Ecometabolomics for a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CGL2016-79835-P
Ministerio de Economía, Industria y Competitividad, Gobierno de España
ERC-SyG-2013-610028 IMBALANCE-P,
European Research Consortium for Informatics and Mathematics
PubMed
32527044
PubMed Central
PMC7345909
DOI
10.3390/metabo10060239
PII: metabo10060239
Knihovny.cz E-zdroje
- Klíčová slova
- flavonoids, free amino acids, gas chromatography-mass spectrometry (GC-MS), isoflavonoids, liquid chromatography-mass spectrometry (LC-MS), phenolics, proton nuclear magnetic resonance spectrometry (1H-NMR), shikimate acid, soluble sugars, terpenes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The number of ecometabolomic studies, which use metabolomic analyses to disentangle organisms' metabolic responses and acclimation to a changing environment, has grown exponentially in recent years. Here, we review the results and conclusions of ecometabolomic studies on the impacts of four main drivers of global change (increasing frequencies of drought episodes, heat stress, increasing atmospheric carbon dioxide (CO2) concentrations and increasing nitrogen (N) loads) on plant metabolism. Ecometabolomic studies of drought effects confirmed findings of previous target studies, in which most changes in metabolism are characterized by increased concentrations of soluble sugars and carbohydrate derivatives and frequently also by elevated concentrations of free amino acids. Secondary metabolites, especially flavonoids and terpenes, also commonly exhibited increased concentrations when drought intensified. Under heat and increasing N loads, soluble amino acids derived from glutamate and glutamine were the most responsive metabolites. Foliar metabolic responses to elevated atmospheric CO2 concentrations were dominated by greater production of monosaccharides and associated synthesis of secondary metabolites, such as terpenes, rather than secondary metabolites synthesized along longer sugar pathways involving N-rich precursor molecules, such as those formed from cyclic amino acids and along the shikimate pathway. We suggest that breeding for crop genotypes tolerant to drought and heat stress should be based on their capacity to increase the concentrations of C-rich compounds more than the concentrations of smaller N-rich molecules, such as amino acids. This could facilitate rapid and efficient stress response by reducing protein catabolism without compromising enzymatic capacity or increasing the requirement for re-transcription and de novo biosynthesis of proteins.
Centre de Recerca Ecològica i Aplicacions Forestals Institute 08193 Cerdanyola del vallès Spain
Department of Biology University of Antwerp 2610 Wilrijk Belgium
Spain National Research Council Global Ecology Unit CREAF CSIC UAB 08193 Bellaterra Spain
Zobrazit více v PubMed
Penuelas J., Sardans J. Ecological metabolomics. Chem. Ecol. 2009;25:305–309. doi: 10.1080/02757540903062517. DOI
Kucina V., Ekstron C.T., Anderson S.B., Nielsen J.K., Olsen C.E., Bak S. Identification of defense compounds in Barberea vulgaris against the Herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol. 2009;151:1977–1990. doi: 10.1104/pp.109.136952. PubMed DOI PMC
Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics as a proxy for organisms, populations, and species lifestyle: Current development and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI
Rivas-Ubach A., Pérez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Penuelas J. Ecometabolomics: Optimized NMR-based method. Methods Ecol. Evol. 2013;4:464–473. doi: 10.1111/2041-210X.12028. DOI
Rivas-Ubach A., Peñuelas J., Hódar J.A., Oravec M., Tolic L.P., Urban O., Sardans J. We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris. Int. J. Mol. Sci. 2018;20:59. doi: 10.3390/ijms20010059. PubMed DOI PMC
