• This record comes from PubMed

Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

. 2017 Aug 23 ; 7 (3) : . [epub] 20170823

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
610028 European Research Council - International

Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2-8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region.

See more in PubMed

Climate Change 2013: The Physical Science Basis. [(accessed on 19 August 2017)];2013 Available online: http://www.ipcc.ch/report/ar5/wg1/

Moss R., Babiker M., Brinkman S., Calvo E., Carter T., Edmonds J., Elgizouli I., Emori S., Erda L., Hibbard K., et al. The Netherlands: Technical Summary. Intergovernmental Panel on Climate Change Secretariat (IPCC); Geneva, Switzerland: 2008. [(accessed on 19 August 2017)]. Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Available online: vuir.vu.edu.au/4819.

Parmesan C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI

Peñuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusià J., Garbulsky M., et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Chang. Biol. 2013;19:2303–2338. doi: 10.1111/gcb.12143. PubMed DOI

Walther G.-R., Post E., Convey P., Menzel A., Parmesank C., Beebee T.J.C., Fromentin J.-M., Hoegh-Guldberg O., Bairlein F. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI

Grime J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977;111:1169–1194. doi: 10.1086/283244. DOI

Reich P.B., Walters M., Tjoelker M., Vanderklein D., Buschena C. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 1998;12:395–405. doi: 10.1046/j.1365-2435.1998.00209.x. DOI

Reich P.B., Wright I.J., Lusk C.H. Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis. Ecol. Appl. 2007;17:1982–1988. doi: 10.1890/06-1803.1. PubMed DOI

Carnicer J., Coll M., Ninyerola M., Pons X., Sánchez G., Peñuelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA. 2011;108:1474–1478. doi: 10.1073/pnas.1010070108. PubMed DOI PMC

Fernández-Martínez M., Vicca S., Janssens I.A., Sardans J., Luyssaert S., Campioli M., Chapin F.S., III, Ciais P., Malhi Y., Obersteiner M., et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 2014;4:471–476. doi: 10.1038/nclimate2177. DOI

Peñuelas J., Poulter B., Sardans J., Ciais P., van der Velde M., Bopp L., Boucher O., Godderis Y., Hinsinger P., Llusia J., et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013;4:2934. doi: 10.1038/ncomms3934. PubMed DOI

Euskirchen E.S., Mcguire A.D., Chapin F.S., Yi S., Thompson C.C., Thompson C.C. Changes in Vegetation in Northern Alaska under Scenarios of Climate Change, 2003–2100: Implications for Climate Feedbacks Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: Implications for climate feedbacks. Ecol. Appl. 2009;19:1022–1043. doi: 10.1890/08-0806.1. PubMed DOI

Mack M.C., Schuur E.A., Bret-Harte M.S., Shaver G.R., Chapin F.S., III. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature. 2004;431:440–443. doi: 10.1038/nature02887. PubMed DOI

Hobbie S.E., Chapin F.S. The Response of Tundra Plant Biomass, Aboveground Production, Nitrogen, and CO2 Flux to Experimental Warming. Ecology. 1998;79:1526–1544.

Hobbie S.E., Chapin F.S. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry. 1996;35:327–338. doi: 10.1007/BF02179958. DOI

Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R., Ahlquist L.E., Alatalo J.M., Bret-harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA. 2006;103:1342–1346. doi: 10.1073/pnas.0503198103. PubMed DOI PMC

Elmendorf S.C., Henry G.H.R., Hollister R.D., Björk R.G., Boulanger-Lapointe N., Cooper E.J., Cornelissen J.H.C., Day T.A., Dorrepaal E., Elumeeva T.G., et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012;2:453–457. doi: 10.1038/nclimate1465. DOI

Schär C., Jendritzky G. Climate change: Hot news from summer 2003. Nature. 2004;432:559–560. doi: 10.1038/432559a. PubMed DOI

