UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
16/IA/4418
Science Foundation Ireland - Ireland
PubMed
36551307
PubMed Central
PMC9775031
DOI
10.3390/biom12121879
PII: biom12121879
Knihovny.cz E-zdroje
- Klíčová slova
- UV-B, arabidopsis, carotenoid, photoreceptor, photosynthesis, xanthophyll,
- MeSH
- Arabidopsis * metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- fotosyntéza MeSH
- karotenoidy metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- karotenoidy MeSH
- proteiny huseníčku * MeSH
- Uvr8 protein, Arabidopsis MeSH Prohlížeč
- violaxanthin MeSH Prohlížeč
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
Zobrazit více v PubMed
Smith H. Light Quality, Photoperception, and Plant Strategy. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1982;33:481–518.
Huché-Thélier L., Crespel L., Le Gourrierec J., Morel P., Sakr S., Leduc N. Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture. Environ. Exp. Bot. 2016;121:22–38. doi: 10.1016/j.envexpbot.2015.06.009. DOI
Hideg É., Jansen M.A.K., Strid Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013;18:107–115. doi: 10.1016/j.tplants.2012.09.003. PubMed DOI
Jansen M.A.K., Gaba V., Greenberg B.M. Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 1998;3:131–135. doi: 10.1016/S1360-1385(98)01215-1. DOI
Schreiner M., Martínez-Abaigar J., Glaab J., Jansen M.A.K. UV-B Induced Secondary Plant Metabolites. Opt. Photonik. 2014;9:34–37. doi: 10.1002/opph.201400048. DOI
Jenkins G.I. Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ. 2017;40:2544–2557. doi: 10.1111/pce.12934. PubMed DOI
Tossi V.E., Regalado J.J., Iannicelli J., Laino L.E., Burrieza H.P., Escandón A.S., Pitta-Álvarez S.I. Beyond Arabidopsis: Differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci. 2019;10:780. doi: 10.3389/fpls.2019.00780. PubMed DOI PMC
Klem K., Holub P., Štroch M., Nezval J., Špunda V., Tříska J., Jansen M.A.K., Robson T.M., Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol. Biochem. 2015;93:74–83. doi: 10.1016/j.plaphy.2015.01.001. PubMed DOI
Hideg É., Strid A. The effects of UV-B on the biochemistry and metabolism of plants. In: Jordan B., editor. UV-B Radiation and Plant Life: Molecular Biology to Ecology. CABI; London, UK: 2017. pp. 90–110. DOI
Vandenbussche F., Yu N., Li W., Vanhaelewyn L., Hamshou M., Van Der Straeten D., Smagghe G. An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Sci. 2018;268:54–63. doi: 10.1016/j.plantsci.2017.12.005. PubMed DOI
Verdaguer D., Jansen M.A.K., Llorens L., Morales L.O., Neugart S. Plant Science UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017;255:72–81. doi: 10.1016/j.plantsci.2016.11.014. PubMed DOI
Brown B.A., Cloix C., Jiang G.H., Kaiserli E., Herzyk P., Kliebenstein D.J., Jenkins G.I. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. USA. 2005;102:18225–18230. doi: 10.1073/pnas.0507187102. PubMed DOI PMC
Morales L.O., Tegelberg R., Brosché M., Keinänen M., Lindfors A., Aphalo P.J. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 2010;30:923–934. doi: 10.1093/treephys/tpq051. PubMed DOI
Hectors K., Van Oevelen S., Geuns J., Guisez Y., Jansen M.A.K., Prinsen E. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. Physiol. Plant. 2014;152:219–230. doi: 10.1111/ppl.12168. PubMed DOI
Neugart S., Fiol M., Schreiner M., Rohn S., Zrenner R., Kroh L.W., Krumbein A. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) J. Agric. Food Chem. 2014;62:4054–4062. doi: 10.1021/jf4054066. PubMed DOI
Coffey A., Prinsen E., Jansen M.A.K., Conway J. The UVB photoreceptor UVR8 mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under outdoor conditions. Plant Cell Environ. 2017;40:2250–2260. doi: 10.1111/pce.13025. PubMed DOI
Celeste Dias M., Pinto D.C.G.A., Correia C., Moutinho-Pereira J., Oliveira H., Freitas H., Silva A.M.S., Santos C. UV-B radiation modulates physiology and lipophilic metabolite profile in Olea europaea. J. Plant Physiol. 2018;222:39–50. doi: 10.1016/j.jplph.2018.01.004. PubMed DOI
Contreras R.A., Pizarro M., Köhler H., Zamora P., Zúñiga G.E. UV-B shock induces photoprotective flavonoids but not antioxidant activity in Antarctic Colobanthus quitensis (Kunth) Bartl. Environ. Exp. Bot. 2019;159:179–190. doi: 10.1016/j.envexpbot.2018.12.022. DOI
Liu Y., Liu J., Wang H.-Z., Wu K.-X., Guo X.-R., Mu L.-Q., Tang Z.-H. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: An integrated metabolomics strategy. Environ. Exp. Bot. 2020;176:104094. doi: 10.1016/j.envexpbot.2020.104094. DOI