Allevato D.M., Kiyota E., Mazzafera P., Nixon K.C. Ecometabolomic Analysis of Wild Populations of Pilocarpus pennatifolius (Rutaceae) Using Unimodal Analyses. Front. Plant Sci. 2019;10:258. doi: 10.3389/fpls.2019.00258. PubMed DOI PMC
Ozawa R., Shiojiri K., Sabelis M.W., Takabayashi J. Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs. Èntomol. Exp. Appl. 2008;129:189–199. doi: 10.1111/j.1570-7458.2008.00767.x. DOI
Llusià J., Penuelas J., Sardans J., Owen S.M. Niinemets, Ülo Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: Aliens emit more than natives. Glob. Ecol. Biogeogr. 2010;19:863–874. doi: 10.1111/j.1466-8238.2010.00557.x. DOI
Gullberg J., Jonsson P., Nordstrom A., Sjöström M., Moritz T. Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 2004;331:283–295. doi: 10.1016/j.ab.2004.04.037. PubMed DOI
Allwood J.W., Goodacre R. An introduction to liquid chromatographya mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 2010;21:33–47. doi: 10.1002/pca.1187. PubMed DOI
Jennings K.R. The changing impact of the collision-induced decomposition of ions on mass spectrometry. Int. J. Mass Spectrom. 2000;200:479–493. doi: 10.1016/S1387-3806(00)00325-0. DOI
Emwas A.-H., Roy R., McKay R., Tenori L., Saccenti E., Gowda G.A.N., Raftery D., AlAhmari F., Jaremko Ł., Jaremko M., et al. NMR Spectroscopy for Metabolomics Research. Metabolites. 2019;9:123. doi: 10.3390/metabo9070123. PubMed DOI PMC
Sousa Silva M., Cordeiro C., Roessner U., Figuereido A. Editorial: Metabolomics in crop research-current and emerging methodologies. Front. Plant Sci. 2019;10:1013. doi: 10.3389/fpls.2019.01013. PubMed DOI PMC
Lewis I.A., Schommer S.C., Hodis B., Robb K.A., Tonelli M., Westler W.M., Sussman M.R., Markley J.L. Method for Determining Molar Concentrations of Metabolites in Complex Solutions from Two-Dimensional1H−13C NMR Spectra. Anal. Chem. 2007;79:9385–9390. doi: 10.1021/ac071583z. PubMed DOI PMC
Viant M.R., Bearden D.W., Bundy J.G., Burton I.W., Collette T.W., Ekman E.R., Ezernieks V., Karakach T., Lin C.-Y., Rochfort S., et al. International NMR-Based Environmental Metabolomics Intercomparison Exercise. Environ. Sci. Technol. 2009;43:219–225. doi: 10.1021/es802198z. PubMed DOI
Khakimov B., Bak S., Engelsen S.B. High-throughput cereal metabolomics: Current analytical technologies, challenges, and perspectives. J. Cereal Sci. 2014;59:393–418. doi: 10.1016/j.jcs.2013.10.002. DOI
Zhuang J., Zhang J., Hou X., Wang F., Xiong F. Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops. Crit. Rev. Plant Sci. 2014;33:225–237. doi: 10.1080/07352689.2014.870420. DOI
Aliferis K.A., Chrysayi-Takousbalides M. Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics. 2011;7:35–53. doi: 10.1007/s11306-010-0231-x. DOI
Kumar M., Kuzhiumparambil U., Pernice M., Jiang Z., Ralph P. Metabolomics: An emerging frontier of systems biology in marine macrophytes. Algal Res. 2016;16:76–92. doi: 10.1016/j.algal.2016.02.033. DOI
Tugizimana F., Mhlongo M.I., Piater L.A., Dubery I.A. Metabolomics in Plant Priming Research: The Way Forward? Int. J. Mol. Sci. 2018;19:1759. doi: 10.3390/ijms19061759. PubMed DOI PMC
Kumari A., Das P., Parida A.K., Agarwal P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015;6:537. doi: 10.3389/fpls.2015.00537. PubMed DOI PMC
Gandhi S., Khushu S., Tripathi R.P. Current metabolomic methodologies and their application to thermal stress. Curr. Metabol. 2013;1:335–352. doi: 10.2174/2213235X01666131212230658. DOI
Jones O.A., Dias D.A., Callahan D., Kouremenos K.A., Beale D.J., Roessner U. The use of metabolomics in the study of metals in biological systems. Metallomics. 2015;7:29–38. doi: 10.1039/C4MT00123K. PubMed DOI
Paudel J.R., Amirizian A., Krosse S., Giddings J., Ismail S.A.A., Xia J., Gloer J.B., van Dam N.M., Bede J.C. Effect of atmopspheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants. BMC Plant Biol. 2016;16:68. doi: 10.1186/s12870-016-0752-1. PubMed DOI PMC
