A meta-analysis of the interactive effects of UV and drought on plants

. 2022 Jan ; 45 (1) : 41-54. [epub] 20211129

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34778989

Interactions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress-associated symptoms such as MDA accumulation and reactive-oxygen-species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less-than-additive, and so are the damage and growth retardation. Less-than-additive effects were observed across field, glasshouse and growth-chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross-resistance seems the most likely interpretation of the observed less-than-additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.

Zobrazit více v PubMed

References marked with * are available in Supplementary Table S1.

Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U. & Mohammed, G. (2015) Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment, 168, 420-436.

*Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12), 1337-1344.

*Allen, D.J., Nogués, S., Morison, J.I.L., Greenslade, P.D., McLeod, A.R. & Baker, N.R. (1999) A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. Global Change Biology, 5(2), 235-244.

Alonso, R., Berli, F.J., Bottini, R. & Piccoli, P. (2015) Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiology and Biochemistry, 91, 56-60.

Aphalo, P.J. (2003) Do current levels of UV-B radiation affect vegetation? The importance of long-term experiments. New Phytologist, 160(2), 273-276.

Aphalo, P.J., Albert, A., Björn, L.O., McLeod, A., Robson, T.M. & Rosenquist, E. (Eds.) (2012) Beyond the visible: a handbook of best practice in plant UV photobiology. Helsinki: University of Helsinki, Division of Plant Biology, p. 176.

Aphalo, P.J., Jansen, M.A.K., McLeod, A.R. & Urban, O. (2015) Ultraviolet radiation research: from the field to the laboratory and back. Plant, Cell & Environment, 38(5), 853-855.

*Araújo, M., Santos, C., Costa, M., Moutinho-Pereira, J., Correia, C. & Dias, M.C. (2016) Plasticity of young Moringa oleifera L. plants to face water deficit and UVB radiation challenges. Journal of Photochemistry and Photobiology B: Biology, 162, 278-285.

Arblaster, J., Gillett, N., Calvo, N., Forster, P., Polvani, L. & Son, S. et al. (2014) Stratospheric ozone changes and climate, Chapter 4 in Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring. World Meteorological Organization. Project-Report No. 55.

*Arróniz-Crespo, M., Gwynn-Jones, D., Callaghan, T.V., Núñez-Olivera, E., Martínez-Abaigar, J., Horton, P. et al. (2011) Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability. Annals of Botany, 108(3), 557-565.

Bais, A.F., Bernhard, G., McKenzie, R.L., Aucamp, P.J., Young, P.J., Ilyas, M. et al. (2019) Ozone-climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602-640.

*Balakumar, T., Vincent, V.H.B. & Paliwal, K. (1993) On the interaction of UV-B radiation (280-315 nm) with water stress in crop plants. Physiologia Plantarum, 87(2), 217-222.

*Bandurska, H. & Cieślak, M. (2013) The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. Environmental and Experimental Botany, 94, 9-18.

*Bandurska, H., Pietrowska-Borek, M. & Cieślak, M. (2012) Response of barley seedlings to water deficit and enhanced UV-B irradiation acting alone and in combination. Acta Physiologiae Plantarum, 34(1), 161-171.

Barnes, P.W., Ballaré, C.L. & Caldwell, M.M. (1996) Photomorphogenic effects of UV-B radiation on plants: consequences for light competition. Journal of Plant Physiology, 148(1-2), 15-20.

Barnes, P.W., Tobler, M.A., Keefover-Ring, K., Flint, S.D., Barkley, A.E., Ryel, R.J. et al. (2016) Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. Plant, Cell & Environment, 39(1), 222-230.

*Basahi, J.M., Ismail, I.M. & Hassan, I.A. (2014) Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annual Research & Review in Biology, 4(11), 1739-1756.

Borenstein, M., Hedges, L.V., Higgins, J.P.T. & Rothstein, H.R. (2009) Introduction to meta-analysis. John Wiley & Sons Ltd.

Borenstein, M., Higgins, J.P., Hedges, L.V. & Rothstein, H.R. (2017) Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5-18.

