Intra-articular injection of mitomycin C prevents progression of immobilization-induced arthrogenic contracture in the remobilized rat knee

. 2020 Feb 19 ; 69 (1) : 145-156. [epub] 20191219

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31852201

This study tested whether cell cycle inhibitor mitomycin C (MMC) prevents arthrogenic contracture progression during remobilization by inhibiting fibroblast proliferation and fibrosis in the joint capsule. Rat knees were immobilized in a flexed position to generate flexion contracture. After three weeks, the fixation device was removed and rat knees were allowed to freely move for one week. Immediately after and three days after fixator removal, rats received intra-articular injections of MMC or saline. The passive extension range of motion (ROM) was measured before and after myotomy of the knee flexors to distinguish myogenic and arthrogenic contractures. In addition, both cellularity and fibrosis in the posterior joint capsule were assessed histologically. Joint immobilization significantly decreased ROMs both before and after myotomy compared with untreated controls. In saline-injected knees, remobilization increased ROM before myotomy, but further decreased that after myotomy compared with that of knees immediately after three weeks of immobilization. Histological analysis revealed that hypercellularity, mainly due to fibroblast proliferation, and fibrosis characterized by increases in collagen density and joint capsule thickness occurred after remobilization in saline-injected knees. Conversely, MMC injections were able to prevent the remobilization-enhanced reduction of ROM after myotomy by inhibiting both hypercellularity and joint capsule fibrosis. Our results suggest that joint capsule fibrosis accompanied by fibroblast proliferation is a potential cause of arthrogenic contracture progression during remobilization, and that inhibiting fibroblast proliferation may constitute an effective remedy.

Zobrazit více v PubMed

ABDUL N, DIXON D, WALKER A, HORABIN J, SMITH N, WEIR DJ, BREWSTER NT, DEEHAN DJ, MANN DA, BORTHWICK LA. Fibrosis is a common outcome following total knee arthroplasty. Sci Rep. 2015;5:16469. doi: 10.1038/srep16469. PubMed DOI PMC

BARANOWSKI A, SCHLEMMER L, FORSTER K, MATTYASOVSZKY SG, RITZ U, WAGNER D, ROMMENS PM, HOFMANN A. A novel rat model of stable posttraumatic joint stiffness of the knee. J Orthop Surg Res. 2018;13:185. doi: 10.1186/s13018-018-0894-y. PubMed DOI PMC

BARANOWSKI A, SCHLEMMER L, FORSTER K, SLOTINA E, MICKAN T, TRUFFEL S, KLEIN A, MATTYASOVSZKY SG, HOFMANN A, RITZ U, ROMMENS PM. Effects of losartan and atorvastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des Devel Ther. 2019;13:2603–2618. doi: 10.2147/DDDT.S204135. PubMed DOI PMC

BOT AG, SOUER JS, Van DIJK CN, RING D. Association between individual DASH tasks and restricted wrist flexion and extension after volar plate fixation of a fracture of the distal radius. Hand (N Y) 2012;7:407–412. doi: 10.1007/s11552-012-9447-8. PubMed DOI PMC

CAI J, WANG W, YAN H, SUN Y, CHEN W, CHEN S, FAN C. Complications of open elbow arthrolysis in post-traumatic elbow stiffness: a systematic review. PLoS One. 2015;10:e0138547. doi: 10.1371/journal.pone.0138547. PubMed DOI PMC

CHARALAMBOUS CP, MORREY BF. Posttraumatic elbow stiffness. J Bone Joint Surg Am. 2012;94:1428–1437. doi: 10.2106/JBJS.K.00711. PubMed DOI

CHESWORTH BM, VANDERVOORT AA. Comparison of passive stiffness variables and range of motion in uninvolved and involved ankle joints of patients following ankle fractures. Phys Ther. 1995;75:253–261. doi: 10.1093/ptj/75.4.253. PubMed DOI

De SMET L. Does restricted wrist motion influence the disability of the upper limb? Acta Orthop Belg. 2007;73:446–450. PubMed

EMAMI MJ, JABERI FM, AZARPIRA N, VOSOUGHI AR, TANIDEH N. Prevention of arthrofibrosis by monoclonal antibody against vascular endothelial growth factor: a novel use of bevacizumab in rabbits. Orthop Traumatol Surg Res. 2012;98:759–764. doi: 10.1016/j.otsr.2012.05.020. PubMed DOI

