Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation

. 2024 Jun 24 ; 13 (13) : . [epub] 20240624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38999586

Grantová podpora
16/IA/4418 Science Foundation Ireland - Ireland
CZ.02.01.01/00/22_008/0004635 Czech Ministry of Education, Youth and Sports

In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.

Zobrazit více v PubMed

Erb M., Kliebenstein D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020;184:39–52. doi: 10.1104/pp.20.00433. PubMed DOI PMC

Pott D.M., Osorio S., Vallarino J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019;10:454686. doi: 10.3389/fpls.2019.00835. PubMed DOI PMC

Akula R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6:1720–1731. doi: 10.4161/psb.6.11.17613. PubMed DOI PMC

Pagare S., Bhatia M., Tripathi N., Pagare S., Bansal Y.K. Secondary Metabolites of Plants and their Role Overview. Curr. Trends Biotechnol. Pharm. 2015;9:293–304.

Yang L., Wen K.-S., Ruan X., Zhao Y.-X., Wei F., Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018;23:762. doi: 10.3390/molecules23040762. PubMed DOI PMC

Schreiner M., Mewis I., Huyskens-Keil S., Jansen M.A.K., Zrenner R., Winkler J.B., O’Brien N., Krumbein A. UV-B-Induced Secondary Plant Metabolites—Potential Benefits for Plant and Human Health. Crit. Rev. Plant Sci. 2012;31:229–240. doi: 10.1080/07352689.2012.664979. DOI

Zaynab M., Fatima M., Abbas S., Sharif Y., Umair M., Zafar M.H., Bahadar K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018;124:198–202. doi: 10.1016/j.micpath.2018.08.034. PubMed DOI

Pang Z., Chen J., Wang T., Gao C., Li Z., Guo L., Xu J., Cheng Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021;12:621276. PubMed PMC

Barberis M., Calabrese D., Galloni M., Nepi M. Secondary metabolites in nectar-mediated plant-pollinator relationships. Plants. 2023;12:550. doi: 10.3390/plants12030550. PubMed DOI PMC

Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC

Esposito R., Lusini I., Večeřová K., Holišová P., Pallozzi E., Guidolotti G., Urban O., Calfapietra C. Shoot-level terpenoids emission in Norway spruce (Picea abies) under natural field and manipulated laboratory conditions. Plant Physiol. Biochem. 2016;108:530–538. doi: 10.1016/j.plaphy.2016.08.019. PubMed DOI

Schreiner M., Wiesner-Reinhold M., Baldermann S., Hanschen F.S., Neugart S. UV-B Radiation and Plant Life: Molecular Biology to Ecology. CABI; Oxfordshire, UK: 2017. UV-B-induced changes in secondary plant metabolites; pp. 39–57. DOI

Seeburger P., Herdenstam A., Kurtser P., Arunachalam A., Castro-Alves V.C., Hyötyläinen T., Andreasson H. Controlled mechanical stimuli reveal novel associations between basil metabolism and sensory quality. Food Chem. 2023;404:134545. doi: 10.1016/j.foodchem.2022.134545. PubMed DOI

Semenova N.A., Smirnov A.A., Ivanitskikh A.S., Izmailov A.Y., Dorokhov A.S., Proshkin Y.A., Yanykin D.V., Sarimov R.R., Gudkov S.V., Chilingaryan N.O. Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.) Appl. Sci. 2022;12:7190. doi: 10.3390/app12147190. DOI

Hirose F., Inagaki N., Takano M. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots. Plant Signal. Behav. 2013;8:e23424. doi: 10.4161/psb.23424. PubMed DOI PMC

Thoma F., Somborn-Schulz A., Schlehuber D., Keuter V., Deerberg G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Front. Plant Sci. 2020;11:497. doi: 10.3389/fpls.2020.00497. PubMed DOI PMC

