Soil Moisture and Its Interaction With Temperature Determine Root Metabolomes of a Himalayan Alpine Shrub
Status In-Process Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
285523, 2023
Grantová Agentura, Univerzita Karlova
RVO 67985939
Long-term research development project of the Czech Academy of Sciences and institutional support for science and research of the Ministry of Education, Youth, and Sports of the Czech Republic
GAČR 22-00761S
Long-term research development project of the Czech Academy of Sciences and institutional support for science and research of the Ministry of Education, Youth, and Sports of the Czech Republic
101038052
Field sampling was supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
PubMed
40798898
PubMed Central
PMC12344346
DOI
10.1111/ppl.70444
Knihovny.cz E-zdroje
- Klíčová slova
- Rhododendron anthopogon, climate change, eco‐metabolomics, untargeted metabolomic,
- Publikační typ
- časopisecké články MeSH
Climate change profoundly impacts plants. However, our understanding of plant responses to climate largely relies on plant morphology and physiology, while plant metabolomic responses, especially those within plant roots, have received much less attention. Understanding root metabolomic variation is key to understanding cellular-level plant responses to changing climatic conditions. In this study, we investigated the individual and interactive effects of temperature and soil moisture on the root metabolome of the alpine Himalayan dwarf shrub Rhododendron anthopogon. Using an untargeted metabolomics approach, we analyzed shifts in metabolomic profiles in multivariate space and identified metabolites most responsive to climatic variation. Our results revealed that soil moisture exerted the strongest influence on root metabolomic profiles, followed by the interactive effects of temperature and moisture, with temperature alone explaining the least variation. Notably, approximately 75% of metabolites significantly affected by climate responded to the interaction between temperature and moisture, suggesting that temperature effects are largely moisture-dependent. Multiple classes of primary and secondary metabolites were influenced by climate, with flavonoids, alkaloids, and triterpenoids showing the most pronounced responses. Pathway analysis indicated the presence of several climate-sensitive metabolites involved in key metabolic pathways. The most responsive metabolites were phenolics, glycosides, and amino acids. These metabolites formed interconnected networks, acting as hub compounds likely playing pivotal roles in regulating plant responses to climatic variability. Our findings underscore the complex interplay between climatic factors in shaping root metabolomic profiles and suggest that climate change will impact plant health and productivity, possibly also affecting plant interactions with soil biota.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague 4 Czech Republic
Zobrazit více v PubMed
Abdel‐Lateif, K. , Bogusz D., and Hocher V.. 2012. “The Role of Flavonoids in the Establishment of Plant Roots Endosymbioses With Arbuscular Mycorrhiza Fungi, Rhizobia and Frankia Bacteria.” Plant Signaling & Behavior 7, no. 6: 636–641. 10.4161/psb.20039. PubMed DOI PMC
Alamgir, A. N. M. 2018. “Phytoconstituents—Active and Inert Constituents, Metabolic Pathways, Chemistry and Application of Phytoconstituents, Primary Metabolic Products, and Bioactive Compounds of Primary Metabolic Origin.” In Therapeutic Use of Medicinal Plants and Their Extracts: Phytochemistry and Bioactive Compounds, edited by Alamgir A. N. M., vol. 2, 25–164. Springer International Publishing.
Alhaithloul, H. A. , Soliman M. H., Ameta K. L., El‐Esawi M. A., and Elkelish A.. 2019. “Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha Piperita and PubMed DOI PMC
Ali, S. , and Glick B. R.. 2024. “Root Exudate Metabolites Alter Food Crops Microbiomes, Impacting Plant Biocontrol and Growth.” Crops 4, no. 1: 43–54. 10.3390/crops4010004. DOI
Anic, V. , Hinojosa L. F., Díaz‐Forester J., et al. 2010. “Influence of Soil Chemical Variables and Altitude on the Distribution of High‐Alpine Plants: The Case of the Andes of Central Chile.” Arctic, Antarctic, and Alpine Research 42, no. 2: 152–163. 10.1657/1938-4246-42.2.152. DOI
Ayele, D. G. , and Zewotir T. T.. 2016. “Application of Linear Mixed Model: The Effect of Climatic Factors on the Wood Anatomy of Two Eucalypt Clones.” International Journal of Plant & Soil Science 12, no. 1: 1–12. 10.9734/IJPSS/2016/27726. DOI
Badri, D. V. , and Vivanco J. M.. 2009. “Regulation and Function of Root Exudates.” Plant, Cell & Environment 32, no. 6: 666–681. PubMed
Baker, N. R. , Zhalnina K., Yuan M., et al. 2022. “Nutrient and Moisture Limitation Reveal Keystone Metabolites That Link Switchgrass Rhizosphere Metabolome and Microbiome Dynamics.” bioRxiv. 10.1101/2022.06.20.496911. PubMed DOI PMC
Baral, B. , Shrestha Vaidya G., Maharjan B. L., and Teixeira da Silva J. A.. 2015. “Phytochemical and Antimicrobial Characterization of Rhododendron Anthopogon From High Nepalese Himalaya.” Botanica Lithuanica 20, no. 2: 142–152. 10.2478/BOTLIT-2014-0009. DOI
Basnett, S. , and Ganesan R.. 2022. “A Comprehensive Review on the Taxonomy, Ecology, Reproductive Biology, Economic Importance and Conservation Status of Indian Himalayan Rhododendrons.” Botanical Review 88, no. 4: 505–544. 10.1007/s12229-021-09273-z. DOI
Bates, D. , Mächler M., Bolker B., and Walker S.. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67: 1–48.
