Interactive effects of UV radiation and water deficit on production characteristics in upland grassland and their estimation by proximity sensing
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36188527
PubMed Central
PMC9502068
DOI
10.1002/ece3.9330
PII: ECE39330
Knihovny.cz E-zdroje
- Klíčová slova
- UV radiation, drought, grassland, infrared thermography, nitrogen, precipitation, spectral reflectance,
- Publikační typ
- časopisecké články MeSH
An increase in extreme weather and changes in other conditions associated with ongoing climate change are exposing ecosystems to a very wide range of environmental drivers that interact in ways which are not sufficiently understood. Such uncertainties in how ecosystems respond to multifactorial change make it difficult to predict the impacts of environmental change on ecosystems and their functions. Since water deficit (WD) and ultraviolet radiation (UV) trigger similar protective mechanisms in plants, we tested the hypothesis that UV modulates grassland acclimation to WD, mainly through changes in the root/shoot (R/S) ratio, and thus enhances the ability of grassland to acquire water from the soil and hence maintain its productivity. We also tested the potential of spectral reflectance and thermal imaging for monitoring the impacts of WD and UV on grassland production parameters. The experimental plots were manipulated by lamellar shelters allowing precipitation to pass through or to be excluded. The lamellas were either transmitting or blocking the UV. The results show that WD resulted in a significant decrease in aboveground biomass (AB). In contrast, belowground biomass (BB), R/S ratio, and total biomass (TB) increased significantly in response to WD, especially in UV exclusion treatment. UV exposure had a significant effect on AB and BB, but only in the last year of the experiment. The differences in the effect of WD between years show that the effect of precipitation removal is largely influenced by the potential evapotranspiration (PET) in a given year and hence mainly by air temperatures, while the resulting effect on production parameters is best correlated with the water balance given by the difference between precipitation and PET. Canopy temperature and selected spectral reflectance indices showed a significant response to WD and also significant relationships with morphological (AB, R/S) and biochemical (C/N ratio) parameters. In particular, the vegetation indices NDVI and RDVI provided the best correlations of biomass changes caused by WD and thus the highest potential to remotely sense drought effects on terrestrial vegetation.
Zobrazit více v PubMed
Alexieva, V. , Sergiev, I. , Mapelli, S. , & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24, 1337–1344. 10.1046/j.1365-3040.2001.00778.x DOI
Allen, D. J. , Nogués, S. , & Baker, N. R. (1998). Ozone depletion and increased UV‐B radiation: Is there a real threat to photosynthesis. Journal of Experimental Botany, 49, 1775–1788. 10.1093/jxb/49.328.1775 DOI
Aparicio, N. , Villegas, D. , Casadesus, J. , Araus, J. L. , & Royo, C. (2000). Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronomy Journal, 92, 83–91. 10.2134/agronj2000.92183x DOI
Austin, A. T. , Yahdjian, L. , Stark, J. M. , Belnap, J. , Porporato, A. , Norton, U. , Ravetta, D. A. , & Schaeffer, S. M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221–235. 10.1007/s00442-004-1519-1 PubMed DOI
Bakker, M. R. , Augusto, L. , & Achat, D. L. (2006). Fine root distribution of trees and understory in mature stands of marine pine (Pinus pinaster) on dry and humid sites. Plant and Soil, 286, 37–51. 10.1007/s11104-006-9024-4 DOI
Bandurska, H. , Niedziela, J. , & Chadzinikolau, T. (2013). Separate and combined responses to water deficit and UV‐B radiation. Plant Science, 213, 98–105. 10.1016/j.plantsci.2013.09.003 PubMed DOI
Basu, S. , Roychoudhury, A. , Saha, P. P. , & Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51–59. 10.1007/s10725-009-9418-4 DOI
Blum, A. (2005). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4–10. 10.1111/pce.12800 PubMed DOI
Borken, W. , & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15(4), 808–824. 10.1111/j.1365-2486.2008.01681.x DOI
Cechin, I. , Corniani, N. , de Fátima Fumis, T. , & Cataneo, A. C. (2008). Ultraviolet‐B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiation and Environmental Biophysics, 47, 405–413. 10.1007/s00411-008-0167-y PubMed DOI
Dai, A. (2011). Drought under global warming: A review. WIREs Climate Change, 2(1), 45–65. 10.1002/wcc.81 DOI
Deckmyn, G. , & Impens, I. (1999). Seasonal responses of six Poaceae to differential levels of solar UV‐B radiation. Environmental and Experimental Botany, 41(2), 177–184. 10.1016/S0098-8472(98)00061-6 DOI
Easterling, D. R. , Meehl, G. A. , Parmesan, C. , Changnon, S. A. , Karl, T. R. , & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074. 10.1126/science.289.5487.2068 PubMed DOI
Elsheery, N. I. , & Cao, K.‐F. (2008). Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum, 30, 769–777. 10.1007/s11738-008-0179-x DOI
Emberger, L. (1932). Sur une formule climatique et ses applications en botanique. La Météorologie, 92(1932), 423–432.
