Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

. 2016 Jul ; 6 (13) : 4372-86. [epub] 20160602

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27386082

Grantová podpora
610028 European Research Council - International

The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

Zobrazit více v PubMed

Achotegui‐Castells, A. , Llusia J., Hódar J. A., and Peñuelas J.. 2013. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa). Acta Physiol. Plant 35:3047–3058.

Avtzis, N. 1986. Development of Thaumetopoea pityocampa Schiff. (Lepidoptera: Thaumetopoeidae) in relation to food consumption. For. Ecol. Manage. 15:65–68.

Battisti, A. 1988. Host‐plant relationships and population dynamics of the Pine Processionary Caterpillar Thaumetopoea pityocampa (Denis & Schiffermuller). J. Appl. Entomol. 105:393–402.

Battisti, A. , Stastny M., Netherer S., Robinet C., Schopf A., Roques A., et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15:2084–2096.

Battisti, A. , Stastny M., Buffo E., and Larsson S.. 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Change Biol. 12:662–671.

Battisti, A. , Avci M., Avtzis D. N., Ben Jamma M. L., Berardi L., Berretima W., et al. 2015. Natural history of the processionary moths (Thaumetopoea spp.): new insights in relation to climate change. Thaumetopoea pityocampa Pp 15–80 in Roques A., ed. Processionary moths and climate change: an update. Springer‐Quae, Dordrecht, Netherlands.

Becerra, J. X. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256. PubMed

Benigni, M. , and Battisti A.. 1999. Variazioni climatiche e processionaria del pino: adattamenti di un defoliatore a condizioni ambientali mutevoli. L'Italia Forestale e Montana 54:76–86.

Bennett, R. N. , and Wallsgrove R. M.. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127:617–633. PubMed

Blanca, G. , Cueto M., Martínez‐Lirola M. J., and Molero‐Mesa J.. 1998. Threatened vascular flora of Sierra Nevada (Southern Spain). Biol. Conserv. 85:269–285.

Blomberg, S. P. , Garland T., and Ives A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. PubMed

Buchanan, B. , Gruissem W., Vickers K., and Jones R.. 2015. Biochemistry and molecular biology of plants. Wiley Blackwell, Oxford, UK: pp. 289–226.

Campbell, S. A. 2015. Ecological mechanisms for the coevolution of mating systems and defence. New Phytol. 205:1047–1053. PubMed

Carrillo‐Gavilán, A. , Moreira X., Zas R., Gonzalez‐Voyer A., Vilà M., and Sampedro L.. 2015. Phylogenetic and biogeographical patterns in defensive strategies and quantitative allocation to chemical defences in Palaearctic and Nearctic pine trees. J. Biogeogr. 42:684–693.

Cuadros, R. , and Francia J. R.. 1999. Caracterización del sitio de ensayo de especies forestales de Lanjarón, vertiente sur de Sierra Nevada: aspectos climatológicos y fitoclimáticos. Investigación agraria. Sistemas y recursos forestales. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) 8:143–158.

Le Cao, K. , Gonzalez I., and Dejean S.. 2015. mixOmics: Omics Data Integration Project. R package version 5.2.0. http://CRAN.R-project.org/package=mixOmics

Démolin, G. 1969. Bioecología de la procesionaria del pino Thaumetopoea piotyocampa Schiff. Incidencia de los factores climáticos. Boletín del Servicio de Plagas Forestales 12:9–24.

Endara, M.‐J. , Weinhold A., Cox J. E., Wiggins N. L., Coley P. D., and Kursar T. A.. 2015. Divergent evolution in antiherbivore defences within species complexes at a single Amazonian site. J. Ecol. 103:1107–1118.

Falk, J. , and Munné‐Bosch S.. 2010. Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot. 61:1549–1566. PubMed

Farjon, A. 1999. World checklist and bibliography of conifers. Nord. J. Bot. 19:148.

Fiehn, O. 2002. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48:155–171. PubMed

Fox, J. , and Weisberg S.. 2011. An {R} Companion to Applied Regression. Second Edition. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

Gernandt, D. S. , López G. G., García S. O., and Liston A.. 2005. Phylogeny and classification of Pinus . Taxon 54:29–42.

Grotkopp, E. , Rejmánek M., Sanderson M. J., and Rost T. L.. 2004. Evolution of genome size in pines (Pinus) and its life‐history correlates: supertree analyses. Evolution 58:1705–1729. PubMed

Hagel, J. M. , Mandal R., Han B., Han J., Dinsmore D. R., Borchers C. H., et al. 2015. Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid‐producing plants. BMC Plant Biol. 15:220. PubMed PMC

Heil, M. 2009. Damaged‐self recognition in plant herbivore defence. Trends Plant Sci. 14:356–363. PubMed

Heil, M. 2014. Herbivore‐induced plant volatiles: targets, perception and unanswered questions. New Phytol. 204:297–306.