Badmus U.O., Crestani G., Connell R.D.O., Cunningham N., Jansen M.A.K. UV-B induced accumulation of tocopherol in Arabidopsis thaliana is not dependent on individual UV photoreceptors. Plant Stress. 2022;5:100105. doi: 10.1016/j.stress.2022.100105. DOI
Vogt T. Phenylpropanoid biosynthesis. Mol. Plant. 2010;3:2–20. doi: 10.1093/mp/ssp106. PubMed DOI
Jansen M.A.K., Bilger W., Hideg E., Strid Å., Participants U.W., Urban O. Interactive effects of UV-B radiation in a complex environment. Plant Physiol. Biochem. 2019;134:1–8. doi: 10.1016/j.plaphy.2018.10.021. PubMed DOI
Badmus U.O., Alexander A., Klem K., Urban O., Jansen M.A.K. A meta-analysis of the effects of UV radiation on the plant carotenoid pool. Plant Physiol. Biochem. 2022;183:36–45. doi: 10.1016/j.plaphy.2022.05.001. PubMed DOI
Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9:1551–1558. doi: 10.1096/fasebj.9.15.8529834. PubMed DOI
Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004;43:228–265. doi: 10.1016/j.plipres.2003.10.002. PubMed DOI
Britton G., Liaaen-Jensen S., Pfander H. Carotenoids Special Molecules, Special Properties. In: Britton G., Liaaen-Jensen S., Pfander H., editors. Nutrition and Health. Springer Science and Business Media; Berlin, Germany: 2009. [(accessed on 15 September 2022)]. pp. 1–6. Available online: http://books.google.com/books?id=c8USiLi73dUC&pgis=1.
Cazzaniga S., Bressan M., Carbonera D., Agostini A., Dall’osto L. Differential Roles of Carotenes and Xanthophylls in Photosystem I Photoprotection. Biochemistry. 2016;55:3636–3649. doi: 10.1021/acs.biochem.6b00425. PubMed DOI
Niyogi K.K., Björkman O., Grossman A.R. The roles of specific xanthophylls in photoprotection. Proc. Natl. Acad. Sci. USA. 1997;94:14162–14167. doi: 10.1073/pnas.94.25.14162. PubMed DOI PMC
Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3:147–151. doi: 10.1016/S1360-1385(98)01200-X. DOI
Xiao F.G., Shen L., Ji H.F. On photoprotective mechanisms of carotenoids in light harvesting complex. Biochem. Biophys. Res. Commun. 2011;414:1–4. doi: 10.1016/j.bbrc.2011.09.049. PubMed DOI
Pogson B.J., Rissler H.M. Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos. Trans. R. Soc. B Biol. Sci. 2000;355:1395–1403. doi: 10.1098/rstb.2000.0701. PubMed DOI PMC
Demmig-Adams B., Cohu C.M., Stewart J.J., Iii W.W.A. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. In: Demmig-Adams B., Garab G., Adams W., III, editors. Photosynthesis and Respiration. Volume 40. Springer; Dordrecht, The Netherlands: 2014. [(accessed on 16 September 2022)]. Available online: http://link.springer.com/10.1007/978-94-017-9032-1. DOI
Bykowski M., Mazur R., Wo J., Suski S. Too rigid to fold: Carotenoid-dependent decrease in thylakoid fluidity hampers the formation of chloroplast grana. Plant Physiol. 2021;185:210–227. doi: 10.1093/plphys/kiaa009. PubMed DOI PMC
Son M., Pinnola A., Gordon S.C., Bassi R., Schlau-Cohen G.S. Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat. Commun. 2020;11:1–8. doi: 10.1038/s41467-020-15074-6. PubMed DOI PMC
Umena Y., Kawakami K., Shen J., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI
Jahns P., Holzwarth A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta—Bioenerg. 2012;1817:182–193. doi: 10.1016/j.bbabio.2011.04.012. PubMed DOI
Xu P., Chukhutsina V.U., Nawrocki W.J., Schansker G., Bielczynski L.W., Lu Y., Karcher D., Bock R., Croce R. Photosynthesis without b -carotene. Elife. 2020;9:e58984. doi: 10.7554/eLife.58984. PubMed DOI PMC
Demmig-Adams B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta—Bioenerg. 1990;1020:1–24. doi: 10.1016/0005-2728(90)90088-L. DOI
Demmig-Adams B., Stewart J.J., López-Pozo M., Polutchko S.K., Adams W.W. Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules. 2020;25:5825. doi: 10.3390/molecules25245825. PubMed DOI PMC
Ablazov A., Mi J., Jamil M., Jia K.P., Wang J.Y., Feng Q., Al-Babili S. The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots. Front. Plant Sci. 2020;11:1–13. doi: 10.3389/fpls.2020.00578. PubMed DOI PMC
Müller M., Munné-Bosch S. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol. 2021;185:1500–1522. doi: 10.1093/plphys/kiaa119. PubMed DOI PMC
Pang X., Zhang Z., Wen X., Ban Y., Moriguchi T., Yusuke Y. Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress. 2007;1:173–188.