Hu Y., Peuke A.D., Zhao X., Yan J., Li C. Effects of simulated atmospheric nitrogen deposition on foliar chemistry and physiology of hybrid poplar seedlings. Plant Physiol. Biochem. 2019;143:94–108. doi: 10.1016/j.plaphy.2019.08.023. PubMed DOI
De Souza A.P., Cocuron J.-C., Garcia A.C., Alonso A.P., Buckeridge M.S. Changes in whole-plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought. Plant Physiol. 2015;169:1755–1765. doi: 10.1104/pp.15.01054. PubMed DOI PMC
Austen N., Walker H.J., Lake J.A., Phoenix G.K., Cameron D.D. The Regulation of Plant Secondary Metabolism in Response to Abiotic Stress: Interactions Between Heat Shock and Elevated CO2. Front. Plant Sci. 2019;10:1463. doi: 10.3389/fpls.2019.01463. PubMed DOI PMC
Feng S., Fu Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss. 2013;13:10081–10094. doi: 10.5194/acp-13-10081-2013. DOI
Huang J., Yu H., Guan X., Wang G., Guo R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015;6:166–171. doi: 10.1038/nclimate2837. DOI
Rivas-Ubach A., Sardans J., Pérez-Trujillo M., Estiarte M., Peñuelas J. Strong relationship between elemental sotichiometry and metabolome in plants. Proc. Nat. Acad. Sci. USA. 2012;109:4181–4186. doi: 10.1073/pnas.1116092109. PubMed DOI PMC
Rivas-Ubach A., Sardans J., Gargallo-Garriga A., Parella T., Perez-Trujillo M., Estiarte M., Penuelas J. Drought stress enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;27:874–885. doi: 10.1111/nph.12687. PubMed DOI
Ullah N., Yüce M., Gökçe Z.N.O., Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genom. 2017;18:969. doi: 10.1186/s12864-017-4321-2. PubMed DOI PMC
Shahbazy M., Moradi P., Ertaylan G., Zahraei A., Kompany-Zareh M. FTICR mass spectrometry-based multivariate analysis to explore distinctive metabolites and metabolic pathways: A comprehensive bioanalytical strategy toward time-course metabolic profiling of Thymus vulgaris plants responding to drought stress. Plant Sci. 2020;290:110257. doi: 10.1016/j.plantsci.2019.110257. PubMed DOI
Bianco R.L., Rieger M., Sung S.-J.S. Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 2000;108:71–78. doi: 10.1034/j.1399-3054.2000.108001071.x. DOI
Chaves M.M., Marôco J., Pereira J., Chaves M.M. Understanding plant responses to drought from genes to the whole plant. Funct. Plant Boil. 2003;30:239–264. doi: 10.1071/FP02076. PubMed DOI
Shen B., Jensen R.G., Bohnert H.J. Mannitol Protects against Oxidation by Hydroxyl Radicals. Plant Physiol. 1997;115:527–532. doi: 10.1104/pp.115.2.527. PubMed DOI PMC
Llanes A., Andrade A., Alemano S., Luna V. Metabolomic Approach to Understand Plant Adaptations to Water and Salt Stress. Plant Metab. Regul. Under Env. Stress. 2018:133–144. doi: 10.1016/b978-0-12-812689-9.00006-6. DOI
Keunen E., Peshev D., Vangronsveld J., Ende W.V.D., Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. doi: 10.1111/pce.12061. PubMed DOI
Alvarez S., Marsh E.L., Schroeder S.G., Schachtman D. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 2008;31:325–340. doi: 10.1111/j.1365-3040.2007.01770.x. PubMed DOI
Barchet G.L., Dauwe R., Guy R.D., Schroeder W., Soolanayakanahally R.Y., Campbell M.M., Mansfield S.D. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiol. 2013;34:1203–1219. doi: 10.1093/treephys/tpt080. PubMed DOI
Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Penuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC
Nakabayashi R., Mori T., Saito K. Alteration of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal. Behav. 2014;9:e29518. doi: 10.4161/psb.29518. PubMed DOI PMC
Pavli O.I., Vlachos C.E., Kalloniati C., Flemetakis E., Skaracis G.N. Metabolite profiling reveals the effect of drought on sorghum (Sorghum bicolor L. Moench) metabolism. Plant Omics J. 2013;6:371–376.