Batushansky, A. , Kirma M., Grillich N., et al. 2015. “The Transporter GAT1 Plays an Important Role in GABA‐Mediated Carbon‐Nitrogen Interactions in Arabidopsis.” Frontiers in Plant Science 6: 785. 10.3389/fpls.2015.00785. PubMed DOI PMC
Bertamini, M. , Grando M. S., Zocca P., Pedrotti M., Lorenzi S., and Cappellin L.. 2019. “Linking Monoterpenes and Abiotic Stress Resistance in Grapevines.” BIO Web of Conferences 13: 01003. 10.1051/bioconf/20191301003. DOI
Bhattacharya, A. 2022. “Lipid Metabolism in Plants Under Low‐Temperature Stress: A Review.” In Physiological Processes in Plants Under Low Temperature Stress, 409–516. Springer. 10.1007/978-981-16-9037-2_5. DOI
Bhattacharyya, A. , Pablo C. H. D., Mavrodi O. V., Weller D. M., Thomashow L. S., and Mavrodi D. V.. 2021. “Rhizosphere Plant‐Microbe Interactions Under Water Stress.” In Advances in Applied Microbiology, 65–113. Springer. 10.1016/BS.AAMBS.2021.03.001. PubMed DOI PMC
Bligny, R. , and Aubert S.. 2012. Specificities of Metabolite Profiles in Alpine Plants, 99–120. Springer. 10.1007/978-3-7091-0136-0_8. DOI
Brown, R. W. , Chadwick D. R., Bending G. D., et al. 2022. “Nutrient (C, N and P) Enrichment Induces Significant Changes in the Soil Metabolite Profile and Microbial Carbon Partitioning.” Soil Biology & Biochemistry 172: 108779. 10.1016/j.soilbio.2022.108779. DOI
Carter, M. R. , and Gregorich E. G.. 2007. Soil Sampling and Methods of Analysis. 2nd ed. CRC Press. 10.1201/9781420005271. DOI
Carvalhais, L. C. , Dennis P. G., Fan B., et al. 2013. “Linking Plant Nutritional Status to Plant‐Microbe Interactions.” PLoS One 8, no. 7: e68555. 10.1371/JOURNAL.PONE.0068555. PubMed DOI PMC
Chakauya, E. , Coxon K. M., Wei M., et al. 2008. “Towards Engineering Increased Pantothenate (Vitamin B 5) Levels in Plants.” Plant Molecular Biology 68: 493–503. 10.1007/s11103-008-9386-5. PubMed DOI
Chakauya, E. , Coxon K. M., Whitney H. M., Ashurst J. L., Abell C., and Smith A. G.. 2006. “Pantothenate Biosynthesis in Higher Plants: Advances and Challenges.” Physiologia Plantarum 126, no. 3: 319–329. 10.1111/j.1399-3054.2006.00683.x. DOI
Chalker‐Scott, L. , and Fuchigami L. H.. 2018. “The Role of Phenolic Compounds in Plant Stress Responses.” In Low Temperature Stress Physiology in Crops, 67–80. Intech Open. 10.1201/9781351074186-6. DOI
Cheng, N. , Peng Y., Kong Y., Li J., and Sun C.. 2018. “Combined Effects of Biochar Addition and Nitrogen Fertilizer Reduction on the Rhizosphere Metabolomics of Maize ( DOI
Cong, Y. , Li M.‐H., Liu K., Dang Y.‐C., Han H.‐D., and He H. S.. 2019. “Decreased Temperature With Increasing Elevation Decreases the End‐Season Leaf‐To‐Wood Reallocation of Resources in Deciduous Betula Ermanii Cham. Trees.” Forests 10, no. 2: 166. 10.3390/F10020166. DOI
Couvillion, S. P. , Yang I., Eder J., Bell S., and Hofmockel K.. 2024. “Unveiling Lipid Chemodiversity in Root Exudates: A Comprehensive Characterization of the Exudate Metabo‐Lipidome in Tall Wheatgrass.” 10.1101/2024.03.22.586263. DOI
de Sousa Araújo, S. , dos Santos A. L. W., and Duque A. S.. 2019. “Engineering Polyamine Metabolic Pathways for Abiotic Stress Tolerance in Plants.” In Osmoprotectant‐Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives, 287–318. Springer International Publishing. 10.1007/978-3-030-27423-8_14. DOI
Dell'Aglio, E. , Boycheva S., and Fitzpatrick T. B.. 2017. “The Pseudoenzyme PDX1. 2 Sustains Vitamin B6 Biosynthesis as a Function of Heat Stress.” Plant Physiology 174, no. 4: 2098–2112. 10.1104/pp.17.00531. PubMed DOI PMC
Delory, B. , Callaway R. M., and Semchenko M.. 2023. “A Trait‐Based Framework Linking the Soil Metabolome to Plant‐Soil Feedbacks.” New Phytologist 241: 1910–1921. 10.1111/nph.19490. PubMed DOI
Denby, K. J. , and Last R. L.. 1999. “Diverse Regulatory Mechanisms of Amino Acid Biosynthesis in Plants.” In Genetic Engineering: Principles and Methods, 173–189. Springer. 10.1007/978-1-4615-4707-5_9. PubMed DOI
Dobhal, P. , Purohit V. K., Chandra S., et al. 2024. “Climate‐Induced Changes in Essential Oil Production and Terpene Composition in Alpine Aromatic Plants.” Plant Stress 12: 100445. 10.1016/j.stress.2024.100445. DOI
Dong, G. R. , Zhao S. M., Ding Y., et al. 2025. “Rice Glycosyltransferase OsDUGT1 Is Involved in Heat Stress Tolerance by Glycosylating Flavonoids and Regulating Flavonoid Metabolism.” Frontiers in Plant Science 15: 1516990. PubMed PMC
Dornbos, D. L. , Mullen R. E., and Hammond E. G.. 1989. “Phospholipids of Environmentally Stressed Soybean Seeds.” Journal of the American Oil Chemists' Society 66: 1371–1373. 10.1007/bf03022763. DOI
Du, Z. , Xing Y., and Han T.. 2024. “Effects of Environment and Genotype‐By‐Environment Interaction on Phenotype of DOI
Epskamp, S. , Cramer A. O., Waldorp L. J., Schmittmann V. D., and Borsboom D.. 2012. “Qgraph: Network Visualizations of Relationships in Psychometric Data.” Journal of Statistical Software 48: 1–18. 10.18637/jss.v048.i04. DOI
Escandón, M. , Meijón M., Valledor L., Pascual J., Pinto G., and Cañal M. J.. 2018. “Metabolome Integrated Analysis of High‐Temperature Response in PubMed DOI PMC
Esterhuizen, L. , Ampimah N., Yandeau‐Nelson M. D., Nikolau B. J., Sparks E. E., and Saha R.. 2024. “AraRoot—A Comprehensive Genome‐Scale Metabolic Model for the Arabidopsis Root System,” bioRxiv, 2024‐07. 10.1101/2024.07.28.605515. DOI
Gargallo‐Garriga, A. , Ayala‐Roque M., Sardans J., et al. 2017. “Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands.” Metabolites 7, no. 3: 44. 10.3390/METABO7030044. PubMed DOI PMC