Moreno J.C., Mi J., Alagoz Y., Al-Babili S. Plant apocarotenoids: From retrograde signaling to interspecific communication. Plant J. 2021;105:351–375. doi: 10.1111/tpj.15102. PubMed DOI PMC
Llorente B., Martinez-Garcia J.F., Stange C., Rodriguez-Concepcion M. Illuminating colors: Regulation of carotenoid biosynthesis and accumulation by light. Curr. Opin. Plant Biol. 2017;37:49–55. doi: 10.1016/j.pbi.2017.03.011. PubMed DOI
Heath J.J., Cipollini D.F., Stireman J.O., III The role of carotenoids and their derivatives in mediating interactions between insects and their environment. Arthropod-Plant Interact. 2013;7:1–20. doi: 10.1007/s11829-012-9239-7. DOI
García-Chavarría M., Lara-Flores M. The use of carotenoid in aquaculture. Res. J. Fish. Hydrobiol. 2013;8:38–49.
Havaux M., Niyogi K.K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA. 1999;96:8762–8767. doi: 10.1073/pnas.96.15.8762. PubMed DOI PMC
Jansen M.A.K., Hectors K., O’Brien N.M., Guisez Y., Potters G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 2008;175:449–458. doi: 10.1016/j.plantsci.2008.04.010. DOI
Pfündel E.E., Pan R.S., Dilley R.A. Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol. 1992;98:1372–1380. doi: 10.1104/pp.98.4.1372. PubMed DOI PMC
Emiliani J., D’Andrea L., Falcone Ferreyra M.L., Maulión E., Rodriguez E., Rodriguez-Concepción M., Casati P. A role for β,β-xanthophylls in Arabidopsis UV-B photoprotection. J. Exp. Bot. 2018;69:4921–4933. doi: 10.1093/jxb/ery242. PubMed DOI
Favory J.J., Stec A., Gruber H., Rizzini L., Oravecz A., Funk M., Albert A., Cloix C., Jenkins G.I., Oakeley E.J., et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009;28:591–601. doi: 10.1038/emboj.2009.4. PubMed DOI PMC
Mao J., Zhang Y.C., Sang Y., Li Q.H., Yang H.Q. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. USA. 2005;102:12270–12275. doi: 10.1073/pnas.0501011102. PubMed DOI PMC
Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature. 2001;414:656–660. doi: 10.1038/414656a. PubMed DOI
Niyogi K.K., Grossman A.R., Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 1998;10:1121–1134. doi: 10.1105/tpc.10.7.1121. PubMed DOI PMC
Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–657. doi: 10.1126/science.1086391. PubMed DOI
Li X.P., Björkman O., Shih C., Grossman A.R., Rosenquist M., Jansson S., Niyogi K.K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000;403:391–395. doi: 10.1038/35000131. PubMed DOI
Li Z., Ahn T.K., Avenson T.J., Ballottari M., Cruz J.A., Kramer D.M., Bassi R., Fleming G.R., Keasling J.D., Niyogi K.K. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the arabidopsis thaliana npq1 mutant. Plant Cell. 2009;21:1798–1812. doi: 10.1105/tpc.109.066571. PubMed DOI PMC
Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/TPC.010011. PubMed DOI PMC
Aphalo P.J., Albert A., Björn L.O., Mcleod A.R., Robson T.M., Rosenqvist E. COST Action FA0906 UV4growth (Issue June 2014) University of Helsinki; Helsinki, Finland: 2012. Beyond the Visible: A handbook of best practice in plant UV photobiology. DOI
Klughammer C., Schreiber U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes. 2008;1:27–35.
