Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16/IA/4418
Science Foundation Ireland - Ireland
CZ.02.01.01/00/22_008/0004635
Czech Ministry of Education, Youth and Sports
PubMed
38999586
PubMed Central
PMC11243551
DOI
10.3390/plants13131746
PII: plants13131746
Knihovny.cz E-zdroje
- Klíčová slova
- Mentha spicata, UV-B, essential oil, flavonoid, photoprotection, secondary metabolites, terpenoid, tocopherol,
- Publikační typ
- časopisecké články MeSH
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Global Change Research Institute Czech Academy of Sciences Bělidla 986 4a 603 00 Brno Czech Republic
Zobrazit více v PubMed
Erb M., Kliebenstein D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020;184:39–52. doi: 10.1104/pp.20.00433. PubMed DOI PMC
Pott D.M., Osorio S., Vallarino J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019;10:454686. doi: 10.3389/fpls.2019.00835. PubMed DOI PMC
Akula R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6:1720–1731. doi: 10.4161/psb.6.11.17613. PubMed DOI PMC
Pagare S., Bhatia M., Tripathi N., Pagare S., Bansal Y.K. Secondary Metabolites of Plants and their Role Overview. Curr. Trends Biotechnol. Pharm. 2015;9:293–304.
Yang L., Wen K.-S., Ruan X., Zhao Y.-X., Wei F., Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018;23:762. doi: 10.3390/molecules23040762. PubMed DOI PMC
Schreiner M., Mewis I., Huyskens-Keil S., Jansen M.A.K., Zrenner R., Winkler J.B., O’Brien N., Krumbein A. UV-B-Induced Secondary Plant Metabolites—Potential Benefits for Plant and Human Health. Crit. Rev. Plant Sci. 2012;31:229–240. doi: 10.1080/07352689.2012.664979. DOI
Zaynab M., Fatima M., Abbas S., Sharif Y., Umair M., Zafar M.H., Bahadar K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018;124:198–202. doi: 10.1016/j.micpath.2018.08.034. PubMed DOI
Pang Z., Chen J., Wang T., Gao C., Li Z., Guo L., Xu J., Cheng Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021;12:621276. PubMed PMC
Barberis M., Calabrese D., Galloni M., Nepi M. Secondary metabolites in nectar-mediated plant-pollinator relationships. Plants. 2023;12:550. doi: 10.3390/plants12030550. PubMed DOI PMC
Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC
Esposito R., Lusini I., Večeřová K., Holišová P., Pallozzi E., Guidolotti G., Urban O., Calfapietra C. Shoot-level terpenoids emission in Norway spruce (Picea abies) under natural field and manipulated laboratory conditions. Plant Physiol. Biochem. 2016;108:530–538. doi: 10.1016/j.plaphy.2016.08.019. PubMed DOI
Schreiner M., Wiesner-Reinhold M., Baldermann S., Hanschen F.S., Neugart S. UV-B Radiation and Plant Life: Molecular Biology to Ecology. CABI; Oxfordshire, UK: 2017. UV-B-induced changes in secondary plant metabolites; pp. 39–57. DOI
Seeburger P., Herdenstam A., Kurtser P., Arunachalam A., Castro-Alves V.C., Hyötyläinen T., Andreasson H. Controlled mechanical stimuli reveal novel associations between basil metabolism and sensory quality. Food Chem. 2023;404:134545. doi: 10.1016/j.foodchem.2022.134545. PubMed DOI
Semenova N.A., Smirnov A.A., Ivanitskikh A.S., Izmailov A.Y., Dorokhov A.S., Proshkin Y.A., Yanykin D.V., Sarimov R.R., Gudkov S.V., Chilingaryan N.O. Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.) Appl. Sci. 2022;12:7190. doi: 10.3390/app12147190. DOI
Hirose F., Inagaki N., Takano M. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots. Plant Signal. Behav. 2013;8:e23424. doi: 10.4161/psb.23424. PubMed DOI PMC