Heil, M. , and Bueno J. C. S.. 2007. Herbivore‐induced volatiles as rapid signals in systemic plant responses: how to quickly move the information? Plant Signal. Behav. 2:191–193. PubMed PMC

Herms, D. A. , and Mattson W. J.. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283.

Hoch, G. , Toffolo E. P., Netherer S., Battisti A., and Schopf A.. 2009. Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agric. For. Entomol. 11:313–320.

Hódar, J. A. 2015. Incidencia de la procesionaria del pino como consecuencia del cambio climático: previsiones y posibles soluciones Pp. 295–302 in Herrero A., Zavala M. A., eds. Los Bosques y la Biodiversidad frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

Hódar, J. A. , and Zamora R.. 2004. Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodivers. Conserv. 13:493–500.

Hódar, J. A. , Zamora R., and Castro J.. 2002. Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecol. Entomol. 27:292–301.

Hódar, J. A. , Castro J., and Zamora R.. 2003. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 110:123–129.

Hódar, J. A. , Zamora R., Castro J., and Baraza E.. 2004. Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris . Acta Oecol. 26:203–210.

Hódar, J. A. , Zamora R., and Cayuela L.. 2012. Climatic change and the incidence of a forest pest in Mediterranean ecosystems: can the North Atlantic Oscillation be used as a predictor? Clim. Change. 113:699–711.

Huchon, H. , and Démolin G.. 1971. La bioécologie de la processionaire du pin. Dispersion potentielle. Dispersion actuelle. Phytoma 225:11–20.

IPCC . 2013. Summary for Policymakers in Stocker T. F., Qin D., Plattner G.‐K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P. M., eds. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Interfovernmental Panel on Climate Change.

Jactel, H. , Barbaro L., Battisti A., Bosc A., Branco M., Brockerhoff E., et al. 2015. Insect – Tree Interactions in Thaumetopoea pityocampa Pp. 265–310 in Roques A., ed. Processionary moths and climate change: an update. Springer‐Quae, Dordrecht, Netherlands.

Jansen, J. J. , Allwood J. W., Marsden‐Edwards E., van der Putten W. H., Goodacre R., and van Dam N. M.. 2008. Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161.

Karban, R. 2011. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 25:339–347.

Kerdelhué, C. , Zane L., Simonato M., Salvato P., Rousselet J., Roques A., et al. 2009. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9:220. PubMed PMC

Kessler, A. , and Baldwin I. T.. 2001. Defensive function of herbivore‐induced plant volatile emissions in nature. Science 291:2141–2144. PubMed

Kessler, A. , and Baldwin I. T.. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328. PubMed

t'Kind, R. , de Veylder L., Storme M., Deforce D., and van Bocxlaer J.. 2008. LC‐MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre‐LC‐MS procedure parameters. J. Chromatogr. B 871:37–43. PubMed

Kursar, T. A. , Dexter K. G., Lokvam J., Pennington R. T., Richardson J. E., Weber M. G., et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106:18073–18078. PubMed PMC

Lee, D. Y. , and Fiehn O.. 2013. Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. J. Microbiol. Biotechnol. 23:923–931. PubMed

Mari, A. , Lyon D., Fragner L., Montoro P., Piacente S., Wienkoop S., et al. 2013. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC‐MS and LC‐MS metabolomics platform. Metabolomics 9:599–607. PubMed PMC

Mirnezhad, M. , Romero‐González R. R., Leiss K. A., Choi Y. H., Verpoorte R., and Klinkhamer P. G. L.. 2010. Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochem. Anal. 21:110–117. PubMed

Morse, A. M. , Peterson D. G., Islam‐Faridi M. N., Smith K. E., Magbanua Z., Garcia S. A., et al. 2009. Evolution of genome size and complexity in Pinus . PLoS ONE 4:e4332. PubMed PMC

Mumm, R. , and Hilker M.. 2006. Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11:351–358. PubMed

Munné‐Bosch, S. , and Peñuelas J.. 2004. Drought‐induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci. 166:1105–1110.

Netherer, S. , and Schopf A.. 2010. Potential effects of climate change on insect herbivores in European forests—General aspects and the pine processionary moth as specific example. For. Ecol. Manage. 259:831–838.

