Low-level laser therapy attenuates arthrogenic contracture induced by anterior cruciate ligament reconstruction surgery in rats

. 2022 Jul 29 ; 71 (3) : 389-399. [epub] 20220526

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35616040

Therapeutic approaches to treat joint contracture after anterior cruciate ligament (ACL) reconstruction have not been established. Arthrofibrosis accompanied by joint inflammation following ACL reconstruction is a major cause of arthrogenic contracture. In this study, we examined whether anti-inflammatory treatment using low-level laser therapy (LLLT) can prevent ACL reconstruction-induced arthrogenic contracture. Rats underwent ACL transection and reconstruction surgery in their right knees. Unoperated left knees were used as controls. After surgery, rats were reared with or without daily LLLT (wavelength: 830 nm; power output: 150 mW; power density: 5 W/cm2; for 120 s/day). We assessed the passive extension range of motion (ROM) after myotomy at one and two weeks post-surgery; the reduction in ROM represents the severity of arthrogenic contracture. ROM was markedly decreased by ACL reconstruction at both time points; however, LLLT partially attenuated the decrease in ROM. One week after ACL reconstruction, the gene expression of the proinflammatory cytokine interleukin-1beta in the joint capsule was significantly upregulated, and this upregulation was significantly attenuated by LLLT. Fibrotic changes in the joint capsule, including upregulation of collagen type I and III genes, shortening of the synovium, and thickening were caused by ACL reconstruction and seen at both time points. LLLT attenuated these fibrotic changes as well. Our results indicate that LLLT after ACL reconstruction could attenuate the formation of arthrogenic contracture through inhibition of inflammation and fibrosis in the joint capsule. Thus, LLLT may become a novel therapeutic approach for ACL reconstruction-induced joint contracture.

Zobrazit více v PubMed

Musahl V, Karlsson J. Anterior cruciate ligament tear. N Engl J Med. 2019;380:2341–2348. doi: 10.1056/NEJMcp1805931. PubMed DOI

Boutsiadis A, Panisset JC, Devitt BM, Mauris F, Barthelemy R, Barth J. Anterior laxity at 2 years after anterior cruciate ligament reconstruction is comparable when using adjustable-loop suspensory fixation and interference screw fixation. Am J Sports Med. 2018;46:2366–2375. doi: 10.1177/0363546518784005. PubMed DOI

Irrgang JJ, Harner CD. Loss of motion following knee ligament reconstruction. Sports Med. 1995;19:150–159. doi: 10.2165/00007256-199519020-00006. PubMed DOI

Millett PJ, Wickiewicz TL, Warren RF. Motion loss after ligament injuries to the knee. Part i: Causes. Am J Sports Med. 2001;29:664–675. doi: 10.1177/03635465010290052401. PubMed DOI

Wang B, Zhong JL, Xu XH, Shang J, Lin N, Lu HD. Incidence and risk factors of joint stiffness after anterior cruciate ligament reconstruction. J Orthop Surg Res. 2020;15:175. doi: 10.1186/s13018-020-01694-7. PubMed DOI PMC

Eckenrode BJ, Carey JL, Sennett BJ, Zgonis MH. Prevention and management of post-operative complications following ACL reconstruction. Curr Rev Musculoskelet Med. 2017;10:315–321. doi: 10.1007/s12178-017-9427-2. PubMed DOI PMC

Grapar Zargi T, Drobnic M, Vauhnik R, Koder J, Kacin A. Factors predicting quadriceps femoris muscle atrophy during the first 12 weeks following anterior cruciate ligament reconstruction. Knee. 2017;24:319–328. doi: 10.1016/j.knee.2016.11.003. PubMed DOI

Fisher SE, Shelbourne KD. Arthroscopic treatment of symptomatic extension block complicating anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21:558–564. doi: 10.1177/036354659302100413. PubMed DOI

Petersen W, Zantop T. Return to play following ACL reconstruction: Survey among experienced arthroscopic surgeons (AGA instructors) Arch Orthop Trauma Surg. 2013;133:969–977. doi: 10.1007/s00402-013-1746-1. PubMed DOI