Thoma F., Somborn-Schulz A., Schlehuber D., Keuter V., Deerberg G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Front. Plant Sci. 2020;11:497. doi: 10.3389/fpls.2020.00497. PubMed DOI PMC
Fraser D.P., Hayes S., Franklin K.A. Photoreceptor crosstalk in shade avoidance. Curr. Opin. Plant Biol. 2016;33:1–7. doi: 10.1016/j.pbi.2016.03.008. PubMed DOI
Paik I., Huq E. Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 2019;92:114–121. doi: 10.1016/j.semcdb.2019.03.007. PubMed DOI PMC
Mewis I., Schreiner M., Nguyen C.N., Krumbein A., Ulrichs C., Lohse M., Zrenner R. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant Cell Physiol. 2012;53:1546–1560. doi: 10.1093/pcp/pcs096. PubMed DOI PMC
Rai N., O’Hara A., Farkas D., Safronov O., Ratanasopa K., Wang F., Lindfors A.V., Jenkins G.I., Lehto T., Salojärvi J., et al. The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ. 2020;43:1513–1527. doi: 10.1111/pce.13752. PubMed DOI
Jenkins G.I. The UV-B Photoreceptor UVR8: From Structure to Physiology. Plant Cell. 2014;26:21–37. doi: 10.1105/tpc.113.119446. PubMed DOI PMC
Shamala L.F., Zhou H.-C., Han Z.-X., Wei S. UV-B Induces Distinct Transcriptional Re-programing in UVR8-Signal Transduction, Flavonoid, and Terpenoids Pathways in Camellia sinensis. Front. Plant Sci. 2020;11:520492. doi: 10.3389/fpls.2020.00234. PubMed DOI PMC
Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Takshak S., Agrawal S.B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B Biol. 2019;193:51–88. doi: 10.1016/j.jphotobiol.2019.02.002. PubMed DOI
Badmus U.O., Crestani G., Cunningham N., Havaux M., Urban O., Jansen M.A.K. UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules. 2022;12:1879. doi: 10.3390/biom12121879. PubMed DOI PMC
Badmus U.O., Crestani G., O’Connell R.D., Cunningham N., Jansen M.A.K. UV-B induced accumulation of tocopherol in Arabidopsis thaliana is not dependent on individual UV photoreceptors. Plant Stress. 2022;5:100105. doi: 10.1016/j.stress.2022.100105. DOI
Dolzhenko Y., Bertea C.M., Occhipinti A., Bossi S., Maffei M.E. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha × piperita L.) J. Photochem. Photobiol. B Biol. 2010;100:67–75. doi: 10.1016/j.jphotobiol.2010.05.003. PubMed DOI
Gil M., Pontin M., Berli F., Bottini R., Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. 2012;77:89–98. doi: 10.1016/j.phytochem.2011.12.011. PubMed DOI
Hectors K., Van Oevelen S., Geuns J., Guisez Y., Jansen MA K., Prinsen E. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. Physiol. Plant. 2014;152:219–230. doi: 10.1111/ppl.12168. PubMed DOI
Jansen MA K., Hectors K., O’Brien N.M., Guisez Y., Potters G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 2008;175:449–458. doi: 10.1016/j.plantsci.2008.04.010. DOI
Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 2019;10:470442. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC
Neugart S., Zietz M., Schreiner M., Rohn S., Kroh L.W., Krumbein A. Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. Physiol. Plant. 2012;145:582–593. doi: 10.1111/j.1399-3054.2012.01567.x. PubMed DOI
Daryanavard H., Postiglione A.E., Mühlemann J.K., Muday G.K. Flavonols modulate plant development, signaling, and stress responses. Curr. Opin. Plant Biol. 2023;72:102350. doi: 10.1016/j.pbi.2023.102350. PubMed DOI PMC
Singh P., Singh A., Choudhary K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress. 2023;7:100143. doi: 10.1016/j.stress.2023.100143. DOI