Gashu, K. , Verma P. K., Acuña T., Agam N., Bustan A., and Fait A.. 2023. “Temperature Differences Between Sites Lead to Altered Phenylpropanoid Metabolism in a Varietal Dependent Manner.” Frontiers in Plant Science 14: 1239852. 10.3389/fpls.2023.1239852. PubMed DOI PMC
Gaufichon, L. , Rothstein S. J., and Suzuki A.. 2016. “Asparagine Metabolic Pathways in Arabidopsis.” Plant and Cell Physiology 57, no. 4: 675–689. 10.1093/pcp/pcv184. PubMed DOI
Georgii, E. , Jin M., Zhao J., et al. 2017. “Relationships Between Drought, Heat and Air Humidity Responses Revealed by Transcriptome‐Metabolome Co‐Analysis.” BMC Plant Biology 17, no. 1: 120. 10.1186/S12870-017-1062-Y. PubMed DOI PMC
Ghadirnezhad Shiade, S. R. , Fathi A., Taghavi Ghasemkheili F., Amiri E., and Pessarakli M.. 2023. “Plants' Responses Under Drought Stress Conditions: Effects of Strategic Management Approaches—A Review.” Journal of Plant Nutrition 46, no. 9: 2198–2230. 10.1080/01904167.2022.2105720. DOI
González‐García, M. P. , Conesa C. M., Lozano‐Enguita A., et al. 2022. “Temperature Changes in the Root Ecosystem Affect Plant Functionality.” Plant Communications 4, no. 3: 100514. 10.1016/j.xplc.2022.100514. PubMed DOI PMC
Gouot, J. , Smith J., Holzapfel B., and Barril C.. 2020. “Climate Change: A Summary of the Effect of High Temperature on Red Grape Flavonoid Composition and Biosynthesis.” Wine & Viticulture Journal 35, no. 1: 35–36, 38–41. 10.3316/informit.943504836981140. DOI
Guo, Q. , Li X., Niu L., Jameson P. E., and Zhou W.. 2021. “Transcription‐Associated Metabolomic Adjustments in Maize Occur During Combined Drought and Cold Stress.” Plant Physiology 186, no. 1: 677–695. PubMed PMC
Guy, C. , Kaplan F., Kopka J., Selbig J., and Hincha D. K.. 2008. “Metabolomics of Temperature Stress.” Physiologia Plantarum 132, no. 2: 220–235. PubMed
Hadavi, E. , and Ghazijahani N.. 2022. “Simple Organic Acids as Plant Biostimulants.” In Biostimulants: Exploring Sources and Applications, 71–105. Springer Nature Singapore. 10.1007/978-981-16-7080-0_4. DOI
Han, M. , Wang S., Wu L., et al. 2022. “Effects of Exogenous l‐Asparagine on Poplar Biomass Partitioning and Root Morphology.” International Journal of Molecular Sciences 23, no. 21: 13126. 10.3390/ijms232113126. PubMed DOI PMC
Harrell, F. E., Jr. , and Harrell M. F. E. Jr. 2019. “Package ‘Hmisc’.” CRAN 2019: 235–236.
Hartmann, T. 2007. “From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism.” Phytochemistry 68, no. 22–24: 2831–2846. 10.1016/j.phytochem.2007.09.017. PubMed DOI
Hassan, S. , and Mathesius U.. 2012. “The Role of Flavonoids in Root–Rhizosphere Signalling: Opportunities and Challenges for Improving Plant–Microbe Interactions.” Journal of Experimental Botany 63, no. 9: 3429–3444. 10.1093/jxb/ers090. PubMed DOI
He, W. , He W., He W., et al. 2021. “Effect of N Addition on Root Exudation and Associated Microbial N Transformation Under Sibiraea Angustata in an Alpine Shrubland.” Plant and Soil 460, no. 1: 469–481. 10.1007/S11104-020-04753-4. DOI
Heinemann, B. , and Hildebrandt T. M.. 2021. “The Role of Amino Acid Metabolism in Signaling and Metabolic Adaptation to Stress‐Induced Energy Deficiency in Plants.” Journal of Experimental Botany 72, no. 13: 4634–4645. 10.1093/JXB/ERAB182. PubMed DOI
Heiniger, R. W. , McBride R. G., and Clay D. E.. 2003. “Using Soil Electrical Conductivity to Improve Nutrient Management.” Agronomy Journal 95, no. 3: 508–519.
Henderson, D. , Sedio B. E., Tello J. S., et al. 2023. “Ecological Metabolomics of Tropical Tree Communities Across an Elevational Gradient: Implications for Chemically‐Mediated Biotic Interactions and Species Diversity.” bioRxiv. 10.1101/2023.10.04.560880. DOI
Henn, J. J. , Anderson K. E., Brigham L. M., et al. 2024. “Long‐Term Alpine Plant Responses to Global Change Drivers Depend on Functional Traits.” Ecology Letters 27, no. 10: e14518. 10.1111/ele.14518. PubMed DOI
Hennion, N. , Durand M., Vriet C., et al. 2019. “Sugars en Route to the Roots. Transport, Metabolism and Storage Within Plant Roots and Towards Microorganisms of the Rhizosphere.” Physiologia Plantarum 165, no. 1: 44–57. 10.1111/ppl.12751. PubMed DOI
Hildebrandt, T. M. , Nesi A. N., Araújo W. L., and Braun H. P.. 2015. “Amino Acid Catabolism in Plants.” Molecular Plant 8, no. 11: 1563–1579. 10.1016/j.molp.2015.09.005. PubMed DOI
Hou, Q. , Ufer G., and Bartels D.. 2016. “Lipid Signalling in Plant Responses to Abiotic Stress.” Plant, Cell & Environment 39, no. 5: 1029–1048. 10.1111/pce.12666. PubMed DOI
Hu, X. , Liu W., Yan Y., Deng H., and Cai Y.. 2023. “Tropinone Reductase: A Comprehensive Review on Its Role as the Key Enzyme in Tropane Alkaloids Biosynthesis.” International Journal of Biological Macromolecules 253: 127377. 10.1016/j.ijbiomac.2023.127377. PubMed DOI
Huang, H. , Ran J., Ji M., et al. 2020. “Water Content Quantitatively Affects Metabolic Rates Over the Course of Plant Ontogeny.” New Phytologist 228, no. 5: 1524–1534. 10.1111/NPH.16808. PubMed DOI
Ihnatowicz, A. , Siwinska J., Perkowska I., et al. 2024. “Genes to Specialized Metabolites: Accumulation of Scopoletin, Umbelliferone and Their Glycosides in Natural Populations of PubMed DOI PMC
Innocenti, G. , Dall'Acqua S., Scialino G., et al. 2010. “Chemical Composition and Biological Properties of Rhododendron Anthopogon Essential Oil.” Molecules 15, no. 4: 2326–2338. 10.3390/molecules15042326. PubMed DOI PMC
Intergovernmental Panel on Climate Change (IPCC) . 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press.