Wright RW, Haas AK, Anderson J, Calabrese G, Cavanaugh J, Hewett TE, Lorring D, McKenzie C, Preston E, Williams G, Group M. Anterior cruciate ligament reconstruction rehabilitation: Moon guidelines. Sports Health. 2015;7:239–243. doi: 10.1177/1941738113517855. PubMed DOI PMC

Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. Plaster immobilization after anterior cruciate ligament reconstruction: A prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports. 2002;12:73–80. doi: 10.1034/j.1600-0838.2002.120203.x. PubMed DOI

Jaspers T, Taeymans J, Hirschmuller A, Baur H, Hilfiker R, Rogan S. Continuous passive motion does improve range of motion, pain and swelling after acl reconstruction: A systematic review and meta-analysis. Z Orthop Unfall. 2019;157:279–291. doi: 10.1055/a-0710-5127. PubMed DOI

D’Amore T, Rao S, Corvi J, Jack RA, 2nd, Tjoumakaris FP, Ciccotti MG, Freedman KB. The utility of continuous passive motion after anterior cruciate ligament reconstruction: A systematic review of comparative studies. Orthop J Sports Med. 2021;9 doi: 10.1177/23259671211013841. 23259671211013841. PubMed DOI PMC

Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019;7:9. doi: 10.1038/s41413-019-0047-x. PubMed DOI PMC

Kuszewski MT, Gnat R, Szlachta G, Kaczynska M, Knapik A. Passive stiffness of the hamstrings and the rectus femoris in persons after an acl reconstruction. Phys Sportsmed. 2019;47:91–95. doi: 10.1080/00913847.2018.1527171. PubMed DOI

Pinto FG, Thaunat M, Daggett M, Kajetanek C, Marques T, Guimares T, Quelard B, Sonnery-Cottet B. Hamstring contracture after acl reconstruction is associated with an increased risk of cyclops syndrome. Orthop J Sports Med. 2017;5 doi: 10.1177/2325967116684121. 2325967116684121. PubMed DOI PMC

Lobenhoffer HP, Bosch U, Gerich TG. Role of posterior capsulotomy for the treatment of extension deficits of the knee. Knee Surg Sports Traumatol Arthrosc. 1996;4:237–241. doi: 10.1007/BF01567970. PubMed DOI

Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. A rat model of arthrofibrosis developed after anterior cruciate ligament reconstruction without rigid joint immobilization. Connect Tissue Res. 2021;62:263–276. doi: 10.1080/03008207.2019.1693548. PubMed DOI

Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Formation process of joint contracture after anterior cruciate ligament reconstruction in rats. J Orthop Res. 2021;39:1082–1092. doi: 10.1002/jor.24800. PubMed DOI

Mayr HO, Weig TG, Plitz W. Arthrofibrosis following acl reconstruction--reasons and outcome. Arch Orthop Trauma Surg. 2004;124:518–522. doi: 10.1007/s00402-004-0718-x. PubMed DOI

Rue JP, Ferry AT, Lewis PB, Bach BR., Jr Oral corticosteroid use for loss of flexion after primary anterior cruciate ligament reconstruction. Arthroscopy. 2008;24:554–559.e1. doi: 10.1016/j.arthro.2007.10.013. PubMed DOI

Magnussen R, Brown C, Lawrence T, Toth A. Intra-articular anakinra for the treatment of persistent inflammation and arthrofibrosis following anterior cruciate ligament reconstruction. Duke Orthopedic J. 2011;1:51–56. doi: 10.5005/jp-journals-10017-1008. DOI

Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Low-level laser therapy prevents treadmill exercise-induced progression of arthrogenic joint contracture via attenuation of inflammation and fibrosis in remobilized rat knees. Inflammation. 2019;42:857–873. doi: 10.1007/s10753-018-0941-1. PubMed DOI

Geneva II. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016;9:145–152. doi: 10.18240/ijo.2016.01.24. PubMed DOI PMC

Wickenheisser VA, Zywot EM, Rabjohns EM, Lee HH, Lawrence DS, Tarrant TK. Laser light therapy in inflammatory, musculoskeletal, and autoimmune disease. Curr Allergy Asthma Rep. 2019;19:37. doi: 10.1007/s11882-019-0869-z. PubMed DOI PMC