Thayer S.S., Björkman O. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res. 1990;23:331–343. doi: 10.1007/BF00034864. PubMed DOI
Fraser P.D., Pinto M.E., Holloway D.E., Bramley P.M. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 2000;24:551–558. doi: 10.1046/j.1365-313x.2000.00896.x. PubMed DOI
Venables W.N., Ripley B.D. Modern Applied Statistics with S-Plus. Springer Science & Business Media; Berlin, Germany: 2013. [(accessed on 12 August 2002)]. Available online: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp.
Esteban R., Barrutia O., Artetxe U., Fernández-Marín B., Hernández A., García-Plazaola J.I. Internal and external factors affecting photosynthetic pigment composition in plants: A meta-analytical approach. New Phytol. 2015;206:268–280. doi: 10.1111/nph.13186. PubMed DOI
Biswas D.K., Ma B.L., Xu H., Li Y., Jiang G. Lutein-mediated photoprotection of photosynthetic machinery in Arabidopsis thaliana exposed to chronic low ultraviolet-B radiation. J. Plant Physiol. 2020;248:153160. doi: 10.1016/j.jplph.2020.153160. PubMed DOI
Lee J.-H., Shibata S., Goto E. Time-Course of Changes in Photosynthesis and Secondary Metabolites in Canola (Brassica napus) Under Different UV-B Irradiation Levels in a Plant Factory With Artificial Light. Front. Plant Sci. 2021;12:1–14. doi: 10.3389/fpls.2021.786555. PubMed DOI PMC
Moreira-Rodríguez M., Nair V., Benavides J., Cisneros-Zevallos L., Jacobo-Velázquez D.A. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int. J. Mol. Sci. 2017;18:2330. doi: 10.3390/ijms18112330. PubMed DOI PMC
García-Plazaola J.I., Hernández A., Olano J.M., Becerril J.M. The operation of the lutein epoxide cycle correlates with energy dissipation. Funct. Plant Biol. 2003;30:319–324. doi: 10.1071/FP02224. PubMed DOI
Rai N., Morales L.O., Aphalo P.J. Perception of solar UV radiation by plants: Photoreceptors and mechanisms. Plant Physiol. 2021;186:1382–1396. doi: 10.1093/plphys/kiab162. PubMed DOI PMC
Ulm R., Jenkins G.I. Q&A: How do plants sense and respond to UV-B radiation? BMC Biol. 2015;13:4–9. doi: 10.1186/s12915-015-0156-y. PubMed DOI PMC
Clayton W.A., Albert N.W., Thrimawithana A.H., McGhie T.K., Deroles S.C., Schwinn K.E., Warren B.A., McLachlan A.R.G., Bowman J.L., Jordan B.R., et al. UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J. 2018;96:503–517. doi: 10.1111/tpj.14044. PubMed DOI
Brelsford C.C., Morales L.O., Nezval J., Kotilainen T.K., Hartikainen S.M., Aphalo P.J., Robson T.M. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana? Physiol. Plant. 2019;165:537–554. doi: 10.1111/ppl.12749. PubMed DOI
Pogson B., McDonald K.A., Truong M., Britton G., DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996;8:1627–1639. doi: 10.1105/tpc.8.9.1627. PubMed DOI PMC
Cazzaniga S., Li Z., Niyogi K.K., Bassi R., Dall’Osto L. The Arabidopsis szl1 mutant reveals a Critical role of β-carotene in photosystem I photoprotection. Plant Physiol. 2012;159:1745–1758. doi: 10.1104/pp.112.201137. PubMed DOI PMC
Jansen M.A.K., Ač A., Klem K., Urban O. A meta-analysis of the interactive effects of UV and drought on plants. Plant Cell Environ. 2022;45:41–54. doi: 10.1111/pce.14221. PubMed DOI
Castagna A., Csepregi K., Neugart S., Zipoli G., Večeřová K., Jakab G., Jug T., Llorens L., Martínez-Abaigar J., Martínez-Lüscher J., et al. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient. Plant Cell Environ. 2017;40:2790–2805. doi: 10.1111/pce.13054. PubMed DOI