Erofeeva, E. A. (2022). Hormesis in plants: Its common occurrence across stresses. Current Opinion in Toxicology, 30, 100333. 10.1016/j.cotox.2022.02.006 DOI
Fay, P. A. , Kaufman, D. M. , Nippert, J. B. , Carlisle, J. D. , & Harper, C. W. (2008). Changes in grassland ecosystem function due to extreme rainfall events: Implications for responses to climate change. Global Change Biology, 14, 1600–1608. 10.1111/j.1365-2486.2008.01605.x DOI
Frank, D. A. (2007). Drought effect on above‐ and below‐ground production of a grazed temperate grassland ecosystem. Oecologia, 152, 131–139. 10.1007/s00442-006-0632-8 PubMed DOI
Gitz, D. C. , & Liu‐Gitz, L. (2003). How do UV photomorphogenic responses confer water stress tolerance? Photochemistry and Photobiology, 78, 529–534. 10.1562/0031-8655(2003)0780529HDUPRC2.0.CO2 PubMed DOI
Gleeson, D. B. , Müller, C. , Banerjee, S. , Ma, W. , Siciliano, S. D. , & Murphy, D. V. (2010). Response of ammonia soxidising archaea and bacteria to changing water filled pore space. Soil Biology and Biochemistry, 42, 1888–1891. 10.1016/j.soilbio.2010.06.020 DOI
Grange, G. , Finn, J. A. , & Brophy, C. (2021). Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. Journal of Applied Ecology, 58(9), 1864–1875. 10.1111/1365-2664.13894 DOI
Grant, R. F. , Black, T. A. , Gaumont‐Guay, D. , Klujn, N. , Barrc, A. G. , Morgenstern, K. , & Nesic, Z. (2006). Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys . Agricultural and Forest Meteorology, 140(1–4), 152–170. 10.1016/j.agrformet.2006.01.012 DOI
Hatfield, J. L. , Gitelson, A. A. , Schepers, J. S. , & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, S‐117–S‐131. 10.2134/agronj2006.0370c DOI
Hofmann, R. W. , Campbell, B. D. , Bloor, S. J. , Swinny, E. E. , Markham, K. R. , Ryan, K. G. , & Fountain, D. W. (2003). Responses to UV‐B radiation in Trifolium repens L. – Physiological links to plant productivity and water availability. Plant, Cell & Environment, 26, 603–612. 10.1046/j.1365-3040.2003.00996.x DOI
Holub, P. , Fabšičová, M. , Tůma, I. , Záhora, J. , & Fiala, K. (2013). Effects of artificially varying amounts of rainfall on two semi‐natural grassland types. Journal of Vegetation Science, 24(3), 518–529. 10.1111/j.1654-1103.2012.01487.x DOI
Hoover, D. L. , Knapp, A. , & Smith, M. D. (2014). Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646–2656. 10.1890/13-2186.1 DOI
Ibañez, S. , Rosa, M. , Hilal, M. , González, J. A. , & Prado, F. E. (2008). Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV‐B radiation according to development stage in relation to photosynthetic pigments and UV‐B absorbing compounds production. Journal of Photochemistry and Photobiology. B, 90(3), 163–169. 10.1016/j.jphotobiol.2008.01.002 PubMed DOI
Ibrahim, L. , Proe, M. F. , & Cameron, A. D. (1997). Main effects of nitrogen supply and drought stress upon whole‐plant carbon allocation in poplar. Canadian Journal of Forest Research, 27(9), 1413–1419. 10.1139/x97-080 DOI
IPCC (2021). Climate change 2021: The physical science basis. In Masson‐Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., S. Berger , N. Caud , Y. Chen , L. Goldfarb , M. I. Gomis , M. Huang , K. Leitzell , E. Lonnoy , J. B. R. Matthews , T. K. Maycock , T. Waterfield , O. Yelekçi , R. Yu , & B. Zho (Eds.), Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. 10.1017/9781009157896 DOI