Gutschick V.P., BassiriRad H. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytol. 2003;160:21–42. doi: 10.1046/j.1469-8137.2003.00866.x. PubMed DOI

Reusch T.B.H., Ehlers A., Hämmerli A., Worm B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA. 2005;102:2826–2831. doi: 10.1073/pnas.0500008102. PubMed DOI PMC

Jentsch A., Beierkuhnlein C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. C. R. Geosci. 2008;340:621–628. doi: 10.1016/j.crte.2008.07.002. DOI

Knapp A.K., Beier C., Briske D.D., Classen A.T., Luo Y., Reichstein M., Smith M.D., Smith S.D., Bell J.E., Fay P.A., et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience. 2008;58:811–821. doi: 10.1641/B580908. DOI

Jentsch A., Kreyling J., Elmer M., Gellesch E., Glaser B., Grant K., Hein R., Lara M., Mirzae H., Nadler S.E., et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 2011;99:689–702. doi: 10.1111/j.1365-2745.2011.01817.x. DOI

Smith M.D. The ecological role of climate extremes: Current understanding and future prospects. J. Ecol. 2011;99:651–655. doi: 10.1111/j.1365-2745.2011.01833.x. DOI

Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R.N., Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000;18:1157–1161. doi: 10.1038/81137. PubMed DOI

Peñuelas J., Sardans J. Ecological metabolomics. Chem. Ecol. 2009;25:305–309. doi: 10.1080/02757540903062517. DOI

Sardans J., Peñuelas J., Rivas-Ubach A. Ecological metabolomics: Overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI

Charlton A.J., Donarski J.A., Harrison M., Jones S.A., Godward J., Oehlschlager S., Arques J.L., Ambrose M., Chinoy C., Mullineaux P.M., et al. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics. 2008;4:312–327. doi: 10.1007/s11306-008-0128-0. DOI

Fumagalli E., Baldoni E., Abbruscato P., Piffanelli P., Genga A., Lamanna R., Consonni R. NMR Techniques Coupled with Multivariate Statistical Analysis: Tools to Analyse Oryza sativa Metabolic Content under Stress Conditions. J. Agron. Crop Sci. 2009;195:77–88. doi: 10.1111/j.1439-037X.2008.00344.x. DOI

Lugan R., Niogret M.-F., Kervazo L., Larher F.R., Kopka J., Bouchereau A. Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Environ. 2009;32:95–108. doi: 10.1111/j.1365-3040.2008.01898.x. PubMed DOI

Michaud R.M., Benoit J.B., Lopez-Martinez G., Elnitsky M.A, Lee R.E., Denlinger D.L. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 2008;54:645–655. doi: 10.1016/j.jinsphys.2008.01.003. PubMed DOI

Pinheiro C., Passarinho J.A., Ricardo C.P. Effect of drought and rewatering on the metabolism of Lupinus albus organs. J. Plant Physiol. 2004;161:1203–1210. doi: 10.1016/j.jplph.2004.01.016. PubMed DOI

Michaud M.R., Denlinger D.L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. J. Comp. Physiol. B. 2007;177:753–763. doi: 10.1007/s00360-007-0172-5. PubMed DOI

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Oravec M., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., Parella T., Peñuelas J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015;207:591–603. doi: 10.1111/nph.13377. PubMed DOI

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC

Allakhverdiev S.I., Nishiyama Y., Suzuki I., Tasaka Y., Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA. 1999;96:5862–5867. doi: 10.1073/pnas.96.10.5862. PubMed DOI PMC

Horváth I., Vigh L., Pali T., Thompson G.A. Effect of catalytic hydrogenation of Tetrahymena ciliary phospholipid fatty acids on ciliary phospholipase A activity. Biochim. Biophys. Acta Lipids Lipid Metab. 1989;1002:409–412. doi: 10.1016/0005-2760(89)90359-7. PubMed DOI

