Comparative Genomics Uncovers the Evolutionary Dynamics of Detoxification and Insecticide Target Genes Across 11 Phlebotomine Sand Flies
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39224065
PubMed Central
PMC11412322
DOI
10.1093/gbe/evae186
PII: 7748051
Knihovny.cz E-zdroje
- Klíčová slova
- comparative genomics, cytochrome P450s, gene family evolution, phlebotomine sand flies, xenobiotic adaptation,
- MeSH
- fylogeneze * MeSH
- genomika MeSH
- glutathiontransferasa genetika metabolismus MeSH
- insekticidy * farmakologie MeSH
- metabolická inaktivace genetika MeSH
- molekulární evoluce * MeSH
- Psychodidae * genetika MeSH
- rezistence k insekticidům * genetika MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- xenobiotika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- glutathiontransferasa MeSH
- insekticidy * MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika MeSH
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
Department of Biology University of Crete Heraklion 71409 Greece
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Institute of Computer Science Foundation for Research and Technology Hellas Heraklion Greece
Zobrazit více v PubMed
Ahn SJ, Marygold SJ. The UDP-glycosyltransferase family in Drosophila melanogaster: nomenclature update, gene expression and phylogenetic analysis. Front Physiol. 2021:12:648481. 10.3389/fphys.2021.648481. PubMed DOI PMC
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016:10(3):e0004349. 10.1371/journal.pntd.0004349. PubMed DOI PMC
Amezian D, Nauen R, Van Leeuwen T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. Curr Opin Insect Sci. 2024:63:101200. 10.1016/j.cois.2024.101200. PubMed DOI
Balaska S, Calzolari M, Grisendi A, Scremin M, Dottori M, Mavridis K, Bellini R, Vontas J. Monitoring of insecticide resistance mutations and pathogen circulation in sand flies from Emilia-Romagna, a leishmaniasis endemic region of Northern Italy. Viruses. 2023:15(1):148. 10.3390/v15010148. PubMed DOI PMC
Balaska S, Fotakis EA, Chaskopoulou A, Vontas J. Chemical control and insecticide resistance status of sand fly vectors worldwide. PLoS Negl Trop Dis. 2021:15(8):e0009586. 10.1371/journal.pntd.0009586. PubMed DOI PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021:18(4):366–368. 10.1038/s41592-021-01101-x. PubMed DOI PMC
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 2019:8(9):giz100. 10.1093/gigascience/giz100. PubMed DOI PMC
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021:38(12):5825–5829. 10.1093/molbev/msab293. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25(15):1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC
Charamis J. PhyloSuite: suite of tools that provide a unified framework of analyzing, manipulating and visualizing phylogenetic data. 2024. [accessed 204 Feb 05]. https://github.com/JasonCharamis/PhyloSuite/tree/main/OliveTRee.
Clarkson CS, Miles A, Harding NJ, O'Reilly AO, Weetman D, Kwiatkowski D, Donnelly MJ; Anopheles gambiae 1000 Genomes Consortium . The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Mol Ecol. 2021:30(21):5303–5317. 10.1111/mec.15845. PubMed DOI PMC
Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T, Sigrist CJA, Redaschi N, Bridge A; UniProt Consortium . Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics. 2023:39(1):btac793. 10.1093/bioinformatics/btac793. PubMed DOI PMC
Coutinho-Abreu IV, Balbino VQ, Valenzuela JG, Sonoda IV, Ramalho-Ortigão JM. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol. 2007:44(4):639–650. 10.1603/0022-2585(2007)44[639:SCOAFT]2.0.CO;2. PubMed DOI
Cruaud A, Lehrter V, Genson G, Rasplus J-Y, Depaquit J. Evolution, systematics and historical biogeography of sand flies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) inferred using restriction-site associated DNA markers. PLoS Negl Trop Dis. 2021:15(7):e0009479. 10.1371/journal.pntd.0009479. PubMed DOI PMC
Cruse C, Moural TW, Zhu F. Dynamic roles of insect carboxyl/cholinesterases in chemical adaptation. Insects. 2023:14(2):194. 10.3390/insects14020194. PubMed DOI PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020:37(1):291–294. 10.1093/molbev/msz189. PubMed DOI PMC
Denecke S, Bảo Lương HN, Koidou V, Kalogeridi M, Socratous R, Howe S, Vogelsang K, Nauen R, Batterham P, Geibel S, et al. Characterization of a novel pesticide transporter and P-glycoprotein orthologues in Drosophila melanogaster. Proc R Soc Lond B Biol Sci. 2022:289(1975):20220625. 10.1098/rspb.2022.0625. PubMed DOI PMC
Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol. 2014:45:89–110. 10.1016/j.ibmb.2013.11.001. PubMed DOI
Dermauw W, Van Leeuwen T, Feyereisen R. Diversity and evolution of the P450 family in arthropods. Insect Biochem Mol Biol. 2020:127:103490. 10.1016/j.ibmb.2020.103490. PubMed DOI
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014:50:1–17. 10.1016/j.ibmb.2014.03.012. PubMed DOI PMC
Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pestic Biochem Physiol. 2020:167:104595. 10.1016/j.pestbp.2020.104595. PubMed DOI
Dvořák V, Shaw J, Volf P. Parasite biology: the vectors. In: Bruschi F, Gradoni L, editors. The leishmaniases: old neglected tropical diseases. New York (NY): Springer; 2018. p. 31–77.
