We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SyG-2013-610028
H2020 European Research Council
SGR 2014-274
Catalan Government
CGL2016-48074-P
Spanish Government
OAPN 022/2008
Spanish Government
CZ.02.1.01/0.0/0.0/16_013/0001609
Ministry of Education, Youth and Sports of the Czech Republic
LO1415
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
30586850
PubMed Central
PMC6337320
DOI
10.3390/ijms20010059
PII: ijms20010059
Knihovny.cz E-zdroje
- Klíčová slova
- herbivory, metabolomics, plant-insect, processionary moth, scots pine, secondary metabolites, stoichiometry,
- MeSH
- analýza hlavních komponent MeSH
- borovice lesní metabolismus parazitologie MeSH
- býložravci MeSH
- druhová specificita MeSH
- dusík analýza MeSH
- fosfor analýza MeSH
- hmotnostní spektrometrie MeSH
- interakce hostitele a parazita MeSH
- larva chemie fyziologie MeSH
- listy rostlin chemie metabolismus parazitologie MeSH
- metabolom * MeSH
- metabolomika * MeSH
- můry růst a vývoj fyziologie MeSH
- stravovací zvyklosti MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- fosfor MeSH
Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.
CREAF Center for Ecological and Forestry Applications Cerdanyola del Vallès 08913 Catalonia Spain
CSIC Global Ecology Unit CREAF CEAB CSIC UAB Cerdanyola del Vallès 08913 Catalonia Spain
Global Change Research Institute Czech Academy of Sciences Bĕlidla 4a CZ 603 00 Brno Czech Republic
Zobrazit více v PubMed
Behmer S.T. Insect Herbivore Nutrient Regulation. Annu. Rev. Entomol. 2009;54:165–187. doi: 10.1146/annurev.ento.54.110807.090537. PubMed DOI
Bernays E.A. Evolution of Feeding Behavior in Insect Herbivores. Bioscience. 1998;48:35–44. doi: 10.2307/1313226. DOI
Pauw A., Stofberg J., Waterman R.J. Flies and Flowers in Darwin’s Race. Evolution. 2009;63:268–279. doi: 10.1111/j.1558-5646.2008.00547.x. PubMed DOI
Agrawal A.A., Petschenka G., Bingham R.A., Weber M.G., Rasmann S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 2012;194:28–45. doi: 10.1111/j.1469-8137.2011.04049.x. PubMed DOI
Toju H. Weevils and camellias in a Darwin’s race: Model system for the study of eco-evolutionary interactions between species. Ecol. Res. 2011;26:239–251. doi: 10.1007/s11284-011-0807-6. DOI
Heimpel G.E., Rosenheim J.A., Kattari D. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol. Exp. Appl. 1997;83:305–315. doi: 10.1046/j.1570-7458.1997.00185.x. DOI
Andersen L.H., Kristensen T.N., Loeschcke V., Toft S., Mayntz D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 2010;56:336–340. doi: 10.1016/j.jinsphys.2009.11.006. PubMed DOI
Bauerfeind S.S., Fischer K. Testing the plant stress hypothesis: Stressed plants offer better food to an insect herbivore. Entomol. Exp. Appl. 2013;149:148–158. doi: 10.1111/eea.12118. DOI
Kasumovic M.M. The multidimensional consequences of the juvenile environment: Towards an integrative view of the adult phenotype. Anim. Behav. 2013;85:1049–1059. doi: 10.1016/j.anbehav.2013.02.009. DOI
Waldbauer G.P., Cohen R.W., Friedman S. Self-Selection of an Optimal Nutrient Mix from Defined Diets by Larvae of the Corn Earworm, Heliothis zea (Boddie) Physiol. Zool. 1984;57:590–597. doi: 10.1086/physzool.57.6.30155985. DOI
Simpson S.J., Sibly R.M., Lee K.P., Behmer S.T., Raubenheimer D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 2004;68:1299–1311. doi: 10.1016/j.anbehav.2004.03.003. DOI
Le Gall M., Behmer S.T. Effects of Protein and Carbohydrate on an Insect Herbivore: The Vista from a Fitness Landscape. Integr. Comp. Biol. 2014;54:942–954. doi: 10.1093/icb/icu102. PubMed DOI
Mattson W.J. Herbivory in Relation to Plant Nitrogen Content. Annu. Rev. Ecol. Syst. 1980;11:119–161. doi: 10.1146/annurev.es.11.110180.001003. DOI
Sterner R., Elser J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princetion University Press; Princeton, NJ, USA: 2002.
Ngai J.T., Jefferies R.L. Nutrient limitation of plant growth and forage quality in Arctic coastal marshes. J. Ecol. 2004;92:1001–1010. doi: 10.1111/j.0022-0477.2004.00926.x. DOI
Sardans J., Rivas-Ubach A., Peñuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry. 2012;111:1–39. doi: 10.1007/s10533-011-9640-9. DOI
Chen Y., Coleman T.W., Jones M.I., Flint M.L., Seybold S.J. Foliar nutrients explain goldspotted oak borer, Agrilus auroguttatus, adult feeding preference among four California oak species. Entomol. Exp. Appl. 2013;149:57–66. doi: 10.1111/eea.12110. DOI
Hódar J.A., Zamora R., Castro J. Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecol. Entomol. 2002;27:292–301. doi: 10.1046/j.1365-2311.2002.00415.x. DOI
Metspalu L., Kruus E., Jögar K., Kuusik A., Williams I.H., Veromann E., Luik A., Ploomi A., Hiiesaar K., Kivimägi I., Mänd M. Larval food plants can regulate the cabbage moth, Mamestra brassicae population. Bull. Insectol. 2013;66:93–101.
Hódar J.A., Castro J., Zamora R. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 2003;110:123–129. doi: 10.1016/S0006-3207(02)00183-0. DOI
Loaiza V., Jonas J.L., Joern A. Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland. Insect Sci. 2011;18:533–540. doi: 10.1111/j.1744-7917.2010.01376.x. DOI
Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Pérez-Trujillo M., Parella T., Ogaya R., Urban O., Peñuelas J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;202:874–885. doi: 10.1111/nph.12687. PubMed DOI
Rivas-Ubach A., Sardans J., Hódar J.A., Garcia-Porta J., Guenther A., Oravec M., Urban O., Peñuelas J. Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biol. 2016;18:484–494. doi: 10.1111/plb.12422. PubMed DOI
Colasurdo N., Gélinas Y., Despland E. Larval nutrition affects life history traits in a capital breeding moth. J. Exp. Biol. 2009;212:1794–1800. doi: 10.1242/jeb.027417. PubMed DOI
Moreau J., Benrey B., Thiery D. Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear? Funct. Ecol. 2006;20:92–600. doi: 10.1111/j.1365-2435.2006.01145.x. DOI
Fagan W.F., Siemann E., Mitter C., Denno R.F., Huberty A.F., Woods H.A., Elser J.J. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 2002;160:784–802. doi: 10.1086/343879. PubMed DOI
Denno R.F., Fagan W.F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology. 2003;84:2522–2531. doi: 10.1890/02-0370. PubMed DOI
Peñuelas J., Sardans J. Ecological metabolomics. Chem. Ecol. 2009;25:305–309. doi: 10.1080/02757540903062517. DOI
Rivas-Ubach A., Sardans J., Peŕez-Trujillo M., Estiarte M., Penũelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. USA. 2012;109:4181–4186. doi: 10.1073/pnas.1116092109. PubMed DOI PMC
Brunetti C., George R.M., Tattini M., Field K., Davey M.P. Metabolomics in plant environmental physiology. J. Exp. Bot. 2013;64:4011–4020. doi: 10.1093/jxb/ert244. PubMed DOI
Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics: Overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI
Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2008;5:3–21. doi: 10.1007/s11306-008-0152-0. DOI
Macel M., Van Dam N.M., Keurentjes J.J.B. Metabolomics: The chemistry between ecology and genetics. Mol. Ecol. Resour. 2010;10:583–593. doi: 10.1111/j.1755-0998.2010.02854.x. PubMed DOI
Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiol. Plant. 2008;132:199–208. doi: 10.1111/j.1399-3054.2007.01025.x. PubMed DOI
Rivas-Ubach A., Barbeta A., Sardans J., Guenther A., Ogaya R., Oravec M., Urban O., Peñuelas J. Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspect. Plant Ecol. Evol. Syst. 2016;21:41–54. doi: 10.1016/j.ppees.2016.06.001. DOI
Rivas-Ubach A., Sardans J., Hódar J.A., Garcia-Porta J., Guenther A., Paša-Tolić L., Oravec M., Urban O., Peñuelas J. Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol. Evol. 2017;7:8976–8988. doi: 10.1002/ece3.3343. PubMed DOI PMC
Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Oravec M., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., Parella T., Peñuelas J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015;207:591–603. doi: 10.1111/nph.13377. PubMed DOI
Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC
Fiehn O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833. PubMed DOI
Patti G.J., Yanes O., Siuzdak G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC
Johnson C.H., Ivanisevic J., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25. PubMed DOI PMC
Mirnezhad M., Romero-González R.R., Leiss K.A., Choi Y.H., Verpoorte R., Klinkhamer P.G.L. Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochem. Anal. 2010;21:110–117. doi: 10.1002/pca.1182. PubMed DOI
Jansen J.J., Allwood J.W., Marsden-Edwards E., van der Putten W.H., Goodacre R., van Dam N.M. Metabolomic analysis of the interaction between plants and herbivores. Metabolomics. 2009;5:150–161. doi: 10.1007/s11306-008-0124-4. DOI
Gómez S., Steinbrenner A.D., Osorio S., Schueller M., Ferrieri R.A., Fernie A.R., Orians C.M. From shoots to roots: Transport and metabolic changes in tomato after simulated feeding by a specialist lepidopteran. Entomol. Exp. Appl. 2012;144:101–111. doi: 10.1111/j.1570-7458.2012.01268.x. DOI
Glauser G., Marti G., Villard N., Doyen G.A., Wolfender J.-L., Turlings T.C.J., Erb M. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 2011;68:901–911. doi: 10.1111/j.1365-313X.2011.04740.x. PubMed DOI
Rivas-Ubach A., Liu Y., Bianchi T.S., Toli N., Jansson C., Paša-Tolić L. Moving beyond the van Krevelen diagram: A new stoichiometric approach for compound classification in organisms. Anal. Chem. 2018;90:6152–6160. doi: 10.1021/acs.analchem.8b00529. PubMed DOI
Avtzis N. Development of Thaumetopoea pityocampa schiff.(Lepidoptera: Thaumetopoeidae) in relation to food consumption. For. Ecol. Manag. 1986;15:65–68. doi: 10.1016/0378-1127(86)90090-3. DOI
Battisti A. Host-plant relationships and population dynamics of the Pine Processionary Caterpillar Thaumetopoea pityocampa (Denis & Schiffermuller) J. Appl. Entomol. 1988;105:393–402. doi: 10.1111/j.1439-0418.1988.tb00202.x. DOI
Battisti A., Stastny M., Netherer S., Robinet C., Schopf A., Roques A., Larsson S. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 2005;15:2084–2096. doi: 10.1890/04-1903. DOI
Robledo-Arnuncio J.J., Navascués M., González-Martínez S.C., Gil L. Estimating gametic introgression rates in a risk assessment context: A case study with Scots pine relicts. Heredity. 2009;103:385–393. doi: 10.1038/hdy.2009.78. PubMed DOI
Johnson S.N., McNicol J.W. Elevated CO2 and aboveground-belowground herbivory by the clover root weevil. Oecologia. 2010;162:209–216. doi: 10.1007/s00442-009-1428-4. PubMed DOI
Elser J.J., Bracken M.E.S., Cleland E.E., Gruner D.S., Harpole W.S., Hillebrand H., Ngai J.T., Seabloom E.W., Shurin J.B., Smith J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007;10:1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x. PubMed DOI
Sardans J., Rivas-Ubach A., Peñuelas J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012;14:33–47. doi: 10.1016/j.ppees.2011.08.002. DOI
Andersen T., Hessen D.O. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol. Oceanogr. 1991;36:807–814. doi: 10.4319/lo.1991.36.4.0807. DOI
Mayntz D., Toft S. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia. 2001;127:207–213. doi: 10.1007/s004420000591. PubMed DOI
Ashhurst D.E. The connective tissues of insects. Annu. Rev. Entomol. 1968;13:45–74. doi: 10.1146/annurev.en.13.010168.000401. DOI
Sardans J., Peñuelas J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015;24:261–275. doi: 10.1111/geb.12259. PubMed DOI PMC
Clarkson D.T., Hanson J.B. The Mineral Nutrition of Higher Plants. Annu. Rev. Plant Physiol. 1980;31:239–298. doi: 10.1146/annurev.pp.31.060180.001323. DOI
Sardans J., Peñuelas J., Coll M., Vayreda J., Rivas-Ubach A. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct. Ecol. 2012;26:1077–1089. doi: 10.1111/j.1365-2435.2012.02023.x. DOI
Acquisti C., Elser J.J., Kumar S. Ecological Nitrogen Limitation Shapes the DNA Composition of Plant Genomes. Mol. Biol. Evol. 2009;26:953–956. doi: 10.1093/molbev/msp038. PubMed DOI PMC
Mathavan S., Muthukrishnan J. Use of larval weight and length as indices of gut content weight in some Lepidopterous larvae. Oecologia. 1980;44:317–318. doi: 10.1007/BF00545234. PubMed DOI
Hoch G., Toffolo E.P., Netherer S., Battisti A., Schopf A. Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agric. For. Entomol. 2009;11:313–320. doi: 10.1111/j.1461-9563.2009.00431.x. DOI
Robinet C., Baier P., Pennerstorfer J., Schopf A., Roques A. Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Glob. Ecol. Biol. 2007;16:460–471.
Després L., David J.-P., Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007;22:298–307. doi: 10.1016/j.tree.2007.02.010. PubMed DOI
Nishida R. Sequestration of Defensive Substances from Plants by Lepidoptera. Annu. Rev. Entomol. 2002;47:57–92. doi: 10.1146/annurev.ento.47.091201.145121. PubMed DOI
Paoletti M.G. Ecological Implications of Minilivestock. CRC Press; Boca Raton, FL, USA: 2005.
Banjo A., Lawal O., Songonuga E. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006;5:298–301.
Sulanc M., Emre I. Effects of B group vitamins and choline chloride on the development and protein synthesis in the male larvae of Pimpla turionellae L. (Hym., Ichneumonidae) J. Appl. Entomol. 2000;124:151–153. doi: 10.1046/j.1439-0418.2000.00366.x. DOI
Liu F., Wei F., Wang L., Liu H., Zhu X., Liang Y. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 2010;74:330–336. doi: 10.1016/j.pmpp.2010.05.002. DOI
Taheri P., Tarighi S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 2010;167:201–208. doi: 10.1016/j.jplph.2009.08.003. PubMed DOI
Verdrengh M., Tarkowski A. Riboflavin in innate and acquired immune responses. Inflamm. Res. 2005;54:390–393. doi: 10.1007/s00011-005-1372-7. PubMed DOI
Peñuelas J., Sardans J., Stefanescu C., Parella T., Filella I. Lonicera Implexa Leaves Bearing Naturally Laid Eggs of the Specialist Herbivore Euphydryas Aurinia have Dramatically Greater Concentrations of Iridoid Glycosides than other Leaves. J. Chem. Ecol. 2006;32:1925–1933. doi: 10.1007/s10886-006-9118-8. PubMed DOI
Gols R., Harvey J.A. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem. Rev. 2009;8:187–206. doi: 10.1007/s11101-008-9104-6. DOI
Achotegui-Castells A., Llusia J., Hódar J.A., Peñuelas J. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa) Acta Physiol. Plant. 2013;35:3047–3058. doi: 10.1007/s11738-013-1337-3. DOI
Rajsnerová P., Klem K., Holub P., Novotná K., Večeřová K., Kozáčiková M., Rivas-Ubach A., Sardans J., Marek M.V., Peñuelas J., et al. Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Phys. 2015;1:47–60. doi: 10.1093/treephys/tpu104. PubMed DOI
Sardans J., Montes F., Peñuelas J. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2010;65:97–112. doi: 10.1016/j.sab.2009.11.009. DOI
t’Kindt R., De Veylder L., Storme M., Deforce D., Van Bocxlaer J. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC-MS procedure parameters. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2008;871:37–43. doi: 10.1016/j.jchromb.2008.06.039. PubMed DOI
Pluskal T., Castillo S., Villar-Briones A., Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC
Rivas-Ubach A., Hódar J.A., Sardans J., Kyle J.E., Kim Y.-M., Oravec M., Urban O., Guenther A., Peñuelas J. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes? Ecol. Evol. 2016;6:4372–4386. doi: 10.1002/ece3.2206. PubMed DOI PMC
Kim H.K., Choi Y.H., Verpoorte R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI
Van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:142. doi: 10.1186/1471-2164-7-142. PubMed DOI PMC
Rivas-Ubach A., Pérez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Peñuelas J. Ecometabolomics: Optimized NMR-based method. Methods Ecol. Evol. 2013;4:464–473. doi: 10.1111/2041-210X.12028. DOI
R Core Team . Vienna, Austria: 2013. [(accessed on 22 December 2018)]. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org.
De Mendiburu F. Agricolae: Statistical Procedures for Agricultural Research. [(accessed on 22 December 2018)];2015 R package Version 1.2-3. Available online: https://CRAN.R-project.org/package=agricolae.
Harrell F.E. Hmisc: Harrell Miscellaneous. [(accessed on 22 December 2018)];2018 R Package Version 4.1-1. Available online: https://CRAN.R-project.org/package=Hmisc.
Oksanen J., Guillaume-Blanchet F., Fierndly M., Kindt R., Legendre P., McGlinnd D., Minchin P., O’Hara R., Simpson G., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 22 December 2018)];2018 R Package Version 2.1-1. Available online: https://CRAN.R-project.org/package=vegan.
Husson F., Josse J., Le S., Mazet J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. [(accessed on 22 December 2018)];2016 R Package Version 1.32. Available online: https://CRAN.R-project.org/package=FactoMineR.
Husson F., Josse J. missMDA: Handling Missing Values with Multivariate Data Analysis. [(accessed on 22 December 2018)];2015 R Package Version 1.9. Available online: https://CRAN.R-project.org/package=missMDA.