Chen Z., Ma Y., Yang R., Gu Z., Wang P. Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem. 2019;288:368–376. doi: 10.1016/j.foodchem.2019.02.131. PubMed DOI
Inostroza-Blancheteau C., Acevedo P., Loyola R., Arce-Johnson P., Alberdi M., Reyes-Díaz M. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves. Plant Physiol. Biochem. 2016;107:301–309. doi: 10.1016/j.plaphy.2016.06.019. PubMed DOI
Qian M., Kalbina I., Rosenqvist E., Jansen M.A.K., Teng Y., Strid Å. UV regulates the expression of phenylpropanoid biosynthesis genes in cucumber (Cucumis sativus L.) in an organ and spectrum dependent manner. Photochem. Photobiol. Sci. 2019;18:424–433. doi: 10.1039/c8pp00480c. PubMed DOI
Csepregi K., Hideg É. Phenolic Compound Diversity Explored in the Context of Photo-Oxidative Stress Protection. Phytochem. Anal. 2018;29:129–136. doi: 10.1002/pca.2720. PubMed DOI
Tarasevičienė Ž., Velička A., Paulauskienė A. Impact of Foliar Application of Amino Acids on Total Phenols, Phenolic Acids Content of Different Mints Varieties under the Field Condition. Plants. 2021;10:599. doi: 10.3390/plants10030599. PubMed DOI PMC
Barros J., Dixon R.A. Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends Plant Sci. 2020;25:66–79. doi: 10.1016/j.tplants.2019.09.011. PubMed DOI
Zakynthinos G., Varzakas T. Carotenoids: From Plants to Food Industry. Curr. Res. Nutr. Food Sci. J. 2016;4:38–51. doi: 10.12944/CRNFSJ.4.Special-Issue1.04. DOI
Dias M.C., Pinto DC G.A., Silva AM S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26:5377. doi: 10.3390/molecules26175377. PubMed DOI PMC
Sankari M., Hridya H., Sneha P., George Priya Doss C., Ramamoorthy S. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L. J. Photochem. Photobiol. B Biol. 2017;176:136–144. doi: 10.1016/j.jphotobiol.2017.10.002. PubMed DOI
Shen J., Jiang C.Q., Yan Y.F., Liu B.R., Zu C.L. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet. Mol. Res. GMR. 2017;16:gmr16018438. doi: 10.4238/gmr16018438. PubMed DOI
Emiliani J., D’Andrea L., Lorena Falcone Ferreyra M., Maulión E., Rodriguez E., Rodriguez-Concepción M., Casati P. A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection. J. Exp. Bot. 2018;69:4921–4933. doi: 10.1093/jxb/ery242. PubMed DOI
Badmus U.O., Ač A., Klem K., Urban O., Jansen M.A.K. A meta-analysis of the effects of UV radiation on the plant carotenoid pool. Plant Physiol. Biochem. 2022;183:36–45. doi: 10.1016/j.plaphy.2022.05.001. PubMed DOI
Escobar-Bravo R., Klinkhamer PG L., Leiss K.A. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. Front. Plant Sci. 2017;8:278. doi: 10.3389/fpls.2017.00278. PubMed DOI PMC
Thines N.J., Shipley L.A., Bassman J.H., Fellman J.K., Mattison D.S., Slusser J.R., Gao W. Effects of enhanced UV-B radiation on plant chemistry: Nutritional consequences for a specialist and generalist lagomorph. J. Chem. Ecol. 2007;33:1025–1039. doi: 10.1007/s10886-007-9280-7. PubMed DOI
Rohdich F., Eisenreich W., Wungsintaweekul J., Hecht S., Schuhr C.A., Bacher A. Biosynthesis of terpenoids. Eur. J. Biochem. 2001;268:3190–3197. doi: 10.1046/j.1432-1327.2001.02204.x. PubMed DOI
Rogowska A., Szakiel A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020;19:1525–1538. doi: 10.1007/s11101-020-09708-2. DOI
Du Y., Fu X., Chu Y., Wu P., Liu Y., Ma L., Tian H., Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int. J. Mol. Sci. 2022;23:2332. doi: 10.3390/ijms23042332. PubMed DOI PMC
