We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris

. 2018 Dec 24 ; 20 (1) : . [epub] 20181224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30586850

Grantová podpora
SyG-2013-610028 H2020 European Research Council
SGR 2014-274 Catalan Government
CGL2016-48074-P Spanish Government
OAPN 022/2008 Spanish Government
CZ.02.1.01/0.0/0.0/16_013/0001609 Ministry of Education, Youth and Sports of the Czech Republic
LO1415 Ministry of Education, Youth and Sports of the Czech Republic

Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.

Zobrazit více v PubMed

Behmer S.T. Insect Herbivore Nutrient Regulation. Annu. Rev. Entomol. 2009;54:165–187. doi: 10.1146/annurev.ento.54.110807.090537. PubMed DOI

Bernays E.A. Evolution of Feeding Behavior in Insect Herbivores. Bioscience. 1998;48:35–44. doi: 10.2307/1313226. DOI

Pauw A., Stofberg J., Waterman R.J. Flies and Flowers in Darwin’s Race. Evolution. 2009;63:268–279. doi: 10.1111/j.1558-5646.2008.00547.x. PubMed DOI

Agrawal A.A., Petschenka G., Bingham R.A., Weber M.G., Rasmann S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 2012;194:28–45. doi: 10.1111/j.1469-8137.2011.04049.x. PubMed DOI

Toju H. Weevils and camellias in a Darwin’s race: Model system for the study of eco-evolutionary interactions between species. Ecol. Res. 2011;26:239–251. doi: 10.1007/s11284-011-0807-6. DOI

Heimpel G.E., Rosenheim J.A., Kattari D. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol. Exp. Appl. 1997;83:305–315. doi: 10.1046/j.1570-7458.1997.00185.x. DOI

Andersen L.H., Kristensen T.N., Loeschcke V., Toft S., Mayntz D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 2010;56:336–340. doi: 10.1016/j.jinsphys.2009.11.006. PubMed DOI

Bauerfeind S.S., Fischer K. Testing the plant stress hypothesis: Stressed plants offer better food to an insect herbivore. Entomol. Exp. Appl. 2013;149:148–158. doi: 10.1111/eea.12118. DOI

Kasumovic M.M. The multidimensional consequences of the juvenile environment: Towards an integrative view of the adult phenotype. Anim. Behav. 2013;85:1049–1059. doi: 10.1016/j.anbehav.2013.02.009. DOI

Waldbauer G.P., Cohen R.W., Friedman S. Self-Selection of an Optimal Nutrient Mix from Defined Diets by Larvae of the Corn Earworm, Heliothis zea (Boddie) Physiol. Zool. 1984;57:590–597. doi: 10.1086/physzool.57.6.30155985. DOI

Simpson S.J., Sibly R.M., Lee K.P., Behmer S.T., Raubenheimer D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 2004;68:1299–1311. doi: 10.1016/j.anbehav.2004.03.003. DOI

Le Gall M., Behmer S.T. Effects of Protein and Carbohydrate on an Insect Herbivore: The Vista from a Fitness Landscape. Integr. Comp. Biol. 2014;54:942–954. doi: 10.1093/icb/icu102. PubMed DOI

Mattson W.J. Herbivory in Relation to Plant Nitrogen Content. Annu. Rev. Ecol. Syst. 1980;11:119–161. doi: 10.1146/annurev.es.11.110180.001003. DOI

Sterner R., Elser J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princetion University Press; Princeton, NJ, USA: 2002.

Ngai J.T., Jefferies R.L. Nutrient limitation of plant growth and forage quality in Arctic coastal marshes. J. Ecol. 2004;92:1001–1010. doi: 10.1111/j.0022-0477.2004.00926.x. DOI

Sardans J., Rivas-Ubach A., Peñuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry. 2012;111:1–39. doi: 10.1007/s10533-011-9640-9. DOI

Chen Y., Coleman T.W., Jones M.I., Flint M.L., Seybold S.J. Foliar nutrients explain goldspotted oak borer, Agrilus auroguttatus, adult feeding preference among four California oak species. Entomol. Exp. Appl. 2013;149:57–66. doi: 10.1111/eea.12110. DOI

Hódar J.A., Zamora R., Castro J. Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecol. Entomol. 2002;27:292–301. doi: 10.1046/j.1365-2311.2002.00415.x. DOI

Metspalu L., Kruus E., Jögar K., Kuusik A., Williams I.H., Veromann E., Luik A., Ploomi A., Hiiesaar K., Kivimägi I., Mänd M. Larval food plants can regulate the cabbage moth, Mamestra brassicae population. Bull. Insectol. 2013;66:93–101.