Nuringtyas, T. R. , Verpoorte R., Klinkhamer P. G. L., van Oers M. M., and Leiss K. A.. 2014. Toxicity of Pyrrolizidine Alkaloids to Spodoptera exigua Using Insect Cell Lines and Injection Bioassays. J. Chem. Ecol. 40:609–616. PubMed

Oksanen, J. , Guillaume‐Blanchet F., Kindt R., Legendre P., Minchin P., O'Hara R., et al. 2013. vegan: Community Ecology Package. R package version 2.3‐2. http://CRAN.R-project.org/package=vegan

Onodera, H. , Oguro M., and Sakai S.. 2014. Effects of nutrient contents and defense compounds on herbivory in reproductive organs and leaves of Iris gracilipes. Plant Ecol. 215:1025–1035.

Orozco‐Cardenas, M. , and Ryan C. A.. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl Acad. Sci. 96:6553–6557. PubMed PMC

Palama, T. L. , Grisoni M., Fock‐Bastide I., Jade K., Bartet L., Choi Y. H., et al. 2012. Metabolome of Vanilla planifolia (Orchidaceae) and related species under Cymbidium mosaic virus (CymMV) infection. Plant Physiol. Biochem. 60:25–34. PubMed

Peñuelas, J. , and Sardans J.. 2009. Ecological metabolomics. Chem. Ecol. 25:305–309.

Peñuelas, J. , and Staudt M.. 2010. BVOCs and global change. Trends Plant Sci. 15:133–144. PubMed

Peñuelas, J. , and Terradas J.. 2014. The foliar microbiome. Trends Plant Sci. 19:278–280. PubMed

Pierik, R. , Ballaré C. L., and Dicke M.. 2014. Ecology of plant volatiles: taking a plant community perspective. Plant, Cell Environ. 37:1845–1853. PubMed

Pluskal, T. , Castillo S., Villar‐Briones A., and Orešič M.. 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry‐based molecular profile data. BMC Bioinformatics 11:395. PubMed PMC

Poelman, E. H. , van Loon J. J. A., and Dicke M.. 2008. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13:534–541. PubMed

R Core Team . 2013. R: a language and environment for statistical computing. R Core Team, Vienna.

Rapp, R. A. , and Wendel J. F.. 2005. Epigenetics and plant evolution. New Phytol. 168:81–91. PubMed

Rice‐Evans, C. A. , Miller N. J., and Paganga G.. 1996. Structure‐antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933–956. PubMed

Rivas‐Ubach, A. , Sardans J., Pérez‐Trujillo M., Estiarte M., and Peñuelas J.. 2012. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl Acad. Sci. 109:4181–4186. PubMed PMC

Rivas‐Ubach, A. , Pérez‐Trujillo M., Sardans J., Gargallo‐Garriga A., Parella T., and Peñuelas J.. 2013. Ecometabolomics: optimized NMR‐based method. Methods Ecol. Evol. 4:464–473.

Rivas‐Ubach, A. , Gargallo‐Garriga A., Sardans J., Oravec M., Mateu‐Castell L., Pérez‐Trujillo M., et al. 2014. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 202:874–885. PubMed

Rivas‐Ubach, A. , Sardans J., Hódar J. A., Garcia‐Porta J., Guenther A., Oravec M., et al. 2016. Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biol. 18:484–494. PubMed

Rousselet, J. , Zhao R., Argal D., Simonato M., Battisti A., Roques A., et al. 2010. The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Notodontidae). J. Biogeogr. 37:1478–1490.

Sardans, J. , Montes F., and Peñuelas J.. 2010. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B 65:97–112.

Sardans, J. , Peñuelas J., and Rivas‐Ubach A.. 2011. Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191–225.

Sardans, J. , Rivas‐Ubach A., and Peñuelas J.. 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39.

Shulaev, V. , Cortes D., Miller G., and Mittler R.. 2008. Metabolomics for plant stress response. Physiol. Plant. 132:199–208. PubMed

Sterner, R. , and Elser J.. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princetion University Press, Princeton, NJ, USA: Pp. 1–464.

Sticher, L. , Mauch‐Mani B., and Métraux J. P.. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235–270. PubMed

Sumner, L. W. , Amberg A., Barrett D., Beale M. H., Beger R., Daykin C. A., et al. 2007. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221. PubMed PMC

Thompson, J. N. , and Cunningham B. M.. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738. PubMed

Torrent, J. A. 1958. Tratamientos de la procesionaria del pino (Thaumetopoea pityocampa Schiff.). Boletín del Servicio de Plagas Forestales 2:65–80.

Traber, M. G. , and Stevens J. F.. 2011. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51:1000–1013. PubMed PMC

Tremmel, M. , and Müller C.. 2013. The consequences of alternating diet on performance and food preferences of a specialist leaf beetle. J. Insect Physiol. 59:840–847. PubMed

Whitham, T. G. , Bailey J. K., Schweitzer J. A., Shuster S. M., Bangert R. K., LeRoy C. J., et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:510–523. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace