.plantsci.2018.05.028 PubMed DOI

Bellasio C., Stuart-Williams H., Farquhar G. D., Flexas J. (2023). C4 maize and sorghum are more sensitive to rapid dehydration than C3 wheat and sunflower. New Phytol. 240, 2239–2252. doi: 10.1111/nph.19299 PubMed DOI

Bodner G., Nakhforoosh A., Kaul H.-P. (2015). Management of crop water under drought: A review. Agron. Sustain. Dev. 35, 401–442. doi: 10.1007/s13593-015-0283-4 DOI

Borrelli P., Robinson D. A., Panagos P., Lugato E., Yang J. E., Alewell C., et al. . (2020). Land use and climate change impacts on global soil erosion by water, (2015-2070). Proc. Natl. Acad. Sci. 117, 21994–22001. doi: 10.1073/pnas.2001403117 PubMed DOI PMC

Brás T. A., Seixas J., Carvalhais N., Jägermeyr J. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012. doi: 10.1088/1748-9326/abf004 DOI

Bruinsma J. (Ed.) (2017). World Agriculture: Towards 2015/2030: An FAO Study. (London: Routledge; ). doi: 10.4324/9781315083858 DOI

Burkart S., Manderscheid R., Wittich K.-P., Löpmeier F. J., Weigel H.-J. (2011). Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol. 13, 258–269. doi: 10.1111/j.1438-8677.2010.00360.x PubMed DOI

Cao Q., Li G., Liu F. (2022). Elevated CO2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.953712 PubMed DOI PMC

Cohen I., Zandalinas S. I., Huck C., Fritschi F. B., Mittler R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum 171, 66–76. doi: 10.1111/ppl.13203 PubMed DOI

Conijn J. G., Bindraban P. S., Schröder J. J., Jongschaap R. E. E. (2018). Can our global food system meet food demand within planetary boundaries? Agriculture Ecosyst. Environ. 251, 244–256. doi: 10.1016/j.agee.2017.06.001 DOI

Drake B. G., Gonzàlez-Meler M. A., Long S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2 ? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609–639. doi: 10.1146/annurev.arplant.48.1.609 PubMed DOI

Fahad S., Bajwa A. A., Nazir U., Anjum S. A., Farooq A., Zohaib A., et al. . (2017). Crop production under drought and heat stress: Plant Responses and management options. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01147 PubMed DOI PMC

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). “Plant drought stress: Effects, mechanisms and management,” in Sustainable Agriculture. Eds. Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (Dordrecht: Springer Netherlands; ), 153–188. doi: 10.1007/978-90-481-2666-8_12 DOI

Fletcher R. A., Santakumari M., Murr D. P. (1988). Imposition of water stress in wheat seedlings improves the efficacy of uniconazole-induced thermal resistance. Physiologia Plantarum 74, 360–364. doi: 10.1111/j.1399-3054.1988.tb00643.x DOI

Gray S. B., Dermody O., Klein S. P., Locke A. M., McGrath J. M., Paul R. E., et al. . (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 1–8. doi: 10.1038/nplants.2016.132 PubMed DOI

González L., González-Vilar M. (2001). Determination of relative water content. In Handbook of plant ecophysiology techniques. (Dordrecht: Springer Netherlands; ), pp. 207–212.

Gupta A., Rico-Medina A., Caño-Delgado A. I. (2020). The physiology of plant responses to drought. Science 368, 266–269. doi: 10.1126/science.aaz7614 PubMed DOI

Hamilton E. W., 3rd., Heckathorn S. A., Joshi P., Wang D., Barua D. (2008). Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J. Integr. Plant Biol. 50, 1375–1387. doi: 10.1111/j.1744-7909.2008.00747.x PubMed DOI

Hura T., Hura K., Grzesiak M., Rzepka A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiol. Plant 29, 103–113. doi: 10.1007/s11738-006-0013-2 DOI

Jat M. L., Dagar J. C., Sapkota T. B., Yadvinder-Singh, Govaerts B., Ridaura S. L., et al. . (2016). “Chapter three - climate change and agriculture: adaptation strategies and mitigation opportunities for food security in south asia and Latin America,” in Advances in Agronomy. Ed. Sparks D. L. (Cambridge, Massachusetts: Academic Press; ), 127–235. doi: 10.1016/bs.agron.2015.12.005 DOI

Killi D., Bussotti F., Raschi A., Haworth M. (2017). Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia Plantarum 159, 130–147. doi: 10.1111/ppl.12490 PubMed DOI

Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., et al. . (2019). Distinct morphological, physiological, and biochemical responses to light quality in barley leaves and roots. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01026 PubMed DOI PMC

Klem K., Oravec M., Holub P., Šimor J., Findurová H., Surá K., et al. . (2022). Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance. Plant Physiol. Biochem. 172, 111–124. doi: 10.1016/j.plaphy.2022.01.006 PubMed DOI

Leakey A. D. B., Ferguson J. N., Pignon C. P., Wu A., Jin Z., Hammer G. L., et al. . (2019). Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 70, 781–808. doi: 10.1146/annurev-arplant-042817-040305 PubMed DOI