Hsiao T.C. Plant responses to water stress. Ann. Rev. Plant Physiol. 1973;24:519–570. doi: 10.1146/annurev.pp.24.060173.002511. DOI
Fathi A., Tari D.B. Effect of Drought Stress, and its Mechanism in Plants. Int. J. Life Sci. 2016;10:1–6. doi: 10.3126/ijls.v10i1.14509. DOI
Ahanger M.A., Gul F., Ahmad P., Akram N.A. Plant Metabolites and Regulation Under Environmental Stress. Elsevier BV; Amsterdam, The Netherlands: 2018. Environmental Stresses and Metabolomics—Deciphering the Role of Stress Responsive Metabolites; pp. 53–67.
Thompson J., Stewart C.R., Morris C.J. Changes in Amino Acid Content of Excised Leaves During Incubation I. The Effect of Water Content of Leaves and Atmospheric Oxygen Level. Plant Physiol. 1966;41:1578–1584. doi: 10.1104/pp.41.10.1578. PubMed DOI PMC
Zhang H., Murzello C., Sun Y., Kim M.-S., Xie X., Jeter R.M., Zak J.C., Dowd S.E., Pare P.W. Choline and Osmotic-Stress Tolerance Induced in Arabidopsis by the Soil Microbe Bacillus subtilis (GB03) Mol. Plant Microbe Interact. 2010;23:1097–1104. doi: 10.1094/MPMI-23-8-1097. PubMed DOI
Gou W., Tian L., Ruan Z., Zheng P., Chen F., Zhang J., Cui Z., Li Z., Gao M., Shi W., et al. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak. J. Bot. 2015;47:581–586.
Hayat S., Hayat Q., Alyemeni M., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC
Chen T.H.H., Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Boil. 2002;5:250–257. doi: 10.1016/S1369-5266(02)00255-8. PubMed DOI
Hamilton E.W., Heckathorn S.A. Mitochondrial Adaptations to NaCl. Complex I Is Protected by Antioxidants and Small Heat Shock Proteins, Whereas Complex II Is Protected by Proline and Betaine1. Plant Physiol. 2001;126:1266–1274. doi: 10.1104/pp.126.3.1266. PubMed DOI PMC
Perlikowski D., Czyżniejewski M., Marczak L., Augustyniak A., Kosmala A. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration. Front. Plant Sci. 2016;7:17. doi: 10.3389/fpls.2016.01063. PubMed DOI PMC
Michaletti A., Naghavi M.R., Toorchi M., Zolla L., Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep. 2018;8:5710. doi: 10.1038/s41598-018-24012-y. PubMed DOI PMC
Mekonnen D.W., Flügge U.-I., Ludewig F. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci. 2016;245:25–34. doi: 10.1016/j.plantsci.2016.01.005. PubMed DOI
Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 2019;10:1026. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC
Parida A.K., Panda A., Rangani J. Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants. Plant Metab. Regul. Under Env. Stress. 2018:89–131. doi: 10.1016/b978-0-12-812689-9.00005-4. DOI
Hare P., Cress W., van Staden J. Proline synthesis and degradation: A model system for elucidating stress-related signal transduction. J. Exp. Bot. 1999;50:413–434. doi: 10.1093/jxb/50.333.413. DOI
Zinta G., AbcElgawad H., Peshev D., Weedon J.T., van den Ende W., Nijs I., Janssens I.A., Beemster G.T.S., Asard H. Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospherioc CO2. J. Exp. Bot. 2018;69:2159–2170. doi: 10.1093/jxb/ery055. PubMed DOI PMC
Yang L., Wen K.-S., Ruan X., Zhao Y.-X., Wei F., Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules. 2018;23:762. doi: 10.3390/molecules23040762. PubMed DOI PMC
Mundim F.M., Pringle E.G. Whole-Plant Metabolic Allocation Under Water Stress. Front. Plant Sci. 2018;9:852. doi: 10.3389/fpls.2018.00852. PubMed DOI PMC
Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:1–12. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC
Shan C., Liang Z. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 2010;178:130–139. doi: 10.1016/j.plantsci.2009.11.002. DOI
Mahouachi J., Arbona V., Gómez-Cadenas A. Hormonal changes in papaya seedlings subjected to prograssive water stress in this halophyte. Plant Growth Regul. 2007;53:43–51. doi: 10.1007/s10725-007-9202-2. DOI
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013:1–16. doi: 10.1155/2013/162750. PubMed DOI PMC
Intergovernmental Panel on Climate Change (IPCC) Climate Change 2007: Synthesis Report. World Meteorological Organization; Geneva, Switzerland: 2007. Fourth Assessment Report.