Barnes P.W., Tobler M.A., Keefover-Ring K., Flint S.D., Barkley A.E., Ryel R.J., Lindroth R.L. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids: Rapid modulation of UV sunscreen protection. Plant Cell Environ. 2016;39:222–230. doi: 10.1111/pce.12609. PubMed DOI
Crestani G., Cunningham N., Badmus U.O., Prinsen E., Jansen M.A.K. UV-B Radiation as a Novel Tool to Modulate the Architecture of In Vitro Grown Mentha spicata (L.) Agronomy. 2023;13:2. doi: 10.3390/agronomy13010002. DOI
Flint S.D., Caldwell M.M. A biological spectral weighting function for ozone depletion research with higher plants. Physiol. Plant. 2003;117:137–144. doi: 10.1034/j.1399-3054.2003.1170117.x. DOI
Franklin K.A., Whitelam G.C. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 2005;96:169–175. doi: 10.1093/aob/mci165. PubMed DOI PMC
Crestani G., Cunningham N., Csepregi K., Badmus U.O., Jansen M.A.K. From stressor to protector, UV-induced abiotic stress resistance. Photochem. Photobiol. Sci. 2023;22:2189–2204. doi: 10.1007/s43630-023-00441-1. PubMed DOI PMC
Večeřová K., Klem K., Veselá B., Holub P., Grace J., Urban O. Combined Effect of Altitude, Season and Light on the Accumulation of Extractable Terpenes in Norway Spruce Needles. Forests. 2021;12:1737. doi: 10.3390/f12121737. DOI
Robson T.M., Klem K., Urban O., Jansen MA K. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015;38:856–866. doi: 10.1111/pce.12374. PubMed DOI
Dotto M., Casati P. Developmental reprogramming by UV-B radiation in plants. Plant Sci. 2017;264:96–101. doi: 10.1016/j.plantsci.2017.09.006. PubMed DOI
Sun Q., Liu M., Cao K., Xu H., Zhou X. UV-B Irradiation to Amino Acids and Carbohydrate Metabolism in Rhododendron chrysanthum Leaves by Coupling Deep Transcriptome and Metabolome Analysis. Plants. 2022;11:2730. doi: 10.3390/plants11202730. PubMed DOI PMC
Klem K., Oravec M., Holub P., Šimor J., Findurová H., Surá K., Veselá B., Hodaňová P., Jansen M.A.K., Urban O. Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance. Plant Physiol. Biochem. 2022;172:111–124. doi: 10.1016/j.plaphy.2022.01.006. PubMed DOI
Liu X., Xie Z., Xin J., Yuan S., Liu S., Sun Y., Zhang Y., Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. Plants. 2024;13:498. doi: 10.3390/plants13040498. PubMed DOI PMC
Hildebrandt T.M., Nunes Nesi A., Araújo W.L., Braun H.-P. Amino Acid Catabolism in Plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Manela N., Oliva M., Ovadia R., Sikron-Persi N., Ayenew B., Fait A., Galili G., Perl A., Weiss D., Oren-Shamir M. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 2015;6:538. doi: 10.3389/fpls.2015.00538. PubMed DOI PMC
Tzin V., Galili G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. Arab. Book/Am. Soc. Plant Biol. 2010;8:e0132. doi: 10.1199/tab.0132. PubMed DOI PMC
Azevedo R.A., Lancien M., Lea P.J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids. 2006;30:143–162. doi: 10.1007/s00726-005-0245-2. PubMed DOI
Tohge T., Watanabe M., Hoefgen R., Fernie A. Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Front. Plant Sci. 2013;4:62. doi: 10.3389/fpls.2013.00062. PubMed DOI PMC
Zhang R., Huang G., Wang L., Zhou Q., Huang X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicol. Environ. Saf. 2019;171:683–690. doi: 10.1016/j.ecoenv.2019.01.035. PubMed DOI