Bornman, J.F., Barnes, P.W., Robson, T.M., Robinson, S.A., Jansen, M.A.K., Ballaré, C.L. et al. (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochemical & Photobiological Sciences, 18(3), 681-716.

*Cechin, I., Corniani, N., de Fátima Fumis, T. & Cataneo, A.C. (2008) Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiation and Environmental Biophysics, 47(3), 405-413.

*Comont, D., Winters, A. & Gwynn-Jones, D. (2012) Acclimation and interaction between drought and elevated UV-B in A. thaliana: Differences in response over treatment, recovery and reproduction. Ecology and Evolution, 2(11), 2695-2709.

*Doupis, G., Chartzoulakis, K., Beis, A. & Patakas, A. (2011) Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Australian Journal of Grape and Wine Research, 17(1), 36-42.

*Doupis, G., Chartzoulakis, K. & Patakas, A. (2012) Differences in antioxidant mechanisms in grapevines subjected to drought and enhanced UV-B radiation. Emirates Journal of Food & Agriculture, 24(6), 607-613.

*Duan, B., Ran, F., Zhang, X., Zhang, Y., Korpelainen, H. & Li, C. (2011) Long-term acclimation of mesophyll conductance, carbon isotope discrimination and growth in two contrasting Picea asperata populations exposed to drought and enhanced UV-B radiation for three years. Agricultural and Forest Meteorology, 151(1), 116-126.

*Duan, B., Xuan, Z., Zhang, X., Korpelainen, H. & Li, C. (2008) Interactions between drought, ABA application and supplemental UV-B in Populus yunnanensis. Physiologia Plantarum, 134(2), 257-269.

Farman, J.C., Gardiner, B.G. & Shanklin, J.D. (1985) Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207-210.

*Feng, H., Li, S., Xue, L., An, L. & Wang, X. (2007) The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. South African Journal of Botany, 73(3), 429-434.

*Gondor, O.K., Szalai, G., Kovács, V., Janda, T. & Pál, M. (2014) Impact of UV-B on drought-or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat. Ecotoxicology and Environmental Safety, 108, 129-134.

*Hassan, I.A., Abou Zeid, H.M. & Basahi, J.M. (2011) Photosynthetic response of Egyptian cultivar of broad bean (Vicia faba L.) to UV-B and drought, singly and in combination. International Research Journal of Agricultural Science and Soil Science, 1(11), 355-364.

*Hassan, I.A., Basahi, J.M., Haiba, N.S. & Kadi, M.W. (2013) Investigation of climate changes on metabolic response of plants; interactive effects of drought stress and excess UV-B. Journal of Earth Science & Climatic Change, 4, 129.

*He, L., Jia, X., Gao, Z. & Li, R. (2011) Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses. African Journal of Biotechnology, 10(20), 4046-4056.

Hideg, É., Jansen, M.A.K. & Strid, Å. (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Science, 18(2), 107-115.

*Hofmann, R.W., Campbell, B.D., Bloor, S.J., Swinny, E.E., Markham, K.R., Ryan, K.G. et al. (2003) Responses to UV-B radiation in Trifolium repens L.-physiological links to plant productivity and water availability. Plant, Cell & Environment, 26(4), 603-612.

Jansen, M.A.K., Bilger, W., Hideg, É., Strid, Å., UV4Plants Workshop Participants & Urban, O. (2019) Interactive effects of UV-B radiation in a complex environment. Plant Physiology and Biochemistry, 134, 1-8.

*Kovács, V., Gondor, O.K., Szalai, G., Majláth, I., Janda, T., Pál, M. et al. (2014) U.V.-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environmental and Experimental Botany, 100, 122-131.

*Kubiś, J. & Rybus-Zając, M. (2008) Drought and excess UV-B irradiation differentially alter the antioxidant system in cucumber leaves. Acta Biologica Cracoviensia Series Botanica, 50, 35-41.