Hódar J.A., Castro J., Zamora R. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 2003;110:123–129. doi: 10.1016/S0006-3207(02)00183-0. DOI

Loaiza V., Jonas J.L., Joern A. Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland. Insect Sci. 2011;18:533–540. doi: 10.1111/j.1744-7917.2010.01376.x. DOI

Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Pérez-Trujillo M., Parella T., Ogaya R., Urban O., Peñuelas J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;202:874–885. doi: 10.1111/nph.12687. PubMed DOI

Rivas-Ubach A., Sardans J., Hódar J.A., Garcia-Porta J., Guenther A., Oravec M., Urban O., Peñuelas J. Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biol. 2016;18:484–494. doi: 10.1111/plb.12422. PubMed DOI

Colasurdo N., Gélinas Y., Despland E. Larval nutrition affects life history traits in a capital breeding moth. J. Exp. Biol. 2009;212:1794–1800. doi: 10.1242/jeb.027417. PubMed DOI

Moreau J., Benrey B., Thiery D. Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear? Funct. Ecol. 2006;20:92–600. doi: 10.1111/j.1365-2435.2006.01145.x. DOI

Fagan W.F., Siemann E., Mitter C., Denno R.F., Huberty A.F., Woods H.A., Elser J.J. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 2002;160:784–802. doi: 10.1086/343879. PubMed DOI

Denno R.F., Fagan W.F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology. 2003;84:2522–2531. doi: 10.1890/02-0370. PubMed DOI

Peñuelas J., Sardans J. Ecological metabolomics. Chem. Ecol. 2009;25:305–309. doi: 10.1080/02757540903062517. DOI

Rivas-Ubach A., Sardans J., Peŕez-Trujillo M., Estiarte M., Penũelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. USA. 2012;109:4181–4186. doi: 10.1073/pnas.1116092109. PubMed DOI PMC

Brunetti C., George R.M., Tattini M., Field K., Davey M.P. Metabolomics in plant environmental physiology. J. Exp. Bot. 2013;64:4011–4020. doi: 10.1093/jxb/ert244. PubMed DOI

Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics: Overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI

Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2008;5:3–21. doi: 10.1007/s11306-008-0152-0. DOI

Macel M., Van Dam N.M., Keurentjes J.J.B. Metabolomics: The chemistry between ecology and genetics. Mol. Ecol. Resour. 2010;10:583–593. doi: 10.1111/j.1755-0998.2010.02854.x. PubMed DOI

Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiol. Plant. 2008;132:199–208. doi: 10.1111/j.1399-3054.2007.01025.x. PubMed DOI

Rivas-Ubach A., Barbeta A., Sardans J., Guenther A., Ogaya R., Oravec M., Urban O., Peñuelas J. Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspect. Plant Ecol. Evol. Syst. 2016;21:41–54. doi: 10.1016/j.ppees.2016.06.001. DOI

Rivas-Ubach A., Sardans J., Hódar J.A., Garcia-Porta J., Guenther A., Paša-Tolić L., Oravec M., Urban O., Peñuelas J. Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol. Evol. 2017;7:8976–8988. doi: 10.1002/ece3.3343. PubMed DOI PMC

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Oravec M., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., Parella T., Peñuelas J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015;207:591–603. doi: 10.1111/nph.13377. PubMed DOI

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC

Fiehn O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833. PubMed DOI

Patti G.J., Yanes O., Siuzdak G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC

Johnson C.H., Ivanisevic J., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25. PubMed DOI PMC

Mirnezhad M., Romero-González R.R., Leiss K.A., Choi Y.H., Verpoorte R., Klinkhamer P.G.L. Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochem. Anal. 2010;21:110–117. doi: 10.1002/pca.1182. PubMed DOI

Jansen J.J., Allwood J.W., Marsden-Edwards E., van der Putten W.H., Goodacre R., van Dam N.M. Metabolomic analysis of the interaction between plants and herbivores. Metabolomics. 2009;5:150–161. doi: 10.1007/s11306-008-0124-4. DOI

Gómez S., Steinbrenner A.D., Osorio S., Schueller M., Ferrieri R.A., Fernie A.R., Orians C.M. From shoots to roots: Transport and metabolic changes in tomato after simulated feeding by a specialist lepidopteran. Entomol. Exp. Appl. 2012;144:101–111. doi: 10.1111/j.1570-7458.2012.01268.x. DOI