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011:7(10):e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019:20(1):238. 10.1186/s13059-019-1832-y. PubMed DOI PMC
Feyereisen R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta. 2011:1814(1):19–28. 10.1016/j.bbapap.2010.06.012. PubMed DOI
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol. 2020:143:106695. 10.1016/j.ympev.2019.106695. PubMed DOI
Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic Biochem Physiol. 2015:121:61–77. 10.1016/j.pestbp.2015.01.004. PubMed DOI
Freedman AH, Clamp M, Sackton TB. Error, noise and bias in de novo transcriptome assemblies. Mol Ecol Resour. 2021:21(1):18–29. 10.1111/1755-0998.13156. PubMed DOI
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012:28(23):3150–3152. 10.1093/bioinformatics/bts565. PubMed DOI PMC
Gabaldón T, Koonin EV. Functional and evolutionary implications of gene orthology. Nat Rev Genet. 2013:14(5):360–366. 10.1038/nrg3456. PubMed DOI PMC
Gilbert D. Gene-omes built from mRNA seq not genome DNA. 7th Annual Arthropod Genomics Symposium, Notre Dame. F1000Res. 2013:1695(5). 10.7490/f1000research.1112594.1. DOI
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011:29(7):644–652. 10.1038/nbt.1883. PubMed DOI PMC
Grace-Lema DM, Yared S, Quitadamo A, Janies DA, Wheeler WC, Balkew M, Hailu A, Warburg A, Clouse RM. A phylogeny of sand flies (Diptera: Psychodidae: Phlebotominae), using recent Ethiopian collections and a broad selection of publicly available DNA sequence data. Syst Entomol. 2015:40(4):733–744. 10.1111/syen.12135. DOI
Grau-Bové X, Lucas E, Pipini D, Rippon E, van't Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, et al. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genet. 2021:17(1):e1009253. 10.1371/journal.pgen.1009253. PubMed DOI PMC
Guang A, Howison M, Zapata F, Lawrence C, Dunn CW. Revising transcriptome assemblies with phylogenetic information. PLoS One. 2021:16(1):e0244202. 10.1371/journal.pone.0244202. PubMed DOI PMC
Guittard E, Blais C, Maria A, Parvy JP, Pasricha S, Lumb C, Lafont R, Daborn PJ, Dauphin-Villemant C. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol. 2011:349(1):35–45. 10.1016/j.ydbio.2010.09.023. PubMed DOI
Haag J, Höhler D, Bettisworth B, Stamatakis A. From easy to hopeless—predicting the difficulty of phylogenetic analyses. Mol Biol Evol. 2022:39(12):msac254. 10.1093/molbev/msac254. PubMed DOI PMC
Haas BJ. TransDecoder. 2022. [accessed 2022 Sept 15]. https://github.com/TransDecoder/TransDecoder.
Hackl T, Ankenbrand M, Van Adrichem B. Hackl T, Ankenbrand M, van Adrichem, B. gggenomes: a grammar of graphics for comparative genomics. R Package Version 0.9.9.9000. 2023 [accessed 2023 Oct 10]. https://github.com/thackl/gggenomes.