*Llusia, J., Llorens, L., Bernal, M., Verdaguer, D. & Peñuelas, J. (2012) Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species. Acta Physiologiae Plantarum, 34(2), 757-769.

*Lu, Y., Duan, B. & Li, C. (2007) Physiological responses to drought and enhanced UV-B radiation in two contrasting Picea asperata populations. Canadian Journal of Forest Research, 37(7), 1253-1262.

*Lu, Y., Duan, B., Zhang, X., Korpelainen, H., Berninger, F. & Li, C. (2009) Intraspecific variation in drought response of Populus cathayana grown under ambient and enhanced UV-B radiation. Annals of Forest Science, 66(6), 613.

Lubin, D. & Frederick, J.E. (1991) The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover. Journal of Applied Meteorology and Climatology, 30(4), 478-493.

*Manetas, Y., Petropoulou, Y., Stamatakis, K., Nikolopoulos, D., Levizou, E. & Psaras, G. et al. (1997) Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer, UV-B and biosphere. Dordrecht: Springer, pp. 100-108.

*Martínez-Lüscher, J., Morales, F., Delrot, S., Sánchez-Díaz, M., Gomès, E., Aguirreolea, J. et al. (2015) Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Science, 232, 13-22.

*Mátai, A., Nagy, D. & Hideg, É. (2019) U.V.-B strengthens antioxidant responses to drought in Nicotiana benthamiana leaves not only as supplementary irradiation but also as pre-treatment. Plant Physiology and Biochemistry, 134, 9-19.

*Mészáros, I., Láposi, R., Veres, S., Bai, E., Lakatos, G., Gáspár, A. et al. (2001) Effects of supplemental UV-B and drought stress on photosynthetic activity of sessile oak (Quercus petraea L.). Science Access, 3(1), S3-036.

Middleton, E.M. & Teramura, A.H. (1994) Understanding photosynthesis, pigment and growth responses induced by UV-B and UV-A irradiances. Photochemistry and Photobiology, 60(1), 38-45.

Mittler, R. (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15-19.

*Nogué, S. & Bake, N. (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiatio. Journal of Experimental Botany, 51(34), 130-131.

Pastori, G.M. & Foyer, C.H. (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiology, 129(2), 460-468.

Petropoulou, Y., Kyparissis, A., Nikolopoulos, D. & Manetas, Y. (1995) Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiologia Plantarum, 94(1), 37-44.

*Phoenix, G.K., Gwynn-Jones, D., Callaghan, T.V., Sleep & Lee JA, D. (2001) Effects of global change on a sub-Arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. Journal of Ecology, 89(2), 256-267.

Piggott, J.J., Townsend, C.R. & Matthaei, C.D. (2015) Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution, 5(7), 1538-1547.

Piñeiro, G., Perelman, S., Guerschman, J.P. & Paruelo, J.M. (2008) How to evaluate models: observed vs. predicted or predicted vs. observed? Ecological Modelling, 216(3-4), 316-322.

Potters, G., Pasternak, T.P., Guisez, Y. & Jansen, M.A.K. (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell & Environment, 32(2), 158-169.

*Poulson, M.E., Boeger, M.R.T. & Donahue, R.A. (2006) Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Photosynthesis Research, 90(1), 79-90.

*Qaderi, M.M., Basraon, N.K., Chinnappa, C.C. & Reid, D.M. (2010) Combined effects of temperature, ultraviolet-B radiation, and watering regime on growth and physiological processes in canola (Brassica napus) seedlings. International Journal of Plant Sciences, 171(5), 466-481.

*Rajabbeigi, E., Eichholz, I., Beesk, N., Ulrichs, C., Kroh, L.W. & Rohn, S. et al. (2013) Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). Journal of Applied Botany and Food Quality, 86(1), 190-197.

*Rapantová, B., Klem, K., Holub, P., Novotná, K. & Urban, O. (2016) Photosynthetic response of mountain grassland species to drought stress is affected by UV-induced accumulation of epidermal flavonols. Beskydy, 9(1-2), 31-40.