Jamali, A. , Lanoue A., Gontier E., and Dauwe R.. 2015. “Unravelling the Architecture and Dynamics of Tropane Alkaloid Biosynthesis Pathways Using Metabolite Correlation Networks.” Phytochemistry 116: 94–103. 10.1016/j.phytochem.2015.03.005. PubMed DOI
Jamieson, M. A. , Trowbridge A. M., Raffa K. F., and Lindroth R. L.. 2012. “Consequences of Climate Warming and Altered Precipitation Patterns for Plant‐Insect and Multitrophic Interactions.” Plant Physiology 160, no. 4: 1719–1727. 10.1104/pp.112.206524. PubMed DOI PMC
Joller, C. , Schläppi K., and Sasse J.. 2024. “Time‐Resolved, Integrated Multi‐Omic Analysis Reveals Central Role of Amino Acid Pathways for Defense Responses in DOI
Jones, D. L. , and Darrah P. R.. 1994. “Role of Root Derived Organic Acids in the Mobilization of Nutrients From the Rhizosphere.” Plant and Soil 166: 247–257. 10.1007/bf00008338. DOI
Joshi, J. , Hasnain G., Logue T., et al. 2021. “A Core Metabolome Response of Maize Leaves Subjected to Long‐Duration Abiotic Stresses.” Metabolites 11, no. 11: 797. 10.3390/metabo11110797. PubMed DOI PMC
Jozwiak, A. , Sonawane P. D., Panda S., et al. 2020. “Plant Terpenoid Metabolism Co‐Opts a Component of the Cell Wall Biosynthesis Machinery.” Nature Chemical Biology 16, no. 7: 740–748. 10.1038/s41589-020-0541-x. PubMed DOI
Kala, C. P. 2005. “Indigenous Uses, Population Density, and Conservation of Threatened Medicinal Plants in Protected Areas of the Indian Himalayas.” Conservation Biology 19, no. 2: 368–378.
Kangi, E. 2024. “Investigating Changing Macronutrient Dynamics at a Plant, Microbe and Plant‐Microbe Interactions Scale.” Doctoral diss., West Virginia University.
Kim, H. U. 2020. “Lipid Metabolism in Plants.” Plants 9, no. 7: 871. 10.3390/plants9070871. PubMed DOI PMC
Kitashova, A. , Lehmann M., Schwenkert S., Münch M., Leister D., and Nägele T.. 2024. “Insights Into Physiological Roles of Flavonoids in Plant Cold Acclimation.” Plant Journal 120, no. 5: 2269–2285. 10.1111/tpj.17097. PubMed DOI PMC
Kohout, P. 2017. “Biogeography of Ericoid Mycorrhiza.” In Biogeography of Mycorrhizal Symbiosis, 179–193. Springer International Publishing. 10.1007/978-3-319-56363-3_9. DOI
Kolupaev, Y. E. , Kokorev O. I., Shevchenko M. V., Marenych M. M., and Kolomatska V. P.. 2024. “Participation of γ‐Aminobutyric Acid in Cell Signaling Processes and Plant Adaptation to Abiotic Stressors.” Studia Biologica 18, no. 1: 125–154. 10.30970/sbi.1801.752. DOI
Körner, C. , and Kèorner C.. 1999. “Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems.”
Kuznetsova, A. , Brockhoff P. B., and Christensen R. H.. 2017. “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software 82, no. 13: 1–26.
Kwasniewski, M. , Daszkowska‐Golec A., Janiak A., et al. 2016. “Transcriptome Analysis Reveals the Role of the Root Hairs as Environmental Sensors to Maintain Plant Functions Under Water‐Deficiency Conditions.” Journal of Experimental Botany 67, no. 4: 1079–1094. 10.1093/JXB/ERV498. PubMed DOI PMC
Laftouhi, A. , Eloutassi N., Drioua S., et al. 2023. “Impact of Water Stress and Temperature on Metabolites and Essential Oil of DOI
Laftouhi, A. , Eloutassi N., Ech‐Chihbi E., et al. 2023. “Impact of Climatic Disturbances on the Chemical Compositions and Metabolites of DOI
Latimer, S. , Li Y., Nguyen T. T. H., et al. 2018. “Metabolic Reconstructions Identify Plant 3‐Methylglutaconyl‐CoA Hydratase That Is Crucial for Branched‐Chain Amino Acid Catabolism in Mitochondria.” Plant Journal 95, no. 2: 358–370. 10.1111/tpj.13955. PubMed DOI
Le Roy, J. , Huss B., Creach A., Hawkins S., and Neutelings G.. 2016. “Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants.” Frontiers in Plant Science 7: 735. 10.3389/fpls.2016.00735. PubMed DOI PMC
Li, H. , Shi H., Xu P., and Yu D.. 2022. “Metabolomics and Microbiome Reveal Potential Root Microbiota Affecting the Alkaloidal Metabolome in Aconitum Vilmorinianum Kom.” BMC Microbiology 22, no. 1: 70. 10.1186/s12866-022-02486-1. PubMed DOI PMC
Li, J. , and Prentice I. C.. 2024. “Global Patterns of Plant Functional Traits and Their Relationships to Climate.” Communications Biology 7, no. 1: 1136. 10.1038/s42003-024-06777-3. PubMed DOI PMC
Li, N. , Xu C., Li‐Beisson Y., and Philippar K.. 2016. “Fatty Acid and Lipid Transport in Plant Cells.” Trends in Plant Science 21, no. 2: 145–158. 10.1016/j.tplants.2015.10.011. PubMed DOI
Li, Q. , Zheng Q., Shen W., et al. 2015. “Understanding the Biochemical Basis of Temperature‐Induced Lipid Pathway Adjustments in Plants.” Plant Cell 27, no. 1: 86–103. 10.1105/tpc.114.134338. PubMed DOI PMC
Li, Z. , Rubert‐Nason K. F., Rubert‐Nason K. F., et al. 2021. “Root Secondary Metabolites in PubMed DOI
Liang, Y. , Huang Y., Liu C., Chen K., and Li M.. 2023. “Functions and Interaction of Plant Lipid Signalling Under Abiotic Stresses.” Plant Biology 25, no. 3: 361–378. 10.1111/plb.13507. PubMed DOI
