Growth light substantially affects both primary and secondary metabolic processes in Catharanthus roseus plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649484
PubMed Central
PMC11586840
DOI
10.32615/ps.2023.037
PII: PS61451
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation processes, flower colour, growth light, metabolomics, periwinkle, vinca alkaloids,
- Publikační typ
- časopisecké články MeSH
Common periwinkle (Catharanthus roseus L.) is an important medicinal plant used by the pharmaceutical industry. The present work aimed to determine the effect of low light intensity on the primary and secondary metabolic processes, using various photosynthesis and targeted and untargeted analytical techniques. Growth light had only limited effects on the photosynthetic electron transport processes, although membrane stability seemed slightly higher in plants growing under higher light conditions. The reduced growth light caused a reduction in certain primary metabolites, including amino acids and sugars, and it also reduced the contents of most of the phenolic compounds investigated in the present experiments. Interestingly, the differences in the growth light caused a much less pronounced difference in the alkaloid contents than that found in the flavonoid contents. However, besides the growth light, genotypic differences, most evident in flower colour, also affected some metabolic processes, including primary and secondary processes.
Center for Research and Technology Transfer 10072 Hanoi Vietnam
Department of Horticultural Science Faculty of Agriculture University of Maragheh Maragheh Iran
Zobrazit více v PubMed
Akhgari A., Laakso I., Seppänen-Laakso T. et al.: Analysis of indole alkaloids from Rhazya stricta hairy roots by ultra-performance liquid chromatography-mass spectrometry. – Molecules 20: 22621-22634, 2015. 10.3390/molecules201219873 PubMed DOI PMC
Asano M., Harada K., Yoshikawa T. et al.: Synthesis of anti-tumor dimeric indole alkaloids in Catharanthus roseus was promoted by irradiation with near-ultraviolet light at low temperature. – Biosci. Biotech. Bioch. 74: 386-389, 2010. 10.1271/bbb.90545 PubMed DOI
Badmus U.O., Crestani G., Cunningham N. et al.: UV radiation induces specific changes in the carotenoid profile of Arabidopsis thaliana. – Biomolecules 12: 1879, 2022. 10.3390/biom12121879 PubMed DOI PMC
Bassi R., Dall'Osto L.: Dissipation of light energy absorbed in excess: the molecular mechanisms. – Annu. Rev. Plant Biol. 72: 47-76, 2021. 10.1146/annurev-arplant-071720-015522 PubMed DOI
Bhutkar M.A., Bhise S.B.: Comparative studies on antioxidant properties of Catharanthus rosea and Catharanthus alba. – Int. J. Pharmtech. Res. 3: 1551-1556, 2011. https://sphinxsai.com/Vol.3No.3/pharm/pdf/PT=50(1551-1556)JS11.pdf
Boccia M., Grzech D., Lopes A.A. et al.: Directed biosynthesis of new to nature alkaloids in a heterologous Nicotiana benthamiana expression host. – Front. Plant Sci. 13: 919443, 2022. 10.3389/fpls.2022.919443 PubMed DOI PMC
Croce R.: Beyond ‘seeing is believing’: the antenna size of the photosystems in vivo. – New Phytol. 228: 1214-1218, 2020. 10.1111/nph.16758 PubMed DOI PMC
Darkó É., Khalil R., Elsayed N. et al.: Factors playing role in heat acclimation processes in barley and oat plants. – Photosynthetica 57: 1035-1043, 2019. 10.32615/ps.2019.122 DOI
De Luca V., Balsevich J., Tyler R.T. et al.: Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. – J. Plant Physiol. 125: 147-156, 1986. 10.1016/S0176-1617(86)80252-8 DOI
Eng J.G.M., Shahsavarani M., Smith D.P. et al.: A Catharanthus roseus Fe(II)/α-ketoglutarate-dependent dioxygenase catalyzes a redox-neutral reaction responsible for vindolinine biosynthesis. – Nat. Commun. 13: 3335, 2022. 10.1038/s41467-022-31100-1 PubMed DOI PMC
Galili G., Avin-Wittenberg T., Angelovici R., Fernie A.R.: The role of photosynthesis and amino acid metabolism in the energy status during seed development. – Front. Plant Sci. 5: 447, 2014. 10.3389/fpls.2014.00447 PubMed DOI PMC
Ghasemzadeh A., Jaafar H.Z.E., Rahmat A. et al.: Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). – Int. J. Mol. Sci. 11: 3885-3897, 2010. 10.3390/ijms11103885 PubMed DOI PMC
Gondor O.K., Tajti J., Hamow K.Á. et al.: Polyamine metabolism under different light regimes in wheat. – Int. J. Mol. Sci. 22: 11717, 2021. 10.3390/ijms222111717 PubMed DOI PMC
Havaux M., Tardy F., Ravenel J. et al.: Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. – Plant Cell Environ. 19: 1359-1368, 1996. 10.1111/j.1365-3040.1996.tb00014.x DOI
Janda T., Prerostová S., Vanková R., Darkó É.: Crosstalk between light- and temperature-mediated processes under cold and heat stress conditions in plants. – Int. J. Mol. Sci. 22: 8602, 2021a. 10.3390/ijms22168602 PubMed DOI PMC
Janda T., Tajti J., Hamow K.Á. et al.: Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. – Physiol. Plantarum 171: 217-231, 2021b. 10.1111/ppl.13207 PubMed DOI
Klughammer C., Schreiber U.: Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. – PAM Application Notes 1: 27-35, 2008. https://www.walz.com/files/downloads/pan/PAN078007.pdf
Krieger-Liszkay A.: Singlet oxygen production in photosynthesis. – J. Exp. Bot. 56: 337-346, 2005. 10.1093/jxb/erh237 PubMed DOI
Levin G., Schuster G.: LHC-like proteins: the guardians of photosynthesis. – Int. J. Mol. Sci. 24: 2503, 2023. 10.3390/ijms24032503 PubMed DOI PMC
Levin G., Yasmin M., Liveanu V. et al.: A desert Chlorella sp. that thrives at extreme high-light intensities using a unique photoinhibition protection mechanism. – Plant J. 115: 510-528, 2023. 10.1111/tpj.16241 PubMed DOI
Li L., Aro E.-M., Millar A.H.: Mechanisms of photodamage and protein turnover in photoinhibition. – Trends Plant Sci. 23: 667-676, 2018. 10.1016/j.tplants.2018.05.004 PubMed DOI
Liu Y., Zhao D.-M., Zu Y.-G. et al.: Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings. – Bot. Stud. 52: 191-196, 2011. https://ejournal.sinica.edu.tw/bbas/content/2011/2/Bot522-08.pdf
Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. – Methods 25: 402-408, 2001. 10.1006/meth.2001.1262 PubMed DOI
Loris E.A., Panjikar S., Ruppert M. et al.: Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. – Chem. Biol. 14: 979-985, 2007. 10.1016/j.chembiol.2007.08.009 PubMed DOI
Nosalewicz A., Okoń K., Skorupka M.: Non-photochemical quenching under drought and fluctuating light. – Int. J. Mol. Sci. 23: 5182, 2022. 10.3390/ijms23095182 PubMed DOI PMC
Okazawa T., Nishijima T.: Effect of low light intensity on longevity of flowering on bedding plants targeted for indoor use. – Jpn. Agr. Res. Q. 51: 279-286, 2017. 10.6090/jarq.51.279 DOI
Pál M., Hamow K.Á., Rahman A. et al.: Light spectral composition modifies polyamine metabolism in young wheat plants. – Int. J. Mol. Sci. 23: 8394, 2022. 10.3390/ijms23158394 PubMed DOI PMC
Pál M., Ivanovska B., Oláh T. et al.: Role of polyamines in plant growth regulation of Rht wheat mutants. – Plant Physiol. Biochem. 137: 189-202, 2019. 10.1016/j.plaphy.2019.02.013 PubMed DOI
Pan J., Guo B.: Effects of light intensity on the growth, photosynthetic characteristics, and flavonoid content of Epimedium pseudowushanense B.L.Guo. – Molecules 21: 1475, 2016. 10.3390/molecules21111475 PubMed DOI PMC
Pan Q., Wang C., Xiong Z. et al.: CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus. – Front. Plant Sci. 10: 931, 2019. 10.3389/fpls.2019.00931 PubMed DOI PMC