Wawrzynska A., Moniuszko G., Sirko A. Links Between Ethylene and Sulfur Nutrition—A Regulatory Interplay or Just Metabolite Association? Front. Plant Sci. 2015;6:170615. doi: 10.3389/fpls.2015.01053. PubMed DOI PMC
Vanhaelewyn L., Prinsen E., Van Der Straeten D., Vandenbussche F. Hormone-controlled UV-B responses in plants. J. Exp. Bot. 2016;67:4469–4482. doi: 10.1093/jxb/erw261. PubMed DOI
Neugart S., Schreiner M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 2018;234:370–381. doi: 10.1016/j.scienta.2018.02.021. DOI
Rodríguez-Calzada T., Qian M., Strid Å., Neugart S., Schreiner M., Torres-Pacheco I., Guevara-González R.G. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.) Plant Physiol. Biochem. 2019;134:94–102. doi: 10.1016/j.plaphy.2018.06.025. PubMed DOI
Turtola S., Rousi M., Pusenius J., Yamaji K., Heiska S., Tirkkonen V., Meier B., Julkunen-Tiitto R. Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Glob. Change Biol. 2005;11:1655–1663. doi: 10.1111/j.1365-2486.2005.01013.x. DOI
Jansen MA K., Gaba V., Greenberg B.M. Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 1998;3:131–135. doi: 10.1016/S1360-1385(98)01215-1. DOI
Zoratti L., Karppinen K., Luengo Escobar A., Häggman H., Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014;5:534. doi: 10.3389/fpls.2014.00534. PubMed DOI PMC
Neugart S., Tobler M.A., Barnes P.W. The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra. Plants. 2021;10:2268. doi: 10.3390/plants10112268. PubMed DOI PMC
Righini S., Rodriguez E.J., Berosich C., Grotewold E., Casati P., Falcone Ferreyra M.L. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. Plant Cell Environ. 2019;42:495–508. doi: 10.1111/pce.13428. PubMed DOI
Wang H., Liu S., Wang T., Liu H., Xu X., Chen K., Zhang P. The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation. Plant Sci. 2020;298:110591. doi: 10.1016/j.plantsci.2020.110591. PubMed DOI
Li B., Robinson D.H., Birt D.F. Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. J. Pharm. Sci. 1997;86:721–725. doi: 10.1021/js960383s. PubMed DOI
Agati G., Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186:786–793. doi: 10.1111/j.1469-8137.2010.03269.x. PubMed DOI
Valkama E., Salminen J.-P., Koricheva J., Pihlaja K. Comparative Analysis of Leaf Trichome Structure and Composition of Epicuticular Flavonoids in Finnish Birch Species. Ann. Bot. 2003;91:643–655. doi: 10.1093/aob/mcg070. PubMed DOI PMC
Kang J.-H., McRoberts J., Shi F., Moreno J.E., Jones A.D., Howe G.A. The Flavonoid Biosynthetic Enzyme Chalcone Isomerase Modulates Terpenoid Production in Glandular Trichomes of Tomato. Plant Physiol. 2014;164:1161–1174. doi: 10.1104/pp.113.233395. PubMed DOI PMC
Tafrihi M., Imran M., Tufail T., Gondal T.A., Caruso G., Sharma S., Sharma R., Atanassova M., Atanassov L., Valere Tsouh Fokou P., et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules. 2021;26:1118. doi: 10.3390/molecules26041118. PubMed DOI PMC
Singh P., Pandey A.K. Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Front. Plant Sci. 2018;9:409763. doi: 10.3389/fpls.2018.01295. PubMed DOI PMC
Maffei M. Plasticity and genotypic variation in some Mentha × verticillata hybrids. Biochem. Syst. Ecol. 1990;18:493–502. doi: 10.1016/0305-1978(90)90121-U. DOI
Turner G.W., Gershenzon J., Croteau R.B. Development of Peltate Glandular Trichomes of Peppermint1. Plant Physiol. 2000;124:665–680. doi: 10.1104/pp.124.2.665. PubMed DOI PMC