Lin, Y. , Zhang P., Wu Q.‐H., et al. 2022. “Leymus Chinensis Adapts to Degraded Soil Environments by Changing Metabolic Pathways and Root Exudate Components.” Frontiers in Plant Science 13: 894346. 10.3389/fpls.2022.894346. PubMed DOI PMC
Liu, N. J. , Hou L. P., Bao J. J., Wang L. J., and Chen X. Y.. 2021. “Sphingolipid Metabolism, Transport, and Functions in Plants: Recent Progress and Future Perspectives.” Plant Communications 2, no. 5: 100214. 10.1016/j.xplc.2021.100214. PubMed DOI PMC
Liu, X. , Heinzle J., Tian Y., et al. 2024. “Long‐Term Soil Warming Changes the Profile of Primary Metabolites in Fine Roots of Norway Spruce in a Temperate Montane Forest.” Plant, Cell and Environment 47: 4212–4226. 10.1111/pce.15019. PubMed DOI
Lone, R. , Bhat A., Nazim N., Malla N. A., Rohella G. K., and Mohamed H. I.. 2024. “Role of Phenolics in Plant–Microbe Interaction: A Review.” In Plant Phenolics in Biotic Stress Management, 1–33. Springer Nature Singapore. 10.1007/978-981-99-3334-1_1. DOI
Lu, M. , He W., Xu Z., Crabbe M. J. C., and De J.. 2023. “The Effect of High Altitude on Ephedrine Content and Metabolic Variations in Two Species of Ephedra.” Frontiers in Plant Science 14: 1236145. 10.3389/fpls.2023.1236145. PubMed DOI PMC
Magaña Ugarte, R. , Escudero A., and Gavilán R. G.. 2018. “Metabolic and Physiological Responses of Mediterranean High‐Mountain and Alpine Plants to Combined Abiotic Stresses.” Physiologia Plantarum 165, no. 2: 403–412. 10.1111/PPL.12898. PubMed DOI
Maitra, P. , Hrynkiewicz K., Szuba A., et al. 2024. “Metabolic Niches in the Rhizosphere Microbiome: Dependence on Soil Horizons, Root Traits and Climate Variables in Forest Ecosystems.” Frontiers in Plant Science 15: 1344205. 10.3389/fpls.2024.1344205. PubMed DOI PMC
Majumdar, R. , Barchi B., Turlapati S. A., et al. 2016. “Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post‐Transcriptional Level.” Frontiers in Plant Science 7: 78. 10.3389/fpls.2016.00078. PubMed DOI PMC
Majumdar, R. , Minocha R., and Minocha S. C.. 2015. “Ornithine: At the Crossroads of Multiple Paths to Amino Acids and Polyamines.” In Amino Acids in Higher Plants, 156–176. CAB International. 10.1079/9781780642635.0156. DOI
Mansinhos, I. , Gonçalves S., Rodríguez‐Solana R., Ordóñez‐Díaz J. L., Moreno‐Rojas J. M., and Romano A.. 2022. “Impact of Temperature on Phenolic and Osmolyte Contents in In Vitro Cultures and Micropropagated Plants of Two Mediterranean Plant Species, Lavandula Viridis and Thymus Lotocephalus.” Plants 11, no. 24: 3516. 10.3390/plants11243516. PubMed DOI PMC
Marr, S. , Hageman J. A., Wehrens R., van Dam N. M., Bruelheide H., and Neumann S.. 2021. “LC‐MS Based Plant Metabolic Profiles of Thirteen Grassland Species Grown in Diverse Neighbourhoods.” Scientific Data 8, no. 1: 52. 10.1038/s41597-021-00836-8. PubMed DOI PMC
Martínez‐Lorente, S. E. , Martí‐Guillén J. M., Pedreño M. Á., Almagro L., and Sabater‐Jara A. B.. 2024. “Higher Plant‐Derived Biostimulants: Mechanisms of Action and Their Role in Mitigating Plant Abiotic Stress.” Antioxidants 13, no. 3: 318. 10.3390/antiox13030318. PubMed DOI PMC
McCormack, M. L. , Dickie I. A., Eissenstat D. M., et al. 2015. “Redefining Fine Roots Improves Understanding of Below‐Ground Contributions to Terrestrial Biosphere Processes.” New Phytologist 207, no. 3: 505–518. 10.1111/nph.13363. PubMed DOI
McCormick, D. B. , and Chen H.. 1999. “Update on Interconversions of Vitamin B‐6 With Its Coenzyme.” Journal of Nutrition 129, no. 2: 325–327. 10.1093/jn/129.2.325. PubMed DOI
McMaster, G. S. , and Wilhelm W. W.. 1997. “Growing Degree‐Days: One Equation, Two Interpretations.” Agricultural and Forest Meteorology 87, no. 4: 291–300. 10.1016/s0168-1923(97)00027-0. DOI
Mdlalose, S. P. , Raletsena M., Ntushelo K., Bodede O., and Modise D. M.. 2022. “1H‐NMR‐Based Metabolomic Study of Potato Cultivars, Markies and Fianna, Exposed to Different Water Regimes.” Frontiers in Sustainable Food Systems 6: 801504. 10.3389/fsufs.2022.801504. DOI
Mishra, R. , and Pandey I. K.. 2022. “Metabolites and Abiotic Stress Tolerance in Plants.” In Advancements in Developing Abiotic Stress‐Resilient Plants, 287–304. Routledge. 10.1201/9781003159636-14. DOI
Mohiuddin, A. K. 2019. “Environmental Factors on Medicinal Plants.” American Journal of Plant Biology 4, no. 1: 1–7.
Mukherjee, D. , Mukherjee A., and Ghosh T. C.. 2016. “Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in PubMed DOI PMC
Naikoo, M. I. , Dar M. I., Raghib F., et al. 2019. “Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance.” In Plant Signaling Molecules, 157–168. Elsevier. 10.1016/b978-0-12-816451-8.00009-5. DOI
Naji, E. , Abdulfatah H. F., and AlZawi K.. 2024. “Plant Secondary Metabolites, Their Classification and Biological Roles: A Review.” Journal of University of Anbar for Pure Science 18, no. 1: 106–115.
