Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data

E. Y. Kalafi, N. A. M. Nor, N. A. Taib, M. D. Ganggayah, C. Town, S. K. Dhillon

. 2019 ; 65 (5-6) : 212-220.

Jazyk angličtina Země Česko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21023457

Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc21023457
003      
CZ-PrNML
005      
20211104134128.0
007      
ta
008      
210927s2019 xr d f 000 0|eng||
009      
AR
035    __
$a (PubMed)32362304
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Kalafi, E. Y. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
245    10
$a Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data / $c E. Y. Kalafi, N. A. M. Nor, N. A. Taib, M. D. Ganggayah, C. Town, S. K. Dhillon
504    __
$a Literatura
520    9_
$a Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a nádory prsu $x mortalita $7 D001943
650    _2
$a kalibrace $7 D002138
650    _2
$a rozhodovací stromy $7 D003663
650    12
$a deep learning $7 D000077321
650    _2
$a demografie $7 D003710
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a lidé středního věku $7 D008875
650    _2
$a neuronové sítě $7 D016571
650    _2
$a support vector machine $7 D060388
650    _2
$a analýza přežití $7 D016019
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Nor, N. A. M. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
700    1_
$a Taib, N. A. $u Department of Surgery, University Malaya Medical Centre, Kuala Lumpur, Malaysia
700    1_
$a Ganggayah, M. D. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
700    1_
$a Town, C. $u Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
700    1_
$a Dhillon, S. K. $u Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
773    0_
$w MED00011004 $t Folia biologica $x 0015-5500 $g Roč. 65, č. 5-6 (2019), s. 212-220
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32362304 $y Pubmed
856    41
$u https://fb.cuni.cz/file/5907/fb2019a0022.pdf $y plný text volně přístupný
910    __
$a ABA008 $b A 970 $c 89 $y p $z 0
990    __
$a 20210927 $b ABA008
991    __
$a 20210929150932 $b ABA008
999    __
$a ok $b bmc $g 1718866 $s 1143948
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 65 $c 5-6 $d 212-220 $i 0015-5500 $m Folia biologica (Praha) $n Folia biol. (Praha) $x MED00011004
LZP    __
$b NLK118 $a Pubmed-20210927

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...