EVANS RM. Vimentin: the conundrum of the intermediate filament gene family. Bioessays. 1998;20:79–86. doi: 10.1002/(SICI)1521-1878(199801)20:1<79::AID-BIES11>3.0.CO;2-5. PubMed DOI

FUKUI N, TASHIRO T, HIRAOKA H, ODA H, NAKAMURA K. Adhesion formation can be reduced by the suppression of transforming growth factor-beta1 activity. J Orthop Res. 2000;18:212–219. doi: 10.1002/jor.1100180208. PubMed DOI

FUKUI N, FUKUDA A, KOJIMA K, NAKAJIMA K, ODA H, NAKAMURA K. Suppression of fibrous adhesion by proteoglycan decorin. J Orthop Res. 2001;19:456–462. doi: 10.1016/S0736-0266(00)90016-0. PubMed DOI

GAO ZY, WU JX, LIU WB, SUN JK. Reduction of adhesion formation after knee surgery in a rat model by botulinum toxin A. Biosci Rep. 2017;37 doi: 10.1042/BSR20160460. PubMed DOI PMC

GLAZEBROOK MA, WRIGHT JR, JR, LANGMAN M, STANISH WD, LEE JM. Histological analysis of Achilles tendons in an overuse rat model. J Orthop Res. 2008;26:840–846. doi: 10.1002/jor.20546. PubMed DOI

HAGIWARA Y, ANDO A, ONODA Y, MATSUI H, CHIMOTO E, SUDA H, ITOI E. Expression patterns of collagen types I and III in the capsule of a rat knee contracture model. J Orthop Res. 2010;28:315–321. doi: 10.1002/jor.20997. PubMed DOI

HARVEY LA, KATALINIC OM, HERBERT RD, MOSELEY AM, LANNIN NA, SCHURR K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2017a;1:CD007455. doi: 10.1002/14651858.CD007455.pub3. PubMed DOI PMC

HARVEY LA, KATALINIC OM, HERBERT RD, MOSELEY AM, LANNIN NA, SCHURR K. Stretch for the treatment and prevention of contracture: an abridged republication of a Cochrane Systematic Review. J Physiother. 2017b;63:67–75. doi: 10.1016/j.jphys.2017.02.014. PubMed DOI

HINZ B, PHAN SH, THANNICKAL VJ, PRUNOTTO M, DESMOULIERE A, VARGA J, De WEVER O, MAREEL M, GABBIANI G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340–1355. doi: 10.1016/j.ajpath.2012.02.004. PubMed DOI PMC

KAHMANN L, BEYER U, MEHLHORN G, THIEL FC, STRNAD V, FASCHING PA, LUX MP. Mitomycin C in patients with gynecological malignancies. Onkologie. 2010;33:547–557. doi: 10.1159/000319742. PubMed DOI

KANEGUCHI A, OZAWA J, MORIYAMA H, YAMAOKA K. Structures responsible for the formation of knee joint contracture secondary to adjuvant-induced arthritis in a rat model. Iryo Kogaku Zassi (J Med Eng) 2015:1–12.

KANEGUCHI A, OZAWA J. The preventive effects of low-level laser therapy on arthrogenic contracture progression in remobilized rat knee. (Article in Japanese) Jpn J Electrophys Agents. 2017;24:47–51.

KANEGUCHI A, OZAWA J, KAWAMATA S, YAMAOKA K. Development of arthrogenic joint contracture as a result of pathological changes in remobilized rat knees. J Orthop Res. 2017;35:1414–1423. doi: 10.1002/jor.23419. PubMed DOI

KANEGUCHI A, OZAWA J, MINAMIMOTO K, YAMAOKA K. Active exercise on immobilization-induced contractured rat knees develops arthrogenic joint contracture with pathological changes. J Appl Physiol (1985) 2018a;124:291–301. doi: 10.1152/japplphysiol.00438.2017. PubMed DOI

KANEGUCHI A, OZAWA J, YAMAOKA K. Anti-inflammatory drug dexamethasone treatment during the remobilization period improves range of motion in a rat knee model of joint contracture. Inflammation. 2018b;41:1409–1423. doi: 10.1007/s10753-018-0788-5. PubMed DOI