Nagarajan S., Jagadish S.V.K., Prasad A.H., Thomar A., Anand A., Pal M., Agarwal P. Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agric. Ecosyst. Environ. 2010;138:274–281. doi: 10.1016/j.agee.2010.05.012. DOI
Scafaro A.P., Haynes P.A., Atwell B.J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J. Exp. Bot. 2010;61:191–202. doi: 10.1093/jxb/erp294. PubMed DOI PMC
Xu S., Li J., Zhang X., Wei H., Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006;56:274–285. doi: 10.1016/j.envexpbot.2005.03.002. DOI
Foyer C.H., Noctor G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2009;11:861–905. doi: 10.1089/ars.2008.2177. PubMed DOI
Suzuki N., Mittler R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 2006;126:45–51. doi: 10.1111/j.0031-9317.2005.00582.x. DOI
Potters G., Pasternak T.P., Guisez Y., Palme K.J., Jansen M.A.K. Stress-induced mosphogenic responses: Growing out of trouble? Trends Plant Sci. 2007;12:98–105. doi: 10.1016/j.tplants.2007.01.004. PubMed DOI
Wedow J.M., Yendrek C.R., Mello T.R., Creste S., Martinez C.A., Ainsworth E.A. Metabolite, and transcript profiling of Guinea grass (Panicum maximum Jacq) response to elevated [CO2] and temperature. Metabolomics. 2019;15:51. doi: 10.1007/s11306-019-1511-8. PubMed DOI PMC
Qi X., Xu W., Zhang J., Guo R., Zhao M., Hu L., Wang H., Dong H., Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma. 2016;254:1017–1030. doi: 10.1007/s00709-016-1010-y. PubMed DOI
Carrow R.N. Summer Decline of Bentgrass Greens. Golf Course Manager; Louisville, KY, USA: 1996. pp. 51–56.
Huang B., Gao H. Growth and Carbohydrate Metabolism of Creeping Bentgrass Cultivars in Response to Increasing Temperatures. Crop. Sci. 2000;40:1115–1120. doi: 10.2135/cropsci2000.4041115x. DOI
Youngner V.B., Nudge F.J. Soil Temperature, Air Temperature, and Defoliation Effects on Growth and Nonstructural Carbohydrates of Kentucky Bluegrass1. Agron. J. 1907;68:257–260. doi: 10.2134/agronj1976.00021962006800020012x. DOI
Song S.Q., Lei Y.B., Tian X.R. Proline Metabolism and Cross-Tolerance to Salinity and Heat Stress in Germinating Wheat Seeds. Russ. J. Plant Physiol. 2005;52:793–800. doi: 10.1007/s11183-005-0117-3. DOI
Yue Y., Jiang H., Du J., Shi L., Bin Q., Yang X., Wang L. Variations in physiological response and expression profiles of proline metabolism-related genes and heat shock transcription factor genes in petunia subjected to heat stress. Sci. Hortic. 2019;258:108811. doi: 10.1016/j.scienta.2019.108811. DOI
Kishor P., Hong Z., Miao G.H., Hu C., Verma D. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995;108:1387–1394. doi: 10.1104/pp.108.4.1387. PubMed DOI PMC
Solomon A., Beer S., Waisel Y., Jones G.P., Paleg L.G. Effects of NaCl on the carboxylating activity of rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol. Plant. 1994;90:198–204. doi: 10.1111/j.1399-3054.1994.tb02211.x. DOI
Prasad K., Saradhi P.P. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemisty. 1995;39:45–47. doi: 10.1016/0031-9422(94)00919-k. DOI
Kumar D., Chattopadhyay S. Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. J. Exp. Bot. 2018;69:3729–3743. doi: 10.1093/jxb/ery166. PubMed DOI PMC
Kocsy G., Szalai G., Galiba G. Induction of Glutathione Synthesis and Glutathione Reductase Activity by Abiotic Stresses in Maize and Wheat. Sci. World J. 2002;2:1699–1705. doi: 10.1100/tsw.2002.812. PubMed DOI PMC
Locy R.D., Wu S.-J., Bisnette J., Barger T.W., McNabb D., Zik M., Fromm H., Singh N.K., Cherry J.H. Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2000. The Regulation of GABA Accumulation by Heat Stress in Arabidopsis; pp. 39–52.