Hassan F, Singh KP, Shivam P, Ali V, Dinesh DS. Detection and functional characterization of sigma class GST in Phlebotomus argentipes and its role in stress tolerance and DDT resistance. Sci Rep. 2019:9(1):19636. 10.1038/s41598-019-56209-0. PubMed DOI PMC
Hassan F, Singh KP, Shivam P, Ali V, Dinesh DS. Amplification and characterization of DDT metabolizing delta class GST in sand fly, Phlebotomus argentipes (Diptera: Psychodidae) from Bihar, India. J Med Entomol. 2021:58(6):2349–2357. 10.1093/jme/tjab124. PubMed DOI
Hölzer M, Marz M. De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience. 2019:8(5):giz039. 10.1093/gigascience/giz039. PubMed DOI PMC
Huang M, Kingan S, Shoue D, Nguyen O, Froenicke L, Galvin B, Lambert C, Khan R, Maheshwari C, Weisz D, et al. Improved high quality sand fly assemblies enabled by ultra low input long read sequencing. Sci Data. 2024:11(1):918. 10.1038/s41597-024-03628-y. PubMed DOI PMC
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016:33(6):1635–1638. 10.1093/molbev/msw046. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. Insect Biochem Mol Biol. 2019:110:52–59. 10.1016/j.ibmb.2019.04.018. PubMed DOI
Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, Gouridis G, Vontas J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog. 2023:19(8):e1011226. 10.1371/journal.ppat.1011226. PubMed DOI PMC
Koirala BKS, Moural T, Zhu F. Functional and structural diversity of insect glutathione S-transferases in Xenobiotic adaptation. Int J Biol Sci. 2022:18(15):5713–5723. 10.7150/ijbs.77141. PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019:35(21):4453–4455. 10.1093/bioinformatics/btz305. PubMed DOI PMC
Labbé F, Abdeladhim M, Abrudan J, Araki AS, Araujo RN, Arensburger P, Benoit JB, Brazil RP, Bruno RV, Bueno da Silva Rivas G, et al. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World. PLoS Negl Trop Dis. 2023:17(4):e0010862. 10.1371/journal.pntd.0010862. PubMed DOI PMC
Liu W, Sun X, Sun W, Zhou A, Li R, Wang B, Li X, Yan C. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi. Aquatic Toxicology. 2021:239:105940. 10.1016/j.aquatox.2021.105940. PubMed DOI
Lumjuan N, Stevenson BJ, Prapanthadara LA, Somboon P, Brophy PM, Loftus BJ, Severson DW, Ranson H. The Aedes aegypti glutathione transferase family. Insect Biochem Mol Biol. 2007:37(10):1026–1035. 10.1016/j.ibmb.2007.05.018. PubMed DOI
Maia C, Conceição C, Pereira A, Rocha R, Ortuño M, Muñoz C, Jumakanova Z, Pérez-Cutillas P, Özbel Y, Töz S, et al. The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS Negl Trop Dis. 2023:17(7):e0011497. 10.1371/journal.pntd.0011497. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021:38(10):4647–4654. 10.1093/molbev/msab199. PubMed DOI PMC
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013:27(2):123–147. 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Medlock JM, Hansford KM, Van Bortel W, Zeller H, Alten B. A summary of the evidence for the change in European distribution of phlebotomine sand flies (Diptera: Psychodidae) of public health importance. J Vector Ecol. 2014:39(1):72–77. 10.1111/j.1948-7134.2014.12072.x. PubMed DOI
Musdal Y, Ismail A, Sjödin B, Mannervik B. Potent GST ketosteroid isomerase activity relevant to ecdysteroidogenesis in the malaria vector Anopheles gambiae. Biomolecules. 2023:13(6):976. 10.3390/biom13060976. PubMed DOI PMC
Nauen R, Bass C, Feyereisen R, Vontas J. The role of cytochrome P450s in insect toxicology and resistance. Annu Rev Entomol. 2022:67(1):105–124. 10.1146/annurev-ento-070621-061328. PubMed DOI
Nauen R, Zimmer CT, Vontas J. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Curr Opin Insect Sci. 2021:43:78–84. 10.1016/j.cois.2020.10.011. PubMed DOI
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, et al. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015:347(6217):1258522. 10.1126/science.1258522. PubMed DOI PMC
Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, DeGennaro M, Fernandez-Lima F, Feyereisen R, Jindra M, et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A. 2021:118(45):e2109381118. 10.1073/pnas.2109381118. PubMed DOI PMC
Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino AS, Claudianos C. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol. 2010:19(s1):147–163. 10.1111/j.1365-2583.2009.00961.x. PubMed DOI
Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, Jenkins VK, Matthews BB, Millburn G, Dos Santos G, Tabone CJ, et al. FlyBase: updates to the Drosophila genes and genomes database. Genetics. 2024:227(1):iyad211. 10.1093/genetics/iyad211. PubMed DOI PMC
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019:35(3):526–528. 10.1093/bioinformatics/bty633. PubMed DOI
Paronyan L, Babayan L, Vardanyan H, Manucharyan A, Papapostolou KM, Balaska S, Vontas J, Mavridis K. Molecular monitoring of insecticide resistance in major disease vectors in Armenia. Parasit Vectors. 2024:17(1):54. 10.1186/s13071-024-06139-2. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017:14(4):417–419. 10.1038/nmeth.4197. PubMed DOI PMC
Pavlidi N, Vontas J, Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci. 2018:27:97–102. 10.1016/j.cois.2018.04.007. PubMed DOI
Pignatelli P, Ingham VA, Balabanidou V, Vontas J, Lycett G, Ranson H. The Anopheles gambiae ATP-binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect Mol Biol. 2018:27(1):110–122. 10.1111/imb.12351. PubMed DOI
Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R. Evolution of supergene families associated with insecticide resistance. Science. 2002:298(5591):179–181. 10.1126/science.1076781. PubMed DOI
Reid E, Deb RM, Ali A, Singh RP, Mishra PK, Shepherd J, Singh AM, Bharti A, Singh C, Sharma S, et al. Molecular surveillance of insecticide resistance in Phlebotomus argentipes targeted by indoor residual spraying for visceral leishmaniasis elimination in India. PLoS Negl Trop Dis. 2023:17(11):e0011734. 10.1371/journal.pntd.0011734. PubMed DOI PMC
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012:3(2):217–223. 10.1111/j.2041-210X.2011.00169.x. DOI
Sadlova J, Homola M, Myskova J, Jancarova M, Volf P. Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix. PLoS Negl Trop Dis. 2018:12(4):e0006382. 10.1371/journal.pntd.0006382. PubMed DOI PMC
Shi Y, Liu Q, Lu W, Yuan J, Yang Y, Oakeshott J, Wu Y. Divergent amplifications of CYP9A cytochrome P450 genes provide two noctuid pests with differential protection against xenobiotics. Proc Natl Acad Sci. 2023:120(37):e2308685120. 10.1073/pnas.2308685120. PubMed DOI PMC
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016:26(8):1134–1144. 10.1101/gr.196469.115. PubMed DOI PMC
Temeyer KB, Tong F, Totrov MM, Tuckow AP, Chen QH, Carlier PR, Pérez de León AA, Bloomquist JR. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant. Parasit Vectors. 2014:7(1):577. 10.1186/s13071-014-0577-4. PubMed DOI PMC
Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, Anstead CA, Ayoub NA, Batterham P, Bellair M. Gene content evolution in the arthropods. Genome Biol. 2020:21(1):15. 10.1186/s13059-019-1925-7. PubMed DOI PMC
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011:36(Suppl 1):S1–S9. 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: muddying the waters. Pestic Biochem Physiol. 2020:170:104666. 10.1016/j.pestbp.2020.104666. PubMed DOI
Voshall A, Behera S, Li X, Yu XH, Kapil K, Deogun JS, Shanklin J, Cahoon EB, Moriyama EN. A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics. 2021:22(1):513. 10.1186/s12859-021-04434-8. PubMed DOI PMC
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org.
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020:14(1):e0007831. 10.1371/journal.pntd.0007831. PubMed DOI PMC
Wu L, Jia Q, Zhang X, Zhang X, Liu S, Park Y, Feyereisen R, Zhu KY, Ma E, Zhang J, et al. CYP303A1 has a conserved function in adult eclosion in Locusta migratoria and Drosophila melanogaster. Insect Biochem Mol Biol. 2019:113:103210. 10.1016/j.ibmb.2019.103210. PubMed DOI
Yu G. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics. 2020:69(1):e96. 10.1002/cpbi.96. PubMed DOI
Zhou Y, Fu WB, Si FL, Yan ZT, Zhang YJ, He QY, Chen B. UDP-glycosyltransferase genes and their association and mutations associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J. 2019:18(1):62. 10.1186/s12936-019-2705-2. PubMed DOI PMC
Zhou L, Yu G. ggmsa: a visual exploration tool for multiple sequence alignment and associated data. Brief Bioinform. 2022:23(4):bbac222. 10.1093/bib/bbac222. PubMed DOI