*Ren, J., Dai, W., Xuan, Z., Yao, Y., Korpelainen, H. & Li, C. (2007) The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecology and Management, 239(1-3), 112-119.

*Robson, T.M., Hartikainen, S.M. & Aphalo, P.J. (2015) How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant, Cell & Environment, 38, 953-967.

*Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M. & Torres-Pacheco, I. et al. (2019) Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 134, 94-102.

Sanchez-Lorenzo, A., Enriquez-Alonso, A., Calbó, J., González, J.A., Wild, M., Folini, D. et al. (2017) Fewer clouds in the Mediterranean: consistency of observations and climate simulations. Scientific Reports, 7, 41475.

*Sangtarash, M.H., Qaderi, M.M., Chinnappa, C.C. & Reid, D.M. (2009) Differential responses of two Stellaria longipes ecotypes to ultraviolet-B radiation and drought stress. Flora-Morphology, Distribution, Functional Ecology of Plants. 204(8), 593-603.

*Schmidt, A.M., Ormrod, D.P., Livingston, N.J. & Misra, S. (2000) The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes. Annals of Botany, 85(4), 571-575.

*Shen, X., Dong, Z. & Chen, Y. (2015) Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiologiae Plantarum, 37(2), 25.

*Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E. & Li, J. (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167(15), 1248-1252.

Stapleton, A.E. (1992) Ultraviolet radiation and plants: burning questions. The Plant Cell, 4(11), 1353-1358.

*Sullivan, J.H. & Teramura, A.H. (1990) Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiology, 92(1), 141-146.

Sztatelman, O., Grzyb, J., Gabryś, H. & Banaś, A.K. (2015) The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC Plant Biology, 15(1), 281.

Tevini, M. & Teramura, A.H. (1989) UV-B effects on terrestrial plants. Photochemistry and Photobiology, 50(4), 479-487.

Tevini, M., Teramura, A.H., Kulandaivelu, G., Caldwell, M.M. & Björn, L.O. (1989) Environmental Effects of Ozone Depletion: 1989. UN Environment Programme, Ozone secretariat, Nairobi, Kenya. Available at: https://ozone.unep.org/sites/default/files/2019-05/EEAP-report1989.pdf

*Tian, X.R. & Lei, Y.B. (2007) Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Russian Journal of Plant Physiology, 54(5), 676-682.

*Turtola, S., Rousi, M., Pusenius, J., Yamaji, K., Heiska, S., Tirkkonen, V. et al. (2005) Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Global Change Biology, 11(10), 1655-1663.

*Turtola, S., Rousi, M., Pusenius, J., Yamaji, K., Heiska, S., Tirkkonen, V. et al. (2006) Genotypic variation in drought response of willows grown under ambient and enhanced UV-B radiation. Environmental and Experimental Botany, 56(1), 80-86.

*Verdaguer, D., Díaz-Guerra, L., Font, J., González, J.A. & Llorens, L. (2018) Contrasting seasonal morphological and physio-biochemical responses to UV radiation and reduced rainfall of two mature naturally growing Mediterranean shrubs in the context of climate change. Environmental and Experimental Botany, 147, 189-201.

Verdaguer, D., Jansen, M.A.K., Llorens, L., Morales, L.O. & Neugart, S. (2017) UV-A radiation effects on higher plants: exploring the known unknown. Plant Science, 255, 72-81.

Wargent, J.J., Elfadly, E.M., Moore, J.P. & Paul, N.D. (2011) Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34(8), 1401-1413.

*Wijewardana, C., Henry, W.B., Gao, W. & Reddy, K.R. (2016) Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. Journal of Photochemistry and Photobiology B: Biology, 160, 198-209.

*Yang, Y., Yao, Y., Xu, G. & Li, C. (2005) Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides. Physiologia Plantarum, 124(4), 431-440.

*Zhao, H., Zhao, Z., An, L., Chen, T., Wang, X. & Feng, H. (2009) The effects of enhanced ultraviolet-B radiation and soil drought on water use efficiency of spring wheat. Journal of Photochemistry and Photobiology B: Biology, 94(1), 54-58.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...