Rao S.R., Ravishankar C. Enhanced catharanthine and vidoline production in suspension cultures of Catheranthus roseus by ultraviolet-B light. J. Mol. Signal. 2008;3:9–14. PubMed PMC
Yu K.-W., Murthy H.N., Hahn E.-J., Paek K.Y. Ginsenoside production by hairy root cultures of Panax ginseng: Influence of temperature and light quality. Biochem. Eng. J. 2005;23:53–56. doi: 10.1016/j.bej.2004.07.001. DOI
Chan L.K., Koay S.S., Boey P.L., Bhatt A. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Boil. Res. 2010;43:127–135. doi: 10.4067/s0716-97602010000100014. PubMed DOI
Zobayed S.M.A., Afreen F., Kozai T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem. 2005;43:977–984. doi: 10.1016/j.plaphy.2005.07.013. PubMed DOI
Singsaas E.L. Terpenes and thermotolerance of photosynthesis. New Phytol. 2000;146:1–4.
Lichtenthaler H.K., Schwender J., Disch A., Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997;400:271–274. doi: 10.1016/s0014-5793(96)01404-4. PubMed DOI
Henry L.K., Gutensohn M., Thomas S.T., Noel J.P., Duradeva N. Orthologs of archael isopentenyl phosphate kinase regulate terpenoid production in plants. Proc. Nat. Acad. Sci. USA. 2015;112:10050–10055. PubMed PMC
Sairam R., Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 2014;86:407–421.
Peters G.P., Andrew R.M., Canadell J.G., Friedlingstein P., Jackson R.B., Korsbakken J.I., Le Quéré C., Peregon A. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change. 2019;10:3–6. doi: 10.1038/s41558-019-0659-6. DOI
Duval B.D., Blankinship J.C., Dijkstra P., Hungate B.A. Retracted Asticle: CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: A meta-analysis. Plant Ecol. 2011;213:505–521. doi: 10.1007/s11258-011-9998-8. DOI
Jin J., Tang C., Sale P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Ann. Bot. 2015;116:987–999. doi: 10.1093/aob/mcv088. PubMed DOI PMC
Hatfield J.L., Dold C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019;10:103. doi: 10.3389/fpls.2019.00103. PubMed DOI PMC
Li X., Jal-Ahammed G., Li Z.X., Wei J.P., Shen C., Yan P., Zhang P.P., Han W.Y. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camelia sinensis L. Sci. Rep. 2016;7:7937. PubMed PMC
Wenzel S., Cox P., Eyring V., Friedlingstein P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature. 2016;538:499–501. doi: 10.1038/nature19772. PubMed DOI
Penuelas J., Estiarte M. Can elevated CO(2) affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 1998;13:20–24. doi: 10.1016/s0169-5347(97)01235-4. PubMed DOI
Penuelas J., Estiarte M., Kimball B. Flavonoid Responses in Wheat Grown at Elevated CO2: Green Versus Senescent Leaves. Photosynthetica. 2000;37:615–619. doi: 10.1023/a:1007131827115. DOI
Peñuelas J., Fernández-Martínez M., Vallicrosa H., Maspons J., Zuccarini P., Carnicer J., Sanders T.G.M., Krüger I., Obersteiner M., Janssens I.A., et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Boil. 2020;3:1–11. doi: 10.1038/s42003-020-0839-y. PubMed DOI PMC
Peñuelas J., Janssens I.A., Ciais P., Obersteiner M., Sardans J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human Health. Global Change Biol. 2020 doi: 10.1111/gcb.14981. PubMed DOI
Lindroth R.L., Kinney K.K., Platz C.L. Responses of deciduous trees to elevated atmospheric CO2, productivity, phytochemistry and insect performance. Ecology. 1993;4:763–777.