Freitas CP, Melo C, Alexandrino AM, Noites A. Efficacy of low-level laser therapy on scar tissue. J Cosmet Laser Ther. 2013;15:171–176. doi: 10.3109/14764172.2013.769272. PubMed DOI

Soleimanpour H, Gahramani K, Taheri R, Golzari SE, Safari S, Esfanjani RM, Iranpour A. The effect of low-level laser therapy on knee osteoarthritis: Prospective, descriptive study. Lasers Med Sci. 2014;29:1695–1700. doi: 10.1007/s10103-014-1576-6. PubMed DOI

Kaneguchi A, Ozawa J, Minamimoto K. The effects of low-level laser therapy on joint swelling and range of motion restriction after anterior cruciate ligament reconstruction in rat (In Japanese) Jap J Electrophys Agents. 2020;27:73–77.

Tomazoni SS, Leal-Junior EC, Pallotta RC, Teixeira S, de Almeida P, Lopes-Martins RA. Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med Sci. 2017;32:101–108. doi: 10.1007/s10103-016-2091-8. PubMed DOI

Kaneguchi A, Ozawa J, Moriyama H, Yamaoka K. Structures responsible for knee joint contracture secondary to adjuvant-induced arthritis in a rat model. Iryo Kogaku Zassi (J Med Eng) 2015:1–12.

Kaneguchi A, Ozawa J, Yamaoka K. Intra-articular injection of mitomycin c prevents progression of immobilization-induced arthrogenic contracture in the remobilized rat knee. Physiol Res. 2020;69:145–156. doi: 10.33549/physiolres.934149. PubMed DOI PMC

Moriyama H, Yoshimura O, Sunahori H, Tobimatsu Y. Comparison of muscular and articular factors in the progression of contractures after spinal cord injury in rats. Spinal Cord. 2006;44:174–181. doi: 10.1038/sj.sc.3101802. PubMed DOI

Trudel G, Uhthoff HK. Contractures secondary to immobility: Is the restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil. 2000;81:6–13. doi: 10.1016/s0003-9993(00)90213-2. PubMed DOI

Trudel G, Seki M, Uhthoff HK. Synovial adhesions are more important than pannus proliferation in the pathogenesis of knee joint contracture after immobilization: An experimental investigation in the rat. J Rheumatol. 2000;27:351–357. PubMed

Wierer G, Runer A, Gfoller P, Fink C, Hoser C. Extension deficit after anterior cruciate ligament reconstruction: Is arthroscopic posterior release a safe and effective procedure? Knee. 2017;24:49–54. doi: 10.1016/j.knee.2016.09.018. PubMed DOI

Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Effects of each phase of anterior cruciate ligament reconstruction surgery on joint contracture in rats. J Invest Surg. 2022;35:984–995. doi: 10.1080/08941939.2021.1985193. PubMed DOI

Kaneguchi A, Ozawa J, Kawamata S, Yamaoka K. Development of arthrogenic joint contracture as a result of pathological changes in remobilized rat knees. J Orthop Res. 2017;35:1414–1423. doi: 10.1002/jor.23419. PubMed DOI

Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med. 2009;41:282–290. doi: 10.1002/lsm.20766. PubMed DOI

Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar AS, Junior, Latini A. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res. 2016;50:503–513. doi: 10.3109/10715762.2016.1147649. PubMed DOI

Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (pbmt) in bone repair: A systematic review. Injury. 2019;50:1853–1867. doi: 10.1016/j.injury.2019.09.031. PubMed DOI

Tohidnezhad M, Bayer A, Rasuo B, Hock JVP, Kweider N, Fragoulis A, Sonmez TT, Jahr H, Pufe T, Lippross S. Platelet-released growth factors modulate the secretion of cytokines in synoviocytes under inflammatory joint disease. Mediators Inflamm. 2017;2017:1046438. doi: 10.1155/2017/1046438. PubMed DOI PMC

Chen J, Wu W, Zhang M, Chen C. Taraxasterol suppresses inflammation in il-1beta-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int Immunopharmacol. 2019;70:274–283. doi: 10.1016/j.intimp.2019.02.029. PubMed DOI