Makowski D., Marajo-Petitzon E., Durand J.-L., Ben-Ari T. (2020). Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 115, 126041. doi: 10.1016/j.eja.2020.126041 DOI

McKenzie F. C., Williams J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Sec. 7, 221–233. doi: 10.1007/s12571-015-0441-1 DOI

Miranda-Apodaca J., Pérez-López U., Lacuesta M., Mena-Petite A., Muñoz-Rueda A. (2018). The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific. J. Plant Physiol. 220, 193–202. doi: 10.1016/j.jplph.2017.11.006 PubMed DOI

Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19. doi: 10.1016/j.tplants.2005.11.002 PubMed DOI

Nayyar H., Gupta D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113. doi: 10.1016/j.envexpbot.2005.06.021 DOI

Olsen K. M., Slimestad R., Lea U. S., Brede C., Løvdal T., Ruoff P., et al. . (2009). Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ. 32, 286–299. doi: 10.1111/j.1365-3040.2008.01920.x PubMed DOI

Rakhmankulova Z. F., Shuyskaya E. V., Prokofieva M. Y., Saidova L. T., Voronin P. Y. (2023). Effect of elevated CO2 and temperature on plants with different type of photosynthesis: Quinoa (C3) and Amaranth (C4). Russ J. Plant Physiol. 70, 117. doi: 10.1134/S1021443723601349 DOI

Raza A., Razzaq A., Mehmood S. S., Zou X., Zhang X., Lv Y., et al. . (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8, 34. doi: 10.3390/plants8020034 PubMed DOI PMC

Rezaei E. E., Webber H., Asseng S., Boote K., Durand J. L., Ewert F., et al. . (2023). Climate change impacts on crop yields. Nat. Rev. Earth Environ. 4, 831–846. doi: 10.1038/s43017-023-00491-0 DOI

Sage R. F. (2020). Global change biology: A primer. Global Change Biol. 26, 3–30. doi: 10.1111/gcb.14893 PubMed DOI

Sage R. F., Kubien D. S. (2007). The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106. doi: 10.1111/j.1365-3040.2007.01682.x PubMed DOI

Souza J. P., Melo N. M. J., Halfeld A. D., Vieira K. I. C., Rosa B. L. (2019). Elevated atmospheric CO2 concentration improves water use efficiency and growth of a widespread Cerrado tree species even under soil water deficit. Acta Bot. Bras. 33, 425–436. doi: 10.1590/0102-33062018abb0272 DOI

Stepien P., Klobus G. (2005). Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia Plantarum 125, 31–40. doi: 10.1111/j.1399-3054.2005.00534.x DOI

Swann A. L. S., Hoffman F. M., Koven C. D., Randerson J. T. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. 113, 10019–10024. doi: 10.1073/pnas.1604581113 PubMed DOI PMC

Tiwari Y. K., Yadav S. K. (2019). High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. J. Plant Biol. 62, 93–102. doi: 10.1007/s12374-018-0350-x DOI

Valone T. F. (2021). Linear global temperature correlation to carbon dioxide level, sea level, and innovative solutions to a projected 6°C warming by 2100. J. Geosci. Environ. Prot. 09, 84. doi: 10.4236/gep.2021.93007 DOI

van der Kooi C. J., Reich M., Löw M., De Kok L. J., Tausz M. (2016). Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops. Environ. Exp. Bot. 122, 150–157. doi: 10.1016/j.envexpbot.2015.10.004 DOI

Vijayalakshmi D., Priya J. R., Vinitha A., Ramya G. (2023). Interactive effects of elevated CO2 with combined heat and drought stresses on the physiology and yield of C3 and C4 plants. J. Crop Sci. Biotechnol. doi: 10.1007/s12892-023-00208-1 DOI

Wang D., Heckathorn S. A., Barua D., Joshi P., Hamilton E. W., LaCroix J. J. (2008). Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am. J. Bot. 95, 165–176. doi: 10.3732/ajb.95.2.165 PubMed DOI

Wang Y., Liu S., Shi H. (2023). Comparison of climate change impacts on the growth of C3 and C4 crops in China. Ecol. Inf. 74, 101968. doi: 10.1016/j.ecoinf.2022.101968 DOI

Wickham H. (2016). “Data analysis,” in ggplot2: Elegant Graphics for Data Analysis Use R!. Ed. Wickham H. (Cham: Springer International Publishing; ), 189–201. doi: 10.1007/978-3-319-24277-4_9 DOI

Yamori W., Hikosaka K., Way D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res. 119, 101–117. doi: 10.1007/s11120-013-9874-6 PubMed DOI

Yu J., Chen L., Xu M., Huang B. (2012). Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses. Crop Sci. 52, 1848–1858. doi: 10.2135/cropsci2012.01.0030 DOI

Zandalinas S. I., Fritschi F. B., Mittler R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 26, 588–599. doi: 10.1016/j.tplants.2021.02.011 PubMed DOI

Zandalinas S. I., Mittler R. (2022). Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167. doi: 10.1111/nph.18087 PubMed DOI

Zhao S. Y., Zeng W. H., Li Z., Peng Y. (2020). Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biologia plantarum 64, 406–416.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...