-
Je něco špatně v tomto záznamu ?
Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data
E. Y. Kalafi, N. A. M. Nor, N. A. Taib, M. D. Ganggayah, C. Town, S. K. Dhillon
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
ProQuest Central
od 2005-01-01
Health & Medicine (ProQuest)
od 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
Computer Laboratory University of Cambridge Cambridge United Kingdom
Department of Surgery University Malaya Medical Centre Kuala Lumpur Malaysia
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21023457
- 003
- CZ-PrNML
- 005
- 20211104134128.0
- 007
- ta
- 008
- 210927s2019 xr d f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)32362304
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Kalafi, E. Y. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 245 10
- $a Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data / $c E. Y. Kalafi, N. A. M. Nor, N. A. Taib, M. D. Ganggayah, C. Town, S. K. Dhillon
- 504 __
- $a Literatura
- 520 9_
- $a Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a nádory prsu $x mortalita $7 D001943
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a rozhodovací stromy $7 D003663
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a demografie $7 D003710
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a analýza přežití $7 D016019
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Nor, N. A. M. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 700 1_
- $a Taib, N. A. $u Department of Surgery, University Malaya Medical Centre, Kuala Lumpur, Malaysia
- 700 1_
- $a Ganggayah, M. D. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 700 1_
- $a Town, C. $u Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
- 700 1_
- $a Dhillon, S. K. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 773 0_
- $w MED00011004 $t Folia biologica $x 0015-5500 $g Roč. 65, č. 5-6 (2019), s. 212-220
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32362304 $y Pubmed
- 856 41
- $u https://fb.cuni.cz/file/5907/fb2019a0022.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b A 970 $c 89 $y p $z 0
- 990 __
- $a 20210927 $b ABA008
- 991 __
- $a 20210929150932 $b ABA008
- 999 __
- $a ok $b bmc $g 1718866 $s 1143948
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 65 $c 5-6 $d 212-220 $i 0015-5500 $m Folia biologica (Praha) $n Folia biol. (Praha) $x MED00011004
- LZP __
- $b NLK118 $a Pubmed-20210927