Nan, L.‐L. , Xia J., Wu S.‐W., and Yang L.‐L.. 2024. “Metabolomics Reveal Root Differential Metabolites of Different Root‐Type Alfalfa Under Drought Stress.” Frontiers in Plant Science 15: 1341826. 10.3389/fpls.2024.1341826. PubMed DOI PMC
Nataraj, N. , Hussain M., Ibrahim M. H., et al. 2022. “Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia Brevifolia Wall ex Dc. From the Western Himalayas.” Frontiers in Ecology and Evolution 10: 864728. 10.3389/fevo.2022.864728. DOI
Ni, J. J. , Cheng Y. F., Bordoloi S., et al. 2019. “Investigating Plant Root Effects on Soil Electrical Conductivity: An Integrated Field Monitoring and Statistical Modelling Approach.” Earth Surface Processes and Landforms 44, no. 3: 825–839.
Nugent, J. 2005. Calculating Growing Degree Days. Northwest Michigan Horticultural Research Station. http://www.maes.msu.edu/nwmihort/gdd_calc.html.
Ober, D. , and Kaltenegger E.. 2009. “Pyrrolizidine Alkaloid Biosynthesis, Evolution of a Pathway in Plant Secondary Metabolism.” Phytochemistry 70, no. 15–16: 1687–1695. 10.1016/j.phytochem.2009.05.017. PubMed DOI
Oksanen, J. , Kindt R., Legendre P., et al. 2007. “The Vegan Package.” Community Ecology Package, 10(631–637), 719.
Pandey, M. , Verma L., Kohli P. S., Singh B., Kochi A., and Giri J.. 2025. “A Lipid Synthase Maintains Metabolic Flux for Jasmonate Synthesis to Regulate Root Growth and Phosphate Homeostasis.” Plant Physiology 197, no. 2: kiae453. PubMed
Pang, Z. , Xu L., Viau C., et al. 2024. “MetaboAnalystR 4.0: A Unified LC‐MS Workflow for Global Metabolomics.” Nature Communications 15, no. 1: 3675. 10.1038/s41467-024-48009-6. PubMed DOI PMC
Pang, Z. , Zhou G., Ewald J., et al. 2022. “Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi‐Omics Integration and Covariate Adjustment of Global Metabolomics Data.” Nature Protocols 17, no. 8: 1735–1761. 10.1038/s41596-022-00710-w. PubMed DOI
Pant, P. , Pandey S., and Dall'Acqua S.. 2021. “The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review.” Chemistry & Biodiversity 18, no. 11: e2100345. 10.1002/CBDV.202100345. PubMed DOI
Patil, J. R. , Mhatre K. J., Yadav K., Yadav L. S., Srivastava S., and Nikalje G. C.. 2024. “Flavonoids in Plant‐Environment Interactions and Stress Responses.” Discover Plants 1, no. 1: 1–19. 10.1007/s44372-024-00063-6. DOI
Pichersky, E. , and Gang D. R.. 2000. “Genetics and Biochemistry of Secondary Metabolites in Plants: An Evolutionary Perspective.” Trends in Plant Science 5, no. 10: 439–445. 10.1016/s1360-1385(00)01741-6. PubMed DOI
Pičmanová, M. , Neilson E. H., Motawia M. S., et al. 2015. “A Recycling Pathway for Cyanogenic Glycosides Evidenced by the Comparative Metabolic Profiling in Three Cyanogenic Plant Species.” Biochemical Journal 469, no. 3: 375–389. 10.1042/bj20150390. PubMed DOI
Planchet, E. , and Limami A. M.. 2015. “Amino Acid Synthesis Under Abiotic Stress.” In Amino Acids in Higher Plants, 262–276. CAB International. 10.1079/9781780642635.0262. DOI
Pollard, M. , Beisson F., Li Y., and Ohlrogge J. B.. 2008. “Building Lipid Barriers: Biosynthesis of Cutin and Suberin.” Trends in Plant Science 13, no. 5: 236–246. 10.1016/j.tplants.2008.03.003. PubMed DOI
Pregitzer, K. S. , DeForest J. L., Burton A. J., Allen M. F., Ruess R. W., and Hendrick R. L.. 2002. “Fine Root Architecture of Nine North American Trees.” Ecological Monographs 72, no. 2: 293–309.
Qaderi, M. M. , Martel A. B., and Strugnell C. A.. 2023. “Environmental Factors Regulate Plant Secondary Metabolites.” Plants 12, no. 3: 447. 10.3390/plants12030447. PubMed DOI PMC
Qu, P. , Wang B., Qi M., et al. 2024. “Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota.” International Journal of Molecular Sciences 25, no. 14: 7786. 10.3390/ijms25147786. PubMed DOI PMC
Ramachandran, A. , and Raj R. D.. 2024. “Adapting to A Warming World: Climate Change and Its Effects on Plant Phytochemicals.” Ecology, Environment and Conservation 30, no. 4: 1828–1832. 10.53550/eec.2024.v30i04.060. DOI
Rani, R. , Khan M. A., Kayani W. K., Ullah S., Naeem I., and Mirza B.. 2017. “Metabolic Signatures Altered by In Vitro Temperature Stress in Ajuga Bracteosa Wall. Ex. Benth.” Acta Physiologiae Plantarum 39: 1–10. 10.1007/s11738-017-2394-9. DOI
Rasmann, S. , and Agrawal A. A.. 2008. “In Defense of Roots: A Research Agenda for Studying Plant Resistance to Belowground Herbivory.” Plant Physiology 146, no. 3: 875–880. 10.1104/pp.107.112045. PubMed DOI PMC
Rathore, N. , Kumar P., Mehta N., Swarnkar M. K., Shankar R., and Chawla A.. 2022. “Time‐Series RNA‐Seq Transcriptome Profiling Reveals Novel Insights About Cold Acclimation and De‐Acclimation Processes in an Evergreen Shrub of High Altitude.” Scientific Reports 12, no. 1: 15553. 10.1038/s41598-022-19834-w. PubMed DOI PMC
Rathore, N. , Thakur D., Kumar D., Chawla A., and Kumar S.. 2021. “Time‐Series Eco‐Metabolomics Reveals Extensive Reshuffling in Metabolome During Transition from Cold Acclimation to De‐Acclimation in an Alpine Shrub.” Physiologia Plantarum 173, no. 4: 1824–1840. PubMed
Read, D. B. , Bengough A. G., Gregory P. J., et al. 2003. “Plant Roots Release Phospholipid Surfactants That Modify the Physical and Chemical Properties of Soil.” New Phytologist 157, no. 2: 315–326. 10.1046/j.1469-8137.2003.00665.x. PubMed DOI
Robbins, N. E. , and Dinneny J. R.. 2015. “The Divining Root: Moisture‐Driven Responses of Roots at the Micro‐ and Macro‐Scale.” Journal of Experimental Botany 66, no. 8: 2145–2154. PubMed PMC
Sah, S. K. , and Sofo A.. 2024. “Editorial: The Role of Lipids in Abiotic Stress Responses.” Frontiers in Plant Science 15: 1378485. 10.3389/fpls.2024.1378485. PubMed DOI PMC