Assis L, Milares LP, Almeida T, Tim C, Magri A, Fernandes KR, Medalha C, Renno AC. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthritis Cartilage. 2016;24:169–177. doi: 10.1016/j.joca.2015.07.020. PubMed DOI

Wang P, Liu C, Yang X, Zhou Y, Wei X, Ji Q, Yang L, He C. Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci. 2014;29:1875–1885. doi: 10.1007/s10103-014-1600-x. PubMed DOI

Bublitz C, Medalha C, Oliveira P, Assis L, Milares LP, Fernandes KR, Tim CR, Vasilceac FA, Mattiello SM, Renno AC. Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transection in rats. Lasers Med Sci. 2014;29:1669–1678. doi: 10.1007/s10103-014-1546-z. PubMed DOI

Yabe Y, Hagiwara Y, Suda H, Ando A, Onoda Y, Tsuchiya M, Hatori K, Itoi E. Joint immobilization induced hypoxic and inflammatory conditions in rat knee joints. Connect Tissue Res. 2013;54:210–217. doi: 10.3109/03008207.2013.786056. PubMed DOI

Sasabe R, Sakamoto J, Goto K, Honda Y, Kataoka H, Nakano J, Origuchi T, Endo D, Koji T, Okita M. Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model. J Orthop Res. 2017;35:1998–2006. doi: 10.1002/jor.23498. PubMed DOI

Usuba M, Akai M, Shirasaki Y. Effect of low-level laser therapy (LLLT) on viscoelasticity of the contracted knee joint: Comparison with whirlpool treatment in rats. Lasers Surg Med. 1998;22:81–85. doi: 10.1002/(sici)1096-9101(1998)22:2<81::aid-lsm3>3.0.co;2-s. PubMed DOI

Ozawa J, Kaneguchi A, Tanaka R, Kito N, Moriyama H. Cyclooxygenase-2 inhibitor celecoxib attenuates joint contracture following immobilization in rat knees. BMC Musculoskelet Disord. 2016;17:446. doi: 10.1186/s12891-016-1303-5. PubMed DOI PMC

Samuelsson K, Andersson D, Ahlden M, Fu FH, Musahl V, Karlsson J. Trends in surgeon preferences on anterior cruciate ligament reconstructive techniques. Clin Sports Med. 2013;32:111–126. doi: 10.1016/j.csm.2012.08.011. PubMed DOI

Raab DJ, Fischer DA, Smith JP, Markman AW, Steubs JA. Comparison of arthroscopic and open reconstruction of the anterior cruciate ligament. Early results. Am J Sports Med. 1993;21:680–683. doi: 10.1177/036354659302100507. discussion 683–684. PubMed DOI

Graf BK, Ott JW, Lange RH, Keene JS. Risk factors for restricted motion after anterior cruciate reconstruction. Orthopedics. 1994;17:909–912. doi: 10.3928/0147-7447-19941001-07. PubMed DOI

Nogaro MC, Abram SGF, Alvand A, Bottomley N, Jackson WFM, Price A. Paediatric and adolescent anterior cruciate ligament reconstruction surgery. Bone Joint J. 2020;102-B:239–245. doi: 10.1302/0301-620X.102B2.BJJ-2019-0420.R2. PubMed DOI

Nwachukwu BU, McFeely ED, Nasreddine A, Udall JH, Finlayson C, Shearer DW, Micheli LJ, Kocher MS. Arthrofibrosis after anterior cruciate ligament reconstruction in children and adolescents. J Pediatr Orthop. 2011;31:811–817. doi: 10.1097/BPO.0b013e31822e0291. PubMed DOI

Huleatt J, Gottschalk M, Fraser K, Boden A, Dalwadi P, Xerogeanes J, Hammond K. Risk factors for manipulation under anesthesia and/or lysis of adhesions after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2018;6 doi: 10.1177/2325967118794490. 2325967118794490. PubMed DOI PMC

Cinque ME, Chahla J, Moatshe G, DePhillipo NN, Kennedy NI, Godin JA, LaPrade RF. Outcomes and complication rates after primary anterior cruciate ligament reconstruction are similar in younger and older patients. Orthop J Sports Med. 2017;5 doi: 10.1177/2325967117729659. 2325967117729659. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...