Fraser D.P., Hayes S., Franklin K.A. Photoreceptor crosstalk in shade avoidance. Curr. Opin. Plant Biol. 2016;33:1–7. doi: 10.1016/j.pbi.2016.03.008. PubMed DOI

Paik I., Huq E. Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 2019;92:114–121. doi: 10.1016/j.semcdb.2019.03.007. PubMed DOI PMC

Mewis I., Schreiner M., Nguyen C.N., Krumbein A., Ulrichs C., Lohse M., Zrenner R. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant Cell Physiol. 2012;53:1546–1560. doi: 10.1093/pcp/pcs096. PubMed DOI PMC

Rai N., O’Hara A., Farkas D., Safronov O., Ratanasopa K., Wang F., Lindfors A.V., Jenkins G.I., Lehto T., Salojärvi J., et al. The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ. 2020;43:1513–1527. doi: 10.1111/pce.13752. PubMed DOI

Jenkins G.I. The UV-B Photoreceptor UVR8: From Structure to Physiology. Plant Cell. 2014;26:21–37. doi: 10.1105/tpc.113.119446. PubMed DOI PMC

Shamala L.F., Zhou H.-C., Han Z.-X., Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. Front. Plant Sci. 2020;11:520492. doi: 10.3389/fpls.2020.00234. PubMed DOI PMC

Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC

Takshak S., Agrawal S.B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B Biol. 2019;193:51–88. doi: 10.1016/j.jphotobiol.2019.02.002. PubMed DOI

Badmus U.O., Crestani G., Cunningham N., Havaux M., Urban O., Jansen M.A.K. UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules. 2022;12:1879. doi: 10.3390/biom12121879. PubMed DOI PMC

Badmus U.O., Crestani G., O’Connell R.D., Cunningham N., Jansen M.A.K. UV-B induced accumulation of tocopherol in Arabidopsis thaliana is not dependent on individual UV photoreceptors. Plant Stress. 2022;5:100105. doi: 10.1016/j.stress.2022.100105. DOI

Dolzhenko Y., Bertea C.M., Occhipinti A., Bossi S., Maffei M.E. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha × piperita L.) J. Photochem. Photobiol. B Biol. 2010;100:67–75. doi: 10.1016/j.jphotobiol.2010.05.003. PubMed DOI

Gil M., Pontin M., Berli F., Bottini R., Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. 2012;77:89–98. doi: 10.1016/j.phytochem.2011.12.011. PubMed DOI

Hectors K., Van Oevelen S., Geuns J., Guisez Y., Jansen MA K., Prinsen E. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. Physiol. Plant. 2014;152:219–230. doi: 10.1111/ppl.12168. PubMed DOI

Jansen MA K., Hectors K., O’Brien N.M., Guisez Y., Potters G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 2008;175:449–458. doi: 10.1016/j.plantsci.2008.04.010. DOI

Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 2019;10:470442. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC

Neugart S., Zietz M., Schreiner M., Rohn S., Kroh L.W., Krumbein A. Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. Physiol. Plant. 2012;145:582–593. doi: 10.1111/j.1399-3054.2012.01567.x. PubMed DOI

Daryanavard H., Postiglione A.E., Mühlemann J.K., Muday G.K. Flavonols modulate plant development, signaling, and stress responses. Curr. Opin. Plant Biol. 2023;72:102350. doi: 10.1016/j.pbi.2023.102350. PubMed DOI PMC

Singh P., Singh A., Choudhary K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress. 2023;7:100143. doi: 10.1016/j.stress.2023.100143. DOI

Chen Z., Ma Y., Yang R., Gu Z., Wang P. Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem. 2019;288:368–376. doi: 10.1016/j.foodchem.2019.02.131. PubMed DOI

Inostroza-Blancheteau C., Acevedo P., Loyola R., Arce-Johnson P., Alberdi M., Reyes-Díaz M. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves. Plant Physiol. Biochem. 2016;107:301–309. doi: 10.1016/j.plaphy.2016.06.019. PubMed DOI