Glauser G., Marti G., Villard N., Doyen G.A., Wolfender J.-L., Turlings T.C.J., Erb M. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 2011;68:901–911. doi: 10.1111/j.1365-313X.2011.04740.x. PubMed DOI

Rivas-Ubach A., Liu Y., Bianchi T.S., Toli N., Jansson C., Paša-Tolić L. Moving beyond the van Krevelen diagram: A new stoichiometric approach for compound classification in organisms. Anal. Chem. 2018;90:6152–6160. doi: 10.1021/acs.analchem.8b00529. PubMed DOI

Avtzis N. Development of Thaumetopoea pityocampa schiff.(Lepidoptera: Thaumetopoeidae) in relation to food consumption. For. Ecol. Manag. 1986;15:65–68. doi: 10.1016/0378-1127(86)90090-3. DOI

Battisti A. Host-plant relationships and population dynamics of the Pine Processionary Caterpillar Thaumetopoea pityocampa (Denis & Schiffermuller) J. Appl. Entomol. 1988;105:393–402. doi: 10.1111/j.1439-0418.1988.tb00202.x. DOI

Battisti A., Stastny M., Netherer S., Robinet C., Schopf A., Roques A., Larsson S. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 2005;15:2084–2096. doi: 10.1890/04-1903. DOI

Robledo-Arnuncio J.J., Navascués M., González-Martínez S.C., Gil L. Estimating gametic introgression rates in a risk assessment context: A case study with Scots pine relicts. Heredity. 2009;103:385–393. doi: 10.1038/hdy.2009.78. PubMed DOI

Johnson S.N., McNicol J.W. Elevated CO2 and aboveground-belowground herbivory by the clover root weevil. Oecologia. 2010;162:209–216. doi: 10.1007/s00442-009-1428-4. PubMed DOI

Elser J.J., Bracken M.E.S., Cleland E.E., Gruner D.S., Harpole W.S., Hillebrand H., Ngai J.T., Seabloom E.W., Shurin J.B., Smith J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007;10:1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x. PubMed DOI

Sardans J., Rivas-Ubach A., Peñuelas J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012;14:33–47. doi: 10.1016/j.ppees.2011.08.002. DOI

Andersen T., Hessen D.O. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol. Oceanogr. 1991;36:807–814. doi: 10.4319/lo.1991.36.4.0807. DOI

Mayntz D., Toft S. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia. 2001;127:207–213. doi: 10.1007/s004420000591. PubMed DOI

Ashhurst D.E. The connective tissues of insects. Annu. Rev. Entomol. 1968;13:45–74. doi: 10.1146/annurev.en.13.010168.000401. DOI

Sardans J., Peñuelas J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015;24:261–275. doi: 10.1111/geb.12259. PubMed DOI PMC

Clarkson D.T., Hanson J.B. The Mineral Nutrition of Higher Plants. Annu. Rev. Plant Physiol. 1980;31:239–298. doi: 10.1146/annurev.pp.31.060180.001323. DOI

Sardans J., Peñuelas J., Coll M., Vayreda J., Rivas-Ubach A. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct. Ecol. 2012;26:1077–1089. doi: 10.1111/j.1365-2435.2012.02023.x. DOI

Acquisti C., Elser J.J., Kumar S. Ecological Nitrogen Limitation Shapes the DNA Composition of Plant Genomes. Mol. Biol. Evol. 2009;26:953–956. doi: 10.1093/molbev/msp038. PubMed DOI PMC

Mathavan S., Muthukrishnan J. Use of larval weight and length as indices of gut content weight in some Lepidopterous larvae. Oecologia. 1980;44:317–318. doi: 10.1007/BF00545234. PubMed DOI

Hoch G., Toffolo E.P., Netherer S., Battisti A., Schopf A. Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agric. For. Entomol. 2009;11:313–320. doi: 10.1111/j.1461-9563.2009.00431.x. DOI

Robinet C., Baier P., Pennerstorfer J., Schopf A., Roques A. Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Glob. Ecol. Biol. 2007;16:460–471.

Després L., David J.-P., Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007;22:298–307. doi: 10.1016/j.tree.2007.02.010. PubMed DOI

Nishida R. Sequestration of Defensive Substances from Plants by Lepidoptera. Annu. Rev. Entomol. 2002;47:57–92. doi: 10.1146/annurev.ento.47.091201.145121. PubMed DOI

Paoletti M.G. Ecological Implications of Minilivestock. CRC Press; Boca Raton, FL, USA: 2005.