Rady M.R., Gierczik K., Ibrahem M.M. et al.: Anticancer compounds production in Catharanthus roseus by methyl jasmonate and UV-B elicitation. – S. Afr. J. Bot. 142: 34-41, 2021. 10.1016/j.sajb.2021.05.024 DOI
Rahman A., Tajti J., Majláth I. et al.: Influence of a phyA mutation on polyamine metabolism in Arabidopsis depends on light spectral conditions. – Plants-Basel 12: 1689, 2023. 10.3390/plants12081689 PubMed DOI PMC
Ruban A., Wilson S.: The mechanism of non-photochemical quenching in plants: localization and driving forces. – Plant Cell Physiol. 62: 1063-1072, 2021. 10.1093/pcp/pcaa155 PubMed DOI
Sander G.W.: Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction. PhD Thesis. Pp. 285. Iowa State University, Ames: 2009. https://lib.dr.iastate.edu/etd/10820
Sharma A., Verma P., Mathur A., Mathur A.K.: Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. – Protoplasma 255: 1281-1294, 2018. 10.1007/s00709-018-1233-1 PubMed DOI
Sharma N., Nagar S., Thakur M. et al.: Photosystems under high light stress: throwing light on mechanism and adaptation. – Photosynthetica 61: 250-263, 2023. 10.32615/ps.2023.021 DOI
Stöckigt J., Barleben L., Panjikar S., Loris E.A.: 3D-structure and function of strictosidine synthase – the key enzyme of monoterpenoid indole alkaloid biosynthesis. – Plant Physiol. Biochem. 46: 340-355, 2008. 10.1016/j.plaphy.2007.12.011 PubMed DOI
Sutulienė R., Laužikė K., Pukas T., Samuolienė G.: Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. – Plants-Basel 11: 1709, 2022. 10.3390/plants11131709 PubMed DOI PMC
Tang W., Guo H., Baskin C.C. et al.: Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. – Plants-Basel 11: 1688, 2022. 10.3390/plants11131688 PubMed DOI PMC
Thoma F., Somborn-Schulz A., Schlehuber D. et al.: Effects of light on secondary metabolites in selected leafy greens: a review. – Front. Plant Sci. 11: 497, 2020. 10.3389/fpls.2020.00497 PubMed DOI PMC
Utasi L., Kovács V., Gulyás Z. et al.: Threshold or not: Spectral composition and light-intensity dependence of growth and metabolism in tomato seedlings. – Sci. Hortic.-Amsterdam 313: 111946, 2023. 10.1016/j.scienta.2023.111946 DOI
van der Heijden R., Jacobs D.I., Snoeijer W. et al.: The Catharanthus alkaloids: pharmacognosy and biotechnology. – Curr. Med. Chem. 11: 607-628, 2004. 10.2174/0929867043455846 PubMed DOI
Vázquez-Flota F.A., De Luca V.: Jasmonate modulates development- and light-regulated alkaloid biosynthesis in Catharanthus roseus. – Phytochemistry 49: 395-402, 1998. 10.1016/s0031-9422(98)00176-9 PubMed DOI
Vázquez-Flota F.A., St-Pierre B., De Luca V.: Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. – Phytochemistry 55: 531-536, 2000. 10.1016/s0031-9422(00)00221-1 PubMed DOI
Vecchi V., Barera S., Bassi R., Dall'Osto L.: Potential and challenges of improving photosynthesis in algae. – Plants-Basel 9: 67, 2020. 10.3390/plants9010067 PubMed DOI PMC
Vredenberg W.J.: On the quantitative relation between dark kinetics of NPQ-induced changes in variable fluorescence and the activation state of the CF0·CF1·ATPase in leaves. – Photosynthetica 56: 139-149, 2018. 10.1007/s11099-018-0772-1 DOI
Vrhovsek U., Masuero D., Gasperotti M. et al.: A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. – J. Agr. Food Chem. 60: 8831-8840, 2012. 10.1021/jf2051569 PubMed DOI
Wong S.L., Huang M.Y., Chen C.W., Weng J.H.: Light induction of nonphotochemical quenching, CO2 fixation, and photoinhibition in woody and fern species adapted to different light regimes. – Photosynthetica 52: 272-280, 2014. 10.1007/s11099-014-0023-z DOI
Xu M.Y., Wu K.X., Liu Y. et al.: Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. – Photosynthetica 58: 881-889, 2020. 10.32615/ps.2020.045 DOI