Qian M., Kalbina I., Rosenqvist E., Jansen M.A.K., Teng Y., Strid Å. UV regulates the expression of phenylpropanoid biosynthesis genes in cucumber (Cucumis sativus L.) in an organ and spectrum dependent manner. Photochem. Photobiol. Sci. 2019;18:424–433. doi: 10.1039/c8pp00480c. PubMed DOI

Csepregi K., Hideg É. Phenolic Compound Diversity Explored in the Context of Photo-Oxidative Stress Protection. Phytochem. Anal. 2018;29:129–136. doi: 10.1002/pca.2720. PubMed DOI

Tarasevičienė Ž., Velička A., Paulauskienė A. Impact of Foliar Application of Amino Acids on Total Phenols, Phenolic Acids Content of Different Mints Varieties under the Field Condition. Plants. 2021;10:599. doi: 10.3390/plants10030599. PubMed DOI PMC

Barros J., Dixon R.A. Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends Plant Sci. 2020;25:66–79. doi: 10.1016/j.tplants.2019.09.011. PubMed DOI

Zakynthinos G., Varzakas T. Carotenoids: From Plants to Food Industry. Curr. Res. Nutr. Food Sci. J. 2016;4:38–51. doi: 10.12944/CRNFSJ.4.Special-Issue1.04. DOI

Dias M.C., Pinto DC G.A., Silva AM S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26:5377. doi: 10.3390/molecules26175377. PubMed DOI PMC

Sankari M., Hridya H., Sneha P., George Priya Doss C., Ramamoorthy S. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L. J. Photochem. Photobiol. B Biol. 2017;176:136–144. doi: 10.1016/j.jphotobiol.2017.10.002. PubMed DOI

Shen J., Jiang C.Q., Yan Y.F., Liu B.R., Zu C.L. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet. Mol. Res. GMR. 2017;16:gmr16018438. doi: 10.4238/gmr16018438. PubMed DOI

Emiliani J., D’Andrea L., Lorena Falcone Ferreyra M., Maulión E., Rodriguez E., Rodriguez-Concepción M., Casati P. A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection. J. Exp. Bot. 2018;69:4921–4933. doi: 10.1093/jxb/ery242. PubMed DOI

Badmus U.O., Ač A., Klem K., Urban O., Jansen M.A.K. A meta-analysis of the effects of UV radiation on the plant carotenoid pool. Plant Physiol. Biochem. 2022;183:36–45. doi: 10.1016/j.plaphy.2022.05.001. PubMed DOI

Escobar-Bravo R., Klinkhamer PG L., Leiss K.A. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. Front. Plant Sci. 2017;8:278. doi: 10.3389/fpls.2017.00278. PubMed DOI PMC

Thines N.J., Shipley L.A., Bassman J.H., Fellman J.K., Mattison D.S., Slusser J.R., Gao W. Effects of enhanced UV-B radiation on plant chemistry: Nutritional consequences for a specialist and generalist lagomorph. J. Chem. Ecol. 2007;33:1025–1039. doi: 10.1007/s10886-007-9280-7. PubMed DOI

Rohdich F., Eisenreich W., Wungsintaweekul J., Hecht S., Schuhr C.A., Bacher A. Biosynthesis of terpenoids. Eur. J. Biochem. 2001;268:3190–3197. doi: 10.1046/j.1432-1327.2001.02204.x. PubMed DOI

Rogowska A., Szakiel A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020;19:1525–1538. doi: 10.1007/s11101-020-09708-2. DOI

Du Y., Fu X., Chu Y., Wu P., Liu Y., Ma L., Tian H., Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int. J. Mol. Sci. 2022;23:2332. doi: 10.3390/ijms23042332. PubMed DOI PMC

Barnes P.W., Tobler M.A., Keefover-Ring K., Flint S.D., Barkley A.E., Ryel R.J., Lindroth R.L. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids: Rapid modulation of UV sunscreen protection. Plant Cell Environ. 2016;39:222–230. doi: 10.1111/pce.12609. PubMed DOI