Vigh L., Gombos Z., Horváth I., Joó F. Saturation of membrane lipids by hydrogenation induces thermal stability in chloroplast inhibiting the heat-dependent stimulation of Photosystem I-mediated electron transport. Biochim. Biophys. Acta Biomembr. 1989;979:361–364. doi: 10.1016/0005-2736(89)90257-5. DOI

Vigh L., Los D.A, Horváth I., Murata N. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA. 1993;90:9090–9094. doi: 10.1073/pnas.90.19.9090. PubMed DOI PMC

Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. Exploring the Temperature-Stress Metabolome. Plant Physiol. 2004;136:4159–4168. doi: 10.1104/pp.104.052142. PubMed DOI PMC

Malmendal A., Overgaard J., Bundy J.G., Sørensen J.G., Nielsen N.C., Loeschcke V., Holmstrup M. Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. Am. J. Physiol. 2006:205–212. doi: 10.1152/ajpregu.00867.2005. PubMed DOI

Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008;98:541–550. doi: 10.1007/s11120-008-9331-0. PubMed DOI

Wang W., Vinocur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–252. doi: 10.1016/j.tplants.2004.03.006. PubMed DOI

Blamey M., Fitter S.R., Alastair F. Wild Flowers of Britain & Ireland. A. & C. Black; London, UK: 2003. [(accessed on 21 August 2017)]. Available online: http://agris.fao.org/agris-search/search.do?recordID=US201300085632?

Nicolini G. Enciclopedia Botanica Motta. Volume Primo Milano Federico Motta Editore. 1960;198

Arnalds Ó. Soil Survey and Databases in Iceland. Eur. Soil Bur. Res. Rep. 1999;6:91–96.

Arnalds O. Volcanic soils of Iceland. Catena. 2004;56:3–20. doi: 10.1016/j.catena.2003.10.002. DOI

Geptner A.R., Ivanovskaya T.A., Pokrovskaya E.V. Hydrothermally altered clayey sediments in the rift zone of Iceland (influence of microbiota on accumulation of minor elements) Lithol. Miner. Resour. 2006;41:332–343. doi: 10.1134/S0024490206040043. DOI

Zakharova O.K., Spichak V.V. Geothermal fields of Hengill Volcano, Iceland. J. Volcanol. Seismol. 2012;6:1–14. doi: 10.1134/S074204631201006X. DOI

Magnússon A. Jarðabók. Annað Bindi. 1708.

Halldórsson B., Sigbjörnsson R. The Mw 6.3 Ölfus earthquake at 15:45 UTC on 29 May 2008 in South Iceland: ICEARRAY strong-motion recordings. Soil Dyn. Earthq. Eng. 2009;29:1073–1083. doi: 10.1016/j.soildyn.2008.12.006. DOI

Sigurdsson B.D., Leblans N.I.W., Dauwe S., Guðmundsdóttir E., Gundersen P., Gunnarsdóttir G.E., Holmstrup M., Ilieva-Makulec K., Kätterer T., Marteinsdóttir B., et al. Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agric. Sci. 2016;29:53–71. doi: 10.16886/IAS.2016.05. DOI

Pluskal T., Castillo S., Villar-Briones A., Oresic M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Gorokhova E., Kyle M. Analysis of nucleic acids in Daphnia: Development of methods and ontogenetic variations in RNA-DNA content. J. Plankton Res. 2002;24:511–522. doi: 10.1093/plankt/24.5.511. DOI

Wagner M., Durbin E., Buckley L. RNA:DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 1998;162:173–181. doi: 10.3354/meps162173. DOI

Bentle L.A., Dutta S., Metcoff J. The sequential enzymatic determination of DNA and RNA. Anal. Biochem. 1981;116:5–16. doi: 10.1016/0003-2697(81)90314-6. PubMed DOI

Bro R., Smilde A.K. Centering and scaling in component analysis. J. Chemom. 2003;17:16–33. doi: 10.1002/cem.773. DOI

Anderson M.J., Gorley R.N., Clarke K.R. PERMANOVA+ for PRI-MER: Guide to Software and Statistical Methods. Primer-E.; Plymouth, UK: 2008.