Penuelas J., Estiarte M., Llusià J. Carbon-based Secondary Compounds at Elevated CO2. Photosynthetica. 1997;33:313–319. doi: 10.1023/a:1022120431279. DOI
Penuelas J., Llusià J. Effects of Carbon Dioxide, Water Supply, and Seasonality on Terpene Content and Emission by Rosmarinus officinalis. J. Chem. Ecol. 1997;23:979–993. doi: 10.1023/b:joec.0000006383.29650.d7. DOI
Penuelas J., Estiarte M. Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia. 1996;109:69. doi: 10.1007/s004420050059. PubMed DOI
Holopainen J.K., Virjamo V., Ghimire R.P., Blande J.D., Julkunen-Tiitto R., Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. Front. Plant Sci. 2018;9:1445. doi: 10.3389/fpls.2018.01445. PubMed DOI PMC
Koricheva J., Larsson S., Haukioja E., Keinänen M. Regulation of Woody Plant Secondary Metabolism by Resource Availability: Hypothesis Testing by Means of Meta-Analysis. Oikos. 1998;83:212. doi: 10.2307/3546833. DOI
Sobuj N., Virjamo V., Zhang Y., Nybakken L., Julkunen-Tiitto R. Impacts of elevated temperature and CO2 concentration on growth and phenolics in the sexually dimorphic Populus tremula (L.) Environ. Exp. Bot. 2018;146:34–44. doi: 10.1016/j.envexpbot.2017.08.003. DOI
Vanzo E., Jud W., Li Z., Albert A., Domagalska M.A., Ghirardo A., Niederbacher B., Frenzel J., Beemster G.T., Asard H., et al. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar1. Plant Physiol. 2015;169:560–575. doi: 10.1104/pp.15.00871. PubMed DOI PMC
Nissinen K., Nybakken L., Virjamo V., Julkunen-Tiitto R. Slow-growing Salix repens (Salicaceae) benefits from changing climate. Environ. Exp. Bot. 2016;128:59–68. doi: 10.1016/j.envexpbot.2016.04.006. DOI
McKiernan A.B., O’Reilly-Wapstra J., Price C., Davies N., Potts B., Hovenden M.J. Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide. J. Chem. Ecol. 2012;38:204–212. doi: 10.1007/s10886-012-0071-4. PubMed DOI
Randriamanana T.R., Nissinen K., Ovaskainen A., Lavola A., Peltola H., Albrectsen B., Julkunen-Tiitto R. Does fungal endophyte inoculation affect the responses of aspen seedlings to carbon dioxide enrichment? Fungal Ecol. 2018;33:24–31. doi: 10.1016/j.funeco.2017.12.002. DOI
Llusià J., Peñuelas J. Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot. 1998;8:1366–1373.
Peñuelas J., Llusià J. BVOCs: Plant defense against climate warming? Trends Plant Sci. 2003;3:105–109. PubMed
Blanch J.S., Penuelas J., Sardans J., Llusià J. Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol. Plant. 2008;31:207–218. doi: 10.1007/s11738-008-0221-z. DOI
Bustos-Segura C., Dillon S., Keszei A., Foley W.J., Kulheim C. Intraspecific diversity of terpenes of Eucalyptus camaldulensis (Myrtaceae) at a continental scale. Aust. J. Bot. 2017;65:257. doi: 10.1071/bt16183. DOI
Templer P.H., Pinder R., Goodale C.L. Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Front. Ecol. Environ. 2012;10:547–553. doi: 10.1890/120055. DOI
Carter T.S., Clark C.M., Fenn M.E., Jovan S., Perakis S.S., Riddell J., Schaberg P.G., Greaver T.L., Hastings M.G. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere. 2017;8:e01717. doi: 10.1002/ecs2.1717. PubMed DOI PMC
Schmitz A., Sanders T.G.M., Bolte A., Bussotti F., Dirnböck T., Johnson J., Peñuelas J., Pollastrini M., Prescher A.-K., Sardans J., et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 2018;244:980–994. doi: 10.1016/j.envpol.2018.09.101. PubMed DOI
Lassaletta L., Billen G., Grizzetti B., Anglade J., Garnier J. 50-year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014;9:105011. doi: 10.1088/1748-9326/9/10/105011. DOI
Bodirsky B.L., Müller C. Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution. Environ. Res. Lett. 2014;9:111005. doi: 10.1088/1748-9326/9/11/111005. DOI