Crestani G., Cunningham N., Badmus U.O., Prinsen E., Jansen M.A.K. UV-B Radiation as a Novel Tool to Modulate the Architecture of In Vitro Grown Mentha spicata (L.) Agronomy. 2023;13:2. doi: 10.3390/agronomy13010002. DOI

Flint S.D., Caldwell M.M. A biological spectral weighting function for ozone depletion research with higher plants. Physiol. Plant. 2003;117:137–144. doi: 10.1034/j.1399-3054.2003.1170117.x. DOI

Franklin K.A., Whitelam G.C. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 2005;96:169–175. doi: 10.1093/aob/mci165. PubMed DOI PMC

Crestani G., Cunningham N., Csepregi K., Badmus U.O., Jansen M.A.K. From stressor to protector, UV-induced abiotic stress resistance. Photochem. Photobiol. Sci. 2023;22:2189–2204. doi: 10.1007/s43630-023-00441-1. PubMed DOI PMC

Večeřová K., Klem K., Veselá B., Holub P., Grace J., Urban O. Combined Effect of Altitude, Season and Light on the Accumulation of Extractable Terpenes in Norway Spruce Needles. Forests. 2021;12:1737. doi: 10.3390/f12121737. DOI

Robson T.M., Klem K., Urban O., Jansen MA K. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015;38:856–866. doi: 10.1111/pce.12374. PubMed DOI

Dotto M., Casati P. Developmental reprogramming by UV-B radiation in plants. Plant Sci. 2017;264:96–101. doi: 10.1016/j.plantsci.2017.09.006. PubMed DOI

Sun Q., Liu M., Cao K., Xu H., Zhou X. UV-B Irradiation to Amino Acids and Carbohydrate Metabolism in Rhododendron chrysanthum Leaves by Coupling Deep Transcriptome and Metabolome Analysis. Plants. 2022;11:2730. doi: 10.3390/plants11202730. PubMed DOI PMC

Klem K., Oravec M., Holub P., Šimor J., Findurová H., Surá K., Veselá B., Hodaňová P., Jansen M.A.K., Urban O. Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance. Plant Physiol. Biochem. 2022;172:111–124. doi: 10.1016/j.plaphy.2022.01.006. PubMed DOI

Liu X., Xie Z., Xin J., Yuan S., Liu S., Sun Y., Zhang Y., Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. Plants. 2024;13:498. doi: 10.3390/plants13040498. PubMed DOI PMC

Hildebrandt T.M., Nunes Nesi A., Araújo W.L., Braun H.-P. Amino Acid Catabolism in Plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI

Manela N., Oliva M., Ovadia R., Sikron-Persi N., Ayenew B., Fait A., Galili G., Perl A., Weiss D., Oren-Shamir M. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 2015;6:538. doi: 10.3389/fpls.2015.00538. PubMed DOI PMC

Tzin V., Galili G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. Arab. Book/Am. Soc. Plant Biol. 2010;8:e0132. doi: 10.1199/tab.0132. PubMed DOI PMC

Azevedo R.A., Lancien M., Lea P.J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids. 2006;30:143–162. doi: 10.1007/s00726-005-0245-2. PubMed DOI

Tohge T., Watanabe M., Hoefgen R., Fernie A. Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Front. Plant Sci. 2013;4:62. doi: 10.3389/fpls.2013.00062. PubMed DOI PMC

Zhang R., Huang G., Wang L., Zhou Q., Huang X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicol. Environ. Saf. 2019;171:683–690. doi: 10.1016/j.ecoenv.2019.01.035. PubMed DOI

Wawrzynska A., Moniuszko G., Sirko A. Links Between Ethylene and Sulfur Nutrition—A Regulatory Interplay or Just Metabolite Association? Front. Plant Sci. 2015;6:170615. doi: 10.3389/fpls.2015.01053. PubMed DOI PMC