Ioannidis D., Bonner L., Johnson C.B. UV-B is Required for Normal Development of Oil Glands in Ocimum basilicum L. (Sweet Basil) Ann. Bot. 2002;90:453–460. doi: 10.1093/aob/mcf212. PubMed DOI PMC
Pandey N., Pandey-Rai S. Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell Tissue Organ Cult. (PCTOC) 2014;116:371–385. doi: 10.1007/s11240-013-0413-0. DOI
Kostina E., Wulff A., Julkunen-Tiitto R. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees. 2001;15:483–491. doi: 10.1007/s00468-001-0129-3. DOI
Escobar-Bravo R., Chen G., Kim H.K., Grosser K., van Dam N.M., Leiss K.A., Klinkhamer PG L. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J. Exp. Bot. 2019;70:315–327. doi: 10.1093/jxb/ery347. PubMed DOI PMC
Llusia J., Llorens L., Bernal M., Verdaguer D., Peñuelas J. Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species. Acta Physiol. Plant. 2012;34:757–769. doi: 10.1007/s11738-011-0876-8. DOI
Maffei M., Scannerini S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.) J. Essent. Oil Res. 2000;12:523–529. doi: 10.1080/10412905.2000.9712150. DOI
Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid Metabolism in Plants. Mol. Plant. 2015;8:68–82. doi: 10.1016/j.molp.2014.12.007. PubMed DOI
Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020;74:1–16. doi: 10.1007/s11418-019-01364-x. PubMed DOI PMC
Martínez-Zamora L., Castillejo N., Artés-Hernández F. UV-B Radiation as Abiotic Elicitor to Enhance Phytochemicals and Development of Red Cabbage Sprouts. Horticulturae. 2021;7:567. doi: 10.3390/horticulturae7120567. DOI
Nazari M., Zarinkamar F. Ultraviolet-B induced changes in Mentha aquatica (a medicinal plant) at early and late vegetative growth stages: Investigations at molecular and genetic levels. Ind. Crops Prod. 2020;154:112618. doi: 10.1016/j.indcrop.2020.112618. DOI
Hasanuzzaman M., Nahar K., Fujita M. Emerging Technologies and Management of Crop Stress Tolerance. Elsevier; Amsterdam, The Netherlands: 2014. Role of Tocopherol (Vitamin E) in Plants; pp. 267–289. DOI
Munné-Bosch S., Alegre L. The Function of Tocopherols and Tocotrienols in Plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1080/0735-260291044179. DOI
DeLong J.M., Steffen K.L. Lipid peroxidation and α-tocopherol content in α-tocopherol-supplemented thylakoid membranes during UV-B exposure. Environ. Exp. Bot. 1998;39:177–185. doi: 10.1016/S0098-8472(97)00046-4. DOI
Jain K., Kataria S., Guruprasad K.N. Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci. 2003;165:551–557. doi: 10.1016/S0168-9452(03)00214-0. DOI
Carletti P., Masi A., Wonisch A., Grill D., Tausz M., Ferretti M. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environ. Exp. Bot. 2003;50:149–157. doi: 10.1016/S0098-8472(03)00020-0. DOI
Shahzad R., Ewas M., Harlina P.W., Khan S.U., Zhenyuan P., Nie X., Nishawy E. β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress. J. Genet. Eng. Biotechnol. 2021;19:79. doi: 10.1186/s43141-021-00183-6. PubMed DOI PMC
Cabianca A., Müller L., Pawlowski K., Dahlin P. Changes in the Plant β-Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode Meloidogyne incognita. Plants. 2021;10:292. doi: 10.3390/plants10020292. PubMed DOI PMC
Mohamed A., Liet Z., Goru D., David J. Losses after Harvesting and Management. E3S Web Conf. 2024;477:00076. doi: 10.1051/e3sconf/202447700076. DOI
Lidon F.C., Ramalho J.C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J. Photochem. Photobiol. B Biol. 2011;104:457–466. doi: 10.1016/j.jphotobiol.2011.05.004. PubMed DOI