Jansen, M. A. K. , & Van Den Noort, R. E. (2000). Ultraviolet‐B radiation induces complex alterations in stomatal behaviour. Physiologia Plantarum, 110(2), 189–194. 10.1034/j.1399-3054.2000.110207.x DOI
Jansen, M. A. K. , Ač, A. , Klem, K. , & Urban, O. (2022). A meta‐analysis of the interactive effects of UV and drought on plants. Plant, Cell & Environment, 45(1), 41–54. 10.1111/pce.14221 PubMed DOI
Jentsch, A. , & Beierkuhnlein, C. (2008). Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience, 340, 621–628. 10.1016/j.crte.2008.07.002 DOI
Jentsch, A. , Kreyling, J. , Elmer, M. , Gellesh, E. , Glaser, B. , Grant, K. , Hein, R. , Lara, M. , Mirzae, H. , Nadler, S. E. , Nagy, L. , Otieno, D. , Pritsch, K. , Rascher, U. , Schädler, M. , Schloter, M. , Singh, B. K. , Stadler, J. , Walter, J. , … Beierkuhnlein, C. (2011). Climate extremes initiate ecosystem‐regulating functions while maintaining productivity. Journal of Ecology, 99, 689–702. 10.1111/j.1365-2745.2011.01817.x DOI
Johnson, D. , Vachon, J. , Britton, A. J. , & Helliwell, R. C. (2011). Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. The New Phytologist, 190(3), 740–749. 10.1111/j.1469-8137.2010.03613.x PubMed DOI
Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95(3), 139–149. 10.1016/S0168-1923(99)00030-1 DOI
Jones, H. G. , Serraj, R. , Loveys, B. R. , Xiong, L. , Wheaton, A. , & Price, A. H. (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology, 36(11), 978–989. 10.1071/FP09123 PubMed DOI
Klem, K. , Ač, A. , Holub, P. , Kováč, D. , Špunda, V. , Robson, T. M. , & Urban, O. (2012). Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environmental and Experimental Botany, 75, 52–64. 10.1016/j.envexpbot.2011.08.008 DOI
Klem, K. , Holub, P. , Štroch, M. , Nezval, J. , Špunda, V. , Tříska, J. , Jansen, M. A. K. , Robson, T. M. , & Urban, O. (2015). Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiology and Biochemistry, 93, 74–83. 10.1016/j.plaphy.2015.01.001 PubMed DOI
Knapp, A. K. , Fay, P. A. , Blair, J. M. , Collins, S. L. , Smith, M. D. , Carlisle, J. D. , Harper, C. W. , Danner, B. T. , Lett, M. S. , & McCarron, J. K. (2002). Rainfall variability, carbon cycling, and plant species diversity in a Mesic grassland. Science, 298, 2202–2205. 10.1126/science.1076347 PubMed DOI
Kreyling, J. , Wenigmann, M. , Beierkuhnlein, C. , & Jentsch, A. (2008). Effect of extreme weather events on plant productivity and tissue die‐back are modified by community composition. Ecosystems, 11, 752–763. 10.1007/s10021-008-9157-9 DOI
Kubert, A. , Kuester, E. , Gotz, M. , Dubbert, D. , Eiblmeier, M. , Werner, C. , Rothfuss, Y. , & Dubbert, M. (2021). Combined experimental drought and nitrogen loading: The role of species‐dependent leaf level control of carbon and water exchange in a temperate grassland. Plant Biology, 23(3), 427–437. 10.1111/plb.13230 PubMed DOI
Li, X. , Zuo, X. , Yue, P. , Zhao, X. , Hu, Y. , Guo, X. , Guo, A. , Xu, C. , & Yu, Q. (2021). Drought of early time in growing season decreases community aboveground biomass, but increases belowground biomass in a desert steppe. BMC Ecology and Evolution, 21, 106. 10.1186/s12862-021-01842-5 PubMed DOI PMC