Vanhaelewyn L., Prinsen E., Van Der Straeten D., Vandenbussche F. Hormone-controlled UV-B responses in plants. J. Exp. Bot. 2016;67:4469–4482. doi: 10.1093/jxb/erw261. PubMed DOI

Neugart S., Schreiner M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 2018;234:370–381. doi: 10.1016/j.scienta.2018.02.021. DOI

Rodríguez-Calzada T., Qian M., Strid Å., Neugart S., Schreiner M., Torres-Pacheco I., Guevara-González R.G. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.) Plant Physiol. Biochem. 2019;134:94–102. doi: 10.1016/j.plaphy.2018.06.025. PubMed DOI

Turtola S., Rousi M., Pusenius J., Yamaji K., Heiska S., Tirkkonen V., Meier B., Julkunen-Tiitto R. Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Glob. Change Biol. 2005;11:1655–1663. doi: 10.1111/j.1365-2486.2005.01013.x. DOI

Jansen MA K., Gaba V., Greenberg B.M. Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 1998;3:131–135. doi: 10.1016/S1360-1385(98)01215-1. DOI

Zoratti L., Karppinen K., Luengo Escobar A., Häggman H., Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014;5:534. doi: 10.3389/fpls.2014.00534. PubMed DOI PMC

Neugart S., Tobler M.A., Barnes P.W. The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra. Plants. 2021;10:2268. doi: 10.3390/plants10112268. PubMed DOI PMC

Righini S., Rodriguez E.J., Berosich C., Grotewold E., Casati P., Falcone Ferreyra M.L. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. Plant Cell Environ. 2019;42:495–508. doi: 10.1111/pce.13428. PubMed DOI

Wang H., Liu S., Wang T., Liu H., Xu X., Chen K., Zhang P. The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation. Plant Sci. 2020;298:110591. doi: 10.1016/j.plantsci.2020.110591. PubMed DOI

Li B., Robinson D.H., Birt D.F. Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. J. Pharm. Sci. 1997;86:721–725. doi: 10.1021/js960383s. PubMed DOI

Agati G., Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186:786–793. doi: 10.1111/j.1469-8137.2010.03269.x. PubMed DOI

Valkama E., Salminen J.-P., Koricheva J., Pihlaja K. Comparative Analysis of Leaf Trichome Structure and Composition of Epicuticular Flavonoids in Finnish Birch Species. Ann. Bot. 2003;91:643–655. doi: 10.1093/aob/mcg070. PubMed DOI PMC

Kang J.-H., McRoberts J., Shi F., Moreno J.E., Jones A.D., Howe G.A. The Flavonoid Biosynthetic Enzyme Chalcone Isomerase Modulates Terpenoid Production in Glandular Trichomes of Tomato. Plant Physiol. 2014;164:1161–1174. doi: 10.1104/pp.113.233395. PubMed DOI PMC

Tafrihi M., Imran M., Tufail T., Gondal T.A., Caruso G., Sharma S., Sharma R., Atanassova M., Atanassov L., Valere Tsouh Fokou P., et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules. 2021;26:1118. doi: 10.3390/molecules26041118. PubMed DOI PMC

Singh P., Pandey A.K. Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Front. Plant Sci. 2018;9:409763. doi: 10.3389/fpls.2018.01295. PubMed DOI PMC

Maffei M. Plasticity and genotypic variation in some Mentha × verticillata hybrids. Biochem. Syst. Ecol. 1990;18:493–502. doi: 10.1016/0305-1978(90)90121-U. DOI

Turner G.W., Gershenzon J., Croteau R.B. Development of Peltate Glandular Trichomes of Peppermint1. Plant Physiol. 2000;124:665–680. doi: 10.1104/pp.124.2.665. PubMed DOI PMC