Smilde A.K., Jansen J.J., Hoefsloot H.C.J., Lamers R.J.A.N., van der Greef J., Timmerman M.E. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics. 2005;21:3043–3048. doi: 10.1093/bioinformatics/bti476. PubMed DOI

Urbina I., Sardans J., Beierkuhnlein C., Jentsch A., Backhaus S., Grant K., Kreyling J., Peñuelas J. Shifts in the elemental composition of plants during a very severe drought. Environ. Exp. Bot. 2015;111:63–73. doi: 10.1016/j.envexpbot.2014.10.005. PubMed DOI PMC

Sardans J., Bartrons M., Margalef O., Gargallo-Garriga A., Janssens I.A., Ciais P., Obersteiner M., Sigurdsson B.D., Chen H.Y.H., Penuelas J. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient poor-environments. Glob. Chang. Biol. 2016;23:1282–1291. doi: 10.1111/gcb.13384. PubMed DOI

Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. Chemical Chaperones Regulate Molecular Chaperones in Vitro and in Cells under Combined Salt and Heat Stresses. J. Biol. Chem. 2001;276:39586–39591. doi: 10.1074/jbc.M103081200. PubMed DOI

Lipka V., Dittgen J., Bednarek P., Bhat R., Wiermer M., Stein M., Landtag J., Brandt W., Rosahl S., Scheel D., et al. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science. 2005;310:1180–1183. doi: 10.1126/science.1119409. PubMed DOI

Apel K., Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI

Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., Mittler R. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiol. 2004;134:1683–1696. doi: 10.1104/pp.103.033431. PubMed DOI PMC

Yamakawa H., Hakata M. Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol. 2010;51:795–809. doi: 10.1093/pcp/pcq034. PubMed DOI PMC

Lea P.J., Sodek L., Parry M.A.J., Shewry P.R., Halford N.G. Asparagine in plants. Ann. Appl. Biol. 2007;150:1–26. doi: 10.1111/j.1744-7348.2006.00104.x. DOI

Vick B.A., Zimmerman D.C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984;75:458–461. doi: 10.1104/pp.75.2.458. PubMed DOI PMC

Guy C., Kaplan F., Kopka J., Selbig J., Hincha D.K. Metabolomics of temperature stress. Physiol. Plant. 2008;132:220–235. doi: 10.1111/j.1399-3054.2007.00999.x. PubMed DOI

Facchini P.J., De Luca V. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy. Plant Cell. 1995;7:1811–1821. doi: 10.1105/tpc.7.11.1811. PubMed DOI PMC

Peñuelas J., Estiarte M. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 1998;13:20–24. doi: 10.1016/S0169-5347(97)01235-4. PubMed DOI

Draths K.M., Knop D.R., Frost J.W. Shikimic Acid and Quinic Acid: Replacing Isolation from Plant Sources with Recombinant Microbial Biocatalysis. J. Am. Chem. Soc. 1999;127:1603–1604. doi: 10.1021/ja9830243. DOI

Herrmann K.M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Am. Soc. Plant Physiol. 1995;7:907–919. PubMed PMC

Moura J.C.M.S., Bonine C.A.V., de Oliveira Fernandes Viana J., Dornelas M.C., Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010;52:360–376. doi: 10.1111/j.1744-7909.2010.00892.x. PubMed DOI

Gallego-Giraldo L., Jikumaru Y., Kamiya Y., Tang Y., Dixon R.A. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.) New Phytol. 2011;190:627–639. doi: 10.1111/j.1469-8137.2010.03621.x. PubMed DOI

Arbona V., Manzi M., de Ollas C., Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013;14:4885–4911. doi: 10.3390/ijms14034885. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...