Samsami, H. , and Maali‐Amiri R.. 2024. “Global Insights Into Intermediate Metabolites: Signaling, Metabolic Divergence and Stress Response Modulation in Plants.” Plant Physiology and Biochemistry 213: 108862. 10.1016/j.plaphy.2024.108862. PubMed DOI
Sardans, J. , Sardans J., Gargallo‐Garriga A., et al. 2020. “Ecometabolomics for a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change.” Metabolites 10, no. 6: 239. 10.3390/METABO10060239. PubMed DOI PMC
Sato, D. , Shimizu N., Shimizu Y., et al. 2014. “Synthesis of Glycosides of Resveratrol, Pterostilbene, and Piceatannol, and Their Anti‐Oxidant, Anti‐Allergic, and Neuroprotective Activities.” Bioscience, Biotechnology, and Biochemistry 78, no. 7: 1123–1128. 10.1080/09168451.2014.921551. PubMed DOI
Schertl, P. , Danne L., and Braun H. P.. 2017. “3‐Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in PubMed DOI PMC
Schmid, K. M. , and Ohlrogge J. B.. 2002. “Chapter 4: Lipid Metabolism in Plants.” In Biochemistry of Lipids, Lipoproteins and Membranes, 4th ed., 93–126. Springer. 10.1016/s0167-7306(02)36006-x. DOI
Schuster, J. , and Binder S.. 2005. “The Mitochondrial Branched‐Chain Aminotransferase (AtBCAT‐1) is Capable to Initiate Degradation of Leucine, Isoleucine and Valine in Almost All Tissues in PubMed DOI
Secomandi, E. , De Gregorio M. A., Castro‐Cegrí A., and Lucini L.. 2025. “Biochemical, Photosynthetic and Metabolomics Insights of Single and Combined Effects of Salinity, Heat, Cold and Drought in Arabidopsis.” Physiologia Plantarum 177, no. 1: e70062. 10.1111/ppl.70062. PubMed DOI PMC
Sewelam, N. , Brilhaus D., Bräutigam A., et al. 2020. “Molecular Plant Responses to Combined Abiotic Stresses Put a Spotlight on Unknown and Abundant Genes.” Journal of Experimental Botany 71, no. 16: 5098–5112. 10.1093/JXB/ERAA250. PubMed DOI
Shi, H. T. , and Chan Z. L.. 2013. “In Vivo Role of Arabidopsis Arginase in Arginine Metabolism and Abiotic Stress Response.” Plant Signaling & Behavior 8, no. 5: e24138. 10.4161/psb.24138. PubMed DOI PMC
Singh, A. , Chaubey R., Srivastava S., Kushwaha S., and Pandey R.. 2021. Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants, 343–365. Springer. 10.1007/978-981-15-6275-4_16. DOI
Singh, P. , and Choudhary K. K.. 2023. “Impacts of Climate Alterations on the Biosynthesis of Defensive Natural Products.” In Photoprotective Green Pharmacology: Challenges, Sources and Future Applications, 141–169. Springer Nature Singapore. 10.1007/978-981-99-0749-6_6. DOI
Sisó‐Terraza, P. , Luis‐Villarroya A., Fourcroy P., et al. 2016. “Accumulation and Secretion of Coumarinolignans and Other Coumarins in PubMed DOI PMC
Srivastava, A. K. , Mishra P., and Mishra A. K.. 2021. “Effect of Climate Change on Plant Secondary Metabolism: An Ecological Perspective.” In Evolutionary Diversity as a Source for Anticancer Molecules, 47–76. Elsevier. 10.1016/b978-0-12-821710-8.00003-5. DOI
Stringlis, I. A. , De Jonge R., and Pieterse C. M.. 2019. “The Age of Coumarins in Plant–Microbe Interactions.” Plant and Cell Physiology 60, no. 7: 1405–1419. 10.1093/pcp/pcz076. PubMed DOI PMC
Stuart, J. A. , and Robb E. L.. 2013. Resveratrol and Its Derivatives as Phytoalexins, 1–8. Springer. 10.1007/978-1-4614-6968-1_1. DOI
Sun, J. , Fan H., Sun D., et al. 2023. “Dynamic Changes in Terpenoids Metabolisms of Mountain‐Cultivated Ginseng Harvested at Different Months and Ages.” Plant Growth Regulation 101, no. 2: 473–487. 10.1007/s10725-023-01035-8. DOI
Sun, X. , Zhang X., Zhang G., et al. 2022. “Environmental Response to Root Secondary Metabolite Accumulation in PubMed DOI PMC
Tashi, S. , Singh B., Keitel C., and Adams M. A.. 2016. “Soil Carbon and Nitrogen Stocks in Forests Along an Altitudinal Gradient in the Eastern Himalayas and a Meta‐Analysis of Global Data.” Global Change Biology 22, no. 6: 2255–2268. 10.1111/GCB.13234. PubMed DOI
Thakur, D. , Altman J., Jandová V., Fibich P., Münzbergová Z., and Doležal J.. 2024. “Global Warming Alters Himalayan Alpine Shrub Growth Dynamics and Climate Sensitivity.” Science of the Total Environment 916: 170252. 10.1016/j.scitotenv.2024.170252. PubMed DOI
Tito, R. , Vasconcelos H. L., and Feeley K. J.. 2020. “Mountain Ecosystems as Natural Laboratories for Climate Change Experiments.” Frontiers in Forests and Global Change 3: 38. 10.3389/ffgc.2020.00038. DOI
Tsugawa, H. , Cajka T., Kind T., et al. 2015. “MS‐DIAL: Data‐Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis.” Nature Methods 12, no. 6: 523–526. 10.1038/nmeth.3393. PubMed DOI PMC
Tsunoda, T. , and van Dam N. M.. 2017. “Root Chemical Traits and Their Roles in Belowground Biotic Interactions.” Pedobiologia 65: 58–67. 10.1016/j.pedobi.2017.05.007. DOI
Tuladhar, P. , Sasidharan S., and Saudagar P.. 2021. “Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses.” In Biocontrol Agents and Secondary Metabolites, 419–441. Woodhead Publishing. 10.1016/b978-0-12-822919-4.00017-x. DOI
Wanek, W. , Borken W., Heinzle J., and Scolari M. J.. 2023. “Long‐Term Soil Warming Changes the Quantity but Not the Composition of Primary Metabolites of Tree Fine Roots.” 10.5194/egusphere-egu23-11752. DOI
Wang, G. , Wang G., Huang W., et al. 2019. “Soil Moisture Drives Microbial Controls on Carbon Decomposition in Two Subtropical Forests.” Soil Biology & Biochemistry 130: 185–194. 10.1016/J.SOILBIO.2018.12.017. DOI
Wang, L. , Chen M., Lam P. Y., Dini‐Andreote F., Dai L., and Wei Z.. 2022. “Multifaceted Roles of Flavonoids Mediating Plant‐Microbe Interactions.” Microbiome 10, no. 1: 233. 10.1186/s40168-022-01420-x. PubMed DOI PMC
Wang, Z. , and Wang C.. 2023. “Interactive Effects of Elevated Temperature and Drought on Plant Carbon Metabolism: A Meta‐Analysis.” Global Change Biology 29, no. 10: 2824–2835. 10.1111/gcb.16639. PubMed DOI
Wei, T. , Simko V., Levy M., Xie Y., Jin Y., and Zemla J.. 2017. “Package ‘Corrplot’.” Stat 56, no. 316: e24.