Ioannidis D., Bonner L., Johnson C.B. UV-B is Required for Normal Development of Oil Glands in Ocimum basilicum L. (Sweet Basil) Ann. Bot. 2002;90:453–460. doi: 10.1093/aob/mcf212. PubMed DOI PMC

Pandey N., Pandey-Rai S. Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell Tissue Organ Cult. (PCTOC) 2014;116:371–385. doi: 10.1007/s11240-013-0413-0. DOI

Kostina E., Wulff A., Julkunen-Tiitto R. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees. 2001;15:483–491. doi: 10.1007/s00468-001-0129-3. DOI

Escobar-Bravo R., Chen G., Kim H.K., Grosser K., van Dam N.M., Leiss K.A., Klinkhamer PG L. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J. Exp. Bot. 2019;70:315–327. doi: 10.1093/jxb/ery347. PubMed DOI PMC

Llusia J., Llorens L., Bernal M., Verdaguer D., Peñuelas J. Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species. Acta Physiol. Plant. 2012;34:757–769. doi: 10.1007/s11738-011-0876-8. DOI

Maffei M., Scannerini S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.) J. Essent. Oil Res. 2000;12:523–529. doi: 10.1080/10412905.2000.9712150. DOI

Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid Metabolism in Plants. Mol. Plant. 2015;8:68–82. doi: 10.1016/j.molp.2014.12.007. PubMed DOI

Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020;74:1–16. doi: 10.1007/s11418-019-01364-x. PubMed DOI PMC

Martínez-Zamora L., Castillejo N., Artés-Hernández F. UV-B Radiation as Abiotic Elicitor to Enhance Phytochemicals and Development of Red Cabbage Sprouts. Horticulturae. 2021;7:567. doi: 10.3390/horticulturae7120567. DOI

Nazari M., Zarinkamar F. Ultraviolet-B induced changes in Mentha aquatica (a medicinal plant) at early and late vegetative growth stages: Investigations at molecular and genetic levels. Ind. Crops Prod. 2020;154:112618. doi: 10.1016/j.indcrop.2020.112618. DOI

Hasanuzzaman M., Nahar K., Fujita M. Emerging Technologies and Management of Crop Stress Tolerance. Elsevier; Amsterdam, The Netherlands: 2014. Role of Tocopherol (Vitamin E) in Plants; pp. 267–289. DOI

Munné-Bosch S., Alegre L. The Function of Tocopherols and Tocotrienols in Plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1080/0735-260291044179. DOI

DeLong J.M., Steffen K.L. Lipid peroxidation and α-tocopherol content in α-tocopherol-supplemented thylakoid membranes during UV-B exposure. Environ. Exp. Bot. 1998;39:177–185. doi: 10.1016/S0098-8472(97)00046-4. DOI

Jain K., Kataria S., Guruprasad K.N. Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci. 2003;165:551–557. doi: 10.1016/S0168-9452(03)00214-0. DOI

Carletti P., Masi A., Wonisch A., Grill D., Tausz M., Ferretti M. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environ. Exp. Bot. 2003;50:149–157. doi: 10.1016/S0098-8472(03)00020-0. DOI

Shahzad R., Ewas M., Harlina P.W., Khan S.U., Zhenyuan P., Nie X., Nishawy E. β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress. J. Genet. Eng. Biotechnol. 2021;19:79. doi: 10.1186/s43141-021-00183-6. PubMed DOI PMC

Cabianca A., Müller L., Pawlowski K., Dahlin P. Changes in the Plant β-Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode Meloidogyne incognita. Plants. 2021;10:292. doi: 10.3390/plants10020292. PubMed DOI PMC

Mohamed A., Liet Z., Goru D., David J. Losses after Harvesting and Management. E3S Web Conf. 2024;477:00076. doi: 10.1051/e3sconf/202447700076. DOI

Lidon F.C., Ramalho J.C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J. Photochem. Photobiol. B Biol. 2011;104:457–466. doi: 10.1016/j.jphotobiol.2011.05.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...