Lu, T. , Wang, Y. , Zhu, H. , Wei, X. , & Shao, M. (2020). Drying‐wetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying‐wetting cycles. Science of Total Environment, 710, 135574. 10.1016/j.scitotenv.2019.135574 PubMed DOI
Lu, Y. W. , Duan, B. L. , Zhang, X. L. , Korpelainen, H. , Berninger, F. , & Li, C. Y. (2009). Intraspecific variation in drought response of Populus cathayana grown under ambient and enhanced UV‐B radiation. Annals of Forest Science, 66, 613. 10.1051/forest/2009049 DOI
Nogués, S. , Allen, D. J. , Morison, J. I. L. , & Baker, N. R. (1998). Ultraviolet‐B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiology, 117, 173–181. 10.1104/pp.117.1.173 PubMed DOI PMC
Peñuelas, J. , Munné‐Bosch, S. , Llusià, J. , & Filella, I. (2004). Leaf reflectance and photo‐ and antioxidant protection in field‐grown summer‐stressed Phillyrea angustifolia. Optical signals of oxidative stress? The New Phytologist, 162, 115–124. 10.1046/j.1469-8137.2004.01007.x DOI
Peñuelas, J. , Pinol, J. , Ogaya, R. , & Filella, I. (1997). Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18, 2869–2875. 10.1080/014311697217396 DOI
Piñeiro, G. , Perelman, S. , Guerschman, J. P. , & Paruelo, J. M. (2008). How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecological Modelling, 216(3–4), 316–322. 10.1016/j.ecolmodel.2008.05.006 DOI
Qaderi, M. M. , Kurepin, L. V. , & Reid, D. M. (2006). Growth and physiological responses of canola (Brassica napus) to three components of global climate changes: Temperature, carbon dioxide and drought. Physiologia Plantarum, 128, 710–721. 10.1111/j.1399-3054.2006.00804.x DOI
Qin, X. , Hong, J. , Ma, X. , & Wang, X. (2018). Global patterns in above‐ground net primary production and precipitation‐use efficiency in grasslands. Journal of Mountain Science, 15, 1682–1692. 10.1007/s11629-017-4772-6 DOI
R Core Team . (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. www.R‐project.org/
Rapantová, B. , Klem, K. , Holub, P. , Novotná, K. , & Urban, O. (2016). Photosynthetic response of mountain grassland species to drought stress is affected by UV‐induced accumulation of epidermal flavonols. Beskydy, 9, 31–40. 10.11118/beskyd201609010031 DOI
Robson, T. M. , Klem, K. , Urban, O. , & Jansen, M. A. K. (2015). Re‐interpreting plant morphological responses to UV‐B radiation. Plant, Cell & Environment, 38(5), 856–866. 10.1111/pce.12374 PubMed DOI
Rodrigues, M. L. , Pacheco, C. M. A. , & Chaves, M. M. (1995). Soil‐plant water relation, root distribution and biomass partitioning in Lupinus albus L. Journal of Experimental Botany, 48, 947–959. 10.1093/jxb/46.8.947 DOI
Rodríguez‐Calzada, T. , Qian, M. , Strid, Å. , Neugart, S. , Schreiner, M. , Torres‐Pacheco, I. , & Guevara‐González, R. G. (2019). Effect of UV‐B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 134, 94–102. 10.1016/j.plaphy.2018.06.025 PubMed DOI
Schmidt, A. M. , Ormrod, D. P. , Livingston, N. J. , & Misra, S. (2000). The interaction of ultraviolet‐B radiation and water deficit in two Arabidopsis thaliana genotypes. Annals of Botany, 85, 571–575. 10.1006/anbo.1999.1085 DOI
Singh, S. , Agrawal, S. B. , & Agrawal, M. (2015). Responses of pea plants to elevated UV‐B radiation at varying nutrient levels: N‐metabolism, carbohydrate pool, total phenolics and yield. Functional Plant Biology, 42(11), 1045–1056. 10.1071/FP15003 PubMed DOI
Sullivan, J. H. , & Teramura, A. H. (1990). Field study of the interaction between solar ultraviolet‐B radiation and drought on photosynthesis and growth in soybean. Plant Physiology, 92, 141–146. 10.1104/pp.92.1.141 PubMed DOI PMC
Tian, X. R. , & Lei, Y. B. (2007). Physiological responses of wheat seedlings to drought and UV‐B radiation. Effect of exogenous sodium nitroprusside application. Russian Journal of Plant Physiology, 54, 676–682. 10.1134/S1021443707050160 DOI
Uchytilová, T. , Krejza, J. , Veselá, B. , Holub, P. , Urban, O. , Horáček, P. , & Klem, K. (2019). Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiology and Biochemistry, 134, 103–112. 10.1016/j.plaphy.2018.07.038 PubMed DOI
Walter, J. , Nagy, L. , Hein, R. , Rascher, U. , Beierkuhnlein, C. , Willner, E. , & Jentsch, A. (2011). Do plants remember drought? Hints towards a drought‐memory in grasses. Environmental and Experimental Botany, 71, 34–40. 10.1016/j.envexpbot.2010.10.020 DOI
Wang, H. , Yan, S. , Ciais, P. , Wigneron, J. P. , Liu, L. , Li, Y. , Fu, Z. , Ma, H. , Liang, Z. , Wei, F. , Wang, Y. , & Li, S. (2022). Exploring complex water stress‐gross primary production relationships: Impact of climatic drivers, main effects, and interactive effects. Global Change Biology, 28(13), 4110–4123. 10.1111/gcb.16201 PubMed DOI
Wilcox, K. R. , Shi, Z. , Gherardi, L. A. , Lemoine, N. P. , Koerner, S. P. , Hoover, D. L. , Bork, E. , Byrne, K. M. , … Luo, Y. (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23(10), 4376–4385. 10.1111/gcb.13706 PubMed DOI
Xiang, S. R. , Doyle, A. , Holden, P. A. , & Schimel, J. P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40(9), 2281–2289. 10.1016/j.soilbio.2008.05.004 DOI
Xu, X. , Niu, S. , Sherry, R. A. , Zhou, X. , & Zhou, J. (2012). Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long‐term warming and clipping in a tallgrass prairie. Global Change Biology, 18, 1648–1656. 10.1111/j.1365-2486.2012.02651.x DOI
Yahdjian, L. , & Sala, O. E. (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952–962. 10.1890/0012-9658(2006)87[952,VSCPPR]2.0.CO;2 PubMed DOI
Yang, J. , Li, C. , Kong, D. , Guo, F. , & Wei, H. (2020). Light‐mediated signaling and metabolic changes coordinate stomatal opening and closure. Frontiers in Plant Science, 11, 601478. 10.3389/fpls.2020.601478 PubMed DOI PMC
Yuan, W. , Zheng, Y. , Piao, S. , Ciais, P. , Lombardozzi, D. , Wang, Y. , Ryu, Y. , Chen, G. , Dong, W. , Hu, Z. , Jain, A. K. , Jiang, C. , Kato, E. , Li, S. , Lienert, S. , Liu, S. , Nabel, J. E. M. S. , Qin, Z. , Quine, T. , … Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. 10.1126/sciadv.aax1396 PubMed DOI PMC
Zhang, C. , Chen, M. , Liu, G. , Huang, G. , Wang, Y. , Yang, S. , & Xu, X. (2020). Enhanced UV‐B radiation aggravates negative effects more in females than in males of Morus alba saplings under grought stress. Environmental and Experimental Botany, 169, 103903. 10.1016/j.envexpbot.2019.103903 DOI
Zhang, F. , Quan, Q. , Song, B. , Sun, J. , Chen, Y. , Zhou, Q. , & Niu, S. (2017). Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow. Scientific Reports, 7, 15193. 10.1038/s41598-017-15580-6 PubMed DOI PMC