Wei, W. , Li S., Wang Y., et al. 2021. “Metabolome‐Based Genome‐Wide Association Study Provides Genetic Insights Into the Natural Variation of Foxtail Millet.” Frontiers in Plant Science 12: 665530. PubMed PMC
Wenzel, E. , and Somoza V.. 2005. “Metabolism and Bioavailability of Trans‐Resveratrol.” Molecular Nutrition & Food Research 49, no. 5: 472–481. 10.1002/MNFR.200500010. PubMed DOI
Weston, L. A. , and Mathesius U.. 2013. “Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy.” Journal of Chemical Ecology 39, no. 2: 283–297. 10.1007/s10886-013-0248-5. PubMed DOI
Wild, J. , Kopecký M., Macek M., Šanda M., Jankovec J., and Haase T.. 2019. “Climate at Ecologically Relevant Scales: A New Temperature and Soil Moisture Logger for Long‐Term Microclimate Measurement.” Agricultural and Forest Meteorology 268: 40–47. 10.1016/j.agrformet.2018.12.018. DOI
Williamson, J. D. , Jennings D. B., Guo W. W., Pharr D. M., and Ehrenshaft M.. 2002. “Sugar Alcohols, Salt Stress, and Fungal Resistance: Polyols—Multifunctional Plant Protection?” Journal of the American Society for Horticultural Science 127, no. 4: 467–473. 10.21273/jashs.127.4.467. DOI
Wink, M. 2018. “Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites.” In Annual Plant Reviews Online, 1–19. Portico. 10.1002/9781119312994.apr0423. DOI
Winter, G. , Todd C. D., Trovato M., Forlani G., and Funck D.. 2015. “Physiological Implications of Arginine Metabolism in Plants.” Frontiers in Plant Science 6: 534. 10.3389/fpls.2015.00534. PubMed DOI PMC
Wu, L. , Kobayashi Y., Wasaki J., and Koyama H.. 2018. “Organic Acid Excretion From Roots: A Plant Mechanism for Enhancing Phosphorus Acquisition, Enhancing Aluminum Tolerance, and Recruiting Beneficial Rhizobacteria.” Soil Science and Plant Nutrition 64, no. 6: 697–704. 10.1080/00380768.2018.1537093. DOI
Wu, S. , Wang R., Zhu H., et al. 2022. “Changes in Root Chemical Diversity Along an Elevation Gradient of Changbai Mountain, China.” Frontiers in Plant Science 13: 897838. 10.3389/fpls.2022.897838. PubMed DOI PMC
Yazaki, K. , Arimura G. I., and Ohnishi T.. 2017. “‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles.” Plant and Cell Physiology 58, no. 10: 1615–1621. 10.1093/pcp/pcx123. PubMed DOI
Yeshi, K. , Crayn D. M., Ritmejerytė E., and Wangchuk P.. 2022. “Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development.” Molecules 27, no. 1: 313. 10.3390/molecules27010313. PubMed DOI PMC
Yin, Y. , Qiao S., Kang Z., et al. 2024. “Transcriptome and Metabolome Analyses Reflect the Molecular Mechanism of Drought Tolerance in Sweet Potato.” Plants 13, no. 3: 351. 10.3390/plants13030351. PubMed DOI PMC
Yonekura‐Sakakibara, K. , Tohge T., Matsuda F., et al. 2008. “Comprehensive Flavonol Profiling and Transcriptome Coexpression Analysis Leading to Decoding Gene–Metabolite Correlations in Arabidopsis.” Plant Cell 20, no. 8: 2160–2176. PubMed PMC
Yoshitama, K. 2000. “Recent Advances in Secondary Metabolism Research: Regulation of Biosynthesis and Physiological Functions of Flavonoids and Some Phenolics.” Journal of Plant Research 113, no. 3: 285.
Yuxiao, Z. , Guo Y., and Xinhua S.. 2023. “Comprehensive Insight Into an Amino Acid Metabolic Network in Postharvest Horticultural Products: A Review.” Journal of the Science of Food and Agriculture 103, no. 12: 5667–5676. PubMed
Zandalinas, S. I. , Balfagón D., Gómez‐Cadenas A., and Mittler R.. 2022. “Responses of Plants to Climate Change: Metabolic Changes During Abiotic Stress Combination in Plants.” Journal of Experimental Botany 73, no. 11: 3339–3354. 10.1093/jxb/erac073. PubMed DOI
Zhalnina, K. , Louie K. B., Hao Z., et al. 2018. “Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly.” Nature Microbiology 3, no. 4: 470–480. PubMed
Zhao, L. , Zhang H., White J. C., et al. 2019. “Metabolomics Reveals That Engineered Nanomaterial Exposure in Soil Alters Both Soil Rhizosphere Metabolite Profiles and Maize Metabolic Pathways.” Environmental Science: Nano 6, no. 6: 1716–1727. 10.1039/C9EN00137A. DOI