Larsen S.U., Jorgensen H., Bukh C., Schjoerring J.K. Green biorefining: Effect of nitrogen fertilization on protein yield, protein extractability and amino acid composition of tall fescue biomass. Ind. Crop. Prod. 2019;130:642–652. doi: 10.1016/j.indcrop.2019.01.016. DOI
Huhn G., Schulz H. Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. New Phytol. 1996;134:95–101. doi: 10.1111/j.1469-8137.1996.tb01149.x. DOI
Calanni J., Berg E., Wood M., Mangis D., Boyce R., Weathers W., Sievering H. Atmospheric nitrogen deposition at a conifer forest: Response of free amino acids in Engelmann spruce needles. Environ. Pollut. 1999;105:79–89. doi: 10.1016/s0269-7491(98)00202-4. DOI
Limpens J., Berendse F. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: The role of amino acid nitrogen concentration. Oecologia. 2003;135:339–345. doi: 10.1007/s00442-003-1224-5. PubMed DOI
Gent M.P.N. Effect of Genotype, Fertilization, and Season on Free Amino Acids in Leaves of Salad Greens Grown in High Tunnels. J. Plant Nutr. 2005;28:1103–1116. doi: 10.1081/pln-200062762. DOI
Ćustić M.H., Horvatić M., Pecina M. Nitrogen Fertilization Influences Protein Nutritional Quality in Red Head Chicory. J. Plant Nutr. 2009;32:598–609. doi: 10.1080/01904160802714987. DOI
Kanmegne G., Mbouobda H.D., Fotso-Mbakop C.N., Omokolo D.N. The influence of stock plant fertilization on tissue concentrations of nitrogen, carbohydrates, and amino acids and on the rooting of leaf stem cuttings of Cola anomala K. Schum (Malvaceae) New For. 2017;48:17–31.
Xu Y., Xiao H. Free amino acid concentrations and nitrogen isotope signatures in Pinus massaniana (Lamb.) needles of different ages for indicating atmospheric nitrogen deposition. Env. Pollut. 2017;221:180–190. PubMed
Nokerbekova N., Suleimenov Y.T., Zhapayev R. Influence of Fertilizing with Nitrogen Fertilizer on the Content of Amino Acids in Sweet Sorghum Grain. Agric. Food Sci. Res. 2018;5:64–67. doi: 10.20448/journal.512.2018.52.64.67. DOI
Wen G., Cambouris A.N., Ziadi N., Bertrand A., Khelifi M. Nitrogen Fertilization Effects on the Composition of Foliar Amino Acids of Russet Burbank Potato. Am. J. Potato Res. 2019;96:541–551. doi: 10.1007/s12230-019-09743-6. DOI
Olsen K.M., Slimestad R., Lea U.S., Brede C., Løvdal T., Ruoff P., Verheul M., Lillo C. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: Experimental and kinetic model studies. Plant Cell Environ. 2009;32:286–299. doi: 10.1111/j.1365-3040.2008.01920.x. PubMed DOI
Allwood J.W., Chandra S., Xu Y., Dunn W.B., Correa E., Hopkins L., Goodacre R., Tobin A.K., Bowsher C. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemisty. 2015;115:99–111. doi: 10.1016/j.phytochem.2015.01.007. PubMed DOI PMC
Prinsi B., Espen L. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Boil. 2015;15:96. doi: 10.1186/s12870-015-0482-9. PubMed DOI PMC
Pietilä M., Lähdesmäki P., Pietiläinen P., Ferm A., Hytönen J., Pätilä A. High nitrogen deposition causes changes in amino acid concentrations and protein spectra in needles of the scots pine (Pinus sylvestris) Environ. Pollut. 1991;72:103–115. doi: 10.1016/0269-7491(91)90061-Z. PubMed DOI
Ann-Brittedfast T.N., Ericsson A., Nordén L.-G. Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytol. 1994;126:137–143. doi: 10.1111/j.1469-8137.1994.tb07539.x. DOI
Cánovas F.M., Ávila C., Cantón F.J.R., Cañas R.A., De La Torre F. Ammonium assimilation and amino acid metabolism in conifers. J. Exp. Bot. 2007;58:2307–2318. doi: 10.1093/jxb/erm051. PubMed DOI
Nordin A., Näsholm T. Nitrogen storage forms in nine boreal understory plant species. Oecologia. 1997;110:487–492. doi: 10.1007/s004420050184. PubMed DOI
Britto D.T., Siddiqi M.Y., Glass A.D.M., Kronzucker H.J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA. 2001;98:4255–4258. doi: 10.1073/pnas.061034698. PubMed DOI PMC