Banjo A., Lawal O., Songonuga E. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006;5:298–301.

Sulanc M., Emre I. Effects of B group vitamins and choline chloride on the development and protein synthesis in the male larvae of Pimpla turionellae L. (Hym., Ichneumonidae) J. Appl. Entomol. 2000;124:151–153. doi: 10.1046/j.1439-0418.2000.00366.x. DOI

Liu F., Wei F., Wang L., Liu H., Zhu X., Liang Y. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 2010;74:330–336. doi: 10.1016/j.pmpp.2010.05.002. DOI

Taheri P., Tarighi S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 2010;167:201–208. doi: 10.1016/j.jplph.2009.08.003. PubMed DOI

Verdrengh M., Tarkowski A. Riboflavin in innate and acquired immune responses. Inflamm. Res. 2005;54:390–393. doi: 10.1007/s00011-005-1372-7. PubMed DOI

Peñuelas J., Sardans J., Stefanescu C., Parella T., Filella I. Lonicera Implexa Leaves Bearing Naturally Laid Eggs of the Specialist Herbivore Euphydryas Aurinia have Dramatically Greater Concentrations of Iridoid Glycosides than other Leaves. J. Chem. Ecol. 2006;32:1925–1933. doi: 10.1007/s10886-006-9118-8. PubMed DOI

Gols R., Harvey J.A. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem. Rev. 2009;8:187–206. doi: 10.1007/s11101-008-9104-6. DOI

Achotegui-Castells A., Llusia J., Hódar J.A., Peñuelas J. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa) Acta Physiol. Plant. 2013;35:3047–3058. doi: 10.1007/s11738-013-1337-3. DOI

Rajsnerová P., Klem K., Holub P., Novotná K., Večeřová K., Kozáčiková M., Rivas-Ubach A., Sardans J., Marek M.V., Peñuelas J., et al. Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Phys. 2015;1:47–60. doi: 10.1093/treephys/tpu104. PubMed DOI

Sardans J., Montes F., Peñuelas J. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2010;65:97–112. doi: 10.1016/j.sab.2009.11.009. DOI

t’Kindt R., De Veylder L., Storme M., Deforce D., Van Bocxlaer J. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC-MS procedure parameters. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2008;871:37–43. doi: 10.1016/j.jchromb.2008.06.039. PubMed DOI

Pluskal T., Castillo S., Villar-Briones A., Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Rivas-Ubach A., Hódar J.A., Sardans J., Kyle J.E., Kim Y.-M., Oravec M., Urban O., Guenther A., Peñuelas J. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes? Ecol. Evol. 2016;6:4372–4386. doi: 10.1002/ece3.2206. PubMed DOI PMC

Kim H.K., Choi Y.H., Verpoorte R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI

Van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:142. doi: 10.1186/1471-2164-7-142. PubMed DOI PMC

Rivas-Ubach A., Pérez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Peñuelas J. Ecometabolomics: Optimized NMR-based method. Methods Ecol. Evol. 2013;4:464–473. doi: 10.1111/2041-210X.12028. DOI

R Core Team . Vienna, Austria: 2013. [(accessed on 22 December 2018)]. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org.

De Mendiburu F. Agricolae: Statistical Procedures for Agricultural Research. [(accessed on 22 December 2018)];2015 R package Version 1.2-3. Available online: https://CRAN.R-project.org/package=agricolae.

Harrell F.E. Hmisc: Harrell Miscellaneous. [(accessed on 22 December 2018)];2018 R Package Version 4.1-1. Available online: https://CRAN.R-project.org/package=Hmisc.

Oksanen J., Guillaume-Blanchet F., Fierndly M., Kindt R., Legendre P., McGlinnd D., Minchin P., O’Hara R., Simpson G., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 22 December 2018)];2018 R Package Version 2.1-1. Available online: https://CRAN.R-project.org/package=vegan.

Husson F., Josse J., Le S., Mazet J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. [(accessed on 22 December 2018)];2016 R Package Version 1.32. Available online: https://CRAN.R-project.org/package=FactoMineR.

Husson F., Josse J. missMDA: Handling Missing Values with Multivariate Data Analysis. [(accessed on 22 December 2018)];2015 R Package Version 1.9. Available online: https://CRAN.R-project.org/package=missMDA.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...