KANEGUCHI A, OZAWA J, MINAMIMOTO K, YAMAOKA K. Low-level laser therapy prevents treadmill exercise-induced progression of arthrogenic joint contracture via attenuation of inflammation and fibrosis in remobilized rat knees. Inflammation. 2019;42:857–873. doi: 10.1007/s10753-018-0941-1. PubMed DOI

KENDALL RT, FEGHALI-BOSTWICK CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. doi: 10.3389/fphar.2014.00123. PubMed DOI PMC

KOCAOGLU B, AKGUN U, NALBANTOGLU U, POYANLI O, KARAHAN M. Adhesion reduction after knee surgery in a rat model by mitomycin C. Knee Surg Sports Traumatol Arthrosc. 2011;19:94–98. doi: 10.1007/s00167-010-1154-9. PubMed DOI

KONDO Y, NAKANO J, SAKAMOTO J, KATAOKA H, YOKOYAMA S, HONDA Y, ORIGUCHI T, YOSHIMURA T, OKITA M. Effects of prolonged stretching and thermotherapy on muscle contracture of immobilized rat soleus muscle. J Phys Ther Sci. 2012;24:541–547. doi: 10.1589/jpts.24.541. DOI

KREJCI E, KODET O, SZABO P, BORSKY J, SMETANA K, JR, GRIM M, DVORANKOVA B. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res. 2015;64:561–569. PubMed

LANE HA, SWALE JA, MAJMUDAR PA. Prophylactic use of mitomycin-C in the management of a buttonholed LASIK flap. J Cataract Refract Surg. 2003;29:390–392. doi: 10.1016/S0886-3350(02)01434-7. PubMed DOI

LI F, HE B, LIU S, FAN C. Celecoxib effectively inhibits the formation of joint adhesions. Exp Ther Med. 2013a;6:1507–1511. doi: 10.3892/etm.2013.1336. PubMed DOI PMC

LI F, LIU S, FAN C. Lentivirus-mediated ERK2 siRNA reduces joint capsule fibrosis in a rat model of post-traumatic joint contracture. Int J Mol Sci. 2013b;14:20833–20844. doi: 10.3390/ijms141020833. PubMed DOI PMC

LI Y, MA X, YU P, WANG S. Intra-articular adhesion reduction after knee surgery in rabbits by calcium channel blockers. Med Sci Monit. 2014;20:2466–2471. doi: 10.12659/MSM.892957. PubMed DOI PMC

LIANG Y, SUN Y, LI X, YAN L, WANG J, HU J, YU H, XIAO H, CHEN H, SUN Z, CAI J, FENG X, XIONG C, HE J. The optimal concentration of topical hydroxycamptothecin in preventing intraarticular scar adhesion. Sci Rep. 2014;4:4621. doi: 10.1038/srep04621. PubMed DOI PMC

MORIYAMA H, YOSHIMURA O, SUNAHORI H, TOBIMATSU Y. Comparison of muscular and articular factors in the progression of contractures after spinal cord injury in rats. Spinal Cord. 2006;44:174–181. doi: 10.1038/sj.sc.3101802. PubMed DOI

MORIYAMA H, YOSHIMURA O, KAWAMATA S, TAKEMOTO H, SAKA Y, TOBIMATSU Y. Alteration of knee joint connective tissues during contracture formation in spastic rats after an experimentally induced spinal cord injury. Connect Tissue Res. 2007;48:180–187. doi: 10.1080/03008200701413512. PubMed DOI

MOSELEY AM, HERBERT RD, NIGHTINGALE EJ, TAYLOR DA, EVANS TM, ROBERTSON GJ, GUPTA SK, PENN J. Passive stretching does not enhance outcomes in patients with plantarflexion contracture after cast immobilization for ankle fracture: a randomized controlled trial. Arch Phys Med Rehabil. 2005;86:1118–1126. doi: 10.1016/j.apmr.2004.11.017. PubMed DOI

NAGAI M, AOYAMA T, ITO A, IIJIMA H, YAMAGUCHI S, TAJINO J, ZHANG X, AKIYAMA H, KUROKI H. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint. BMC Musculoskelet Disord. 2014;15:224. doi: 10.1186/1471-2474-15-224. PubMed DOI PMC

NAVA MB, ROCCO N, CATANUTO G, FRANGOU J, RISPOLI C, OTTOLENGHI J, BRUNO N, SPANO A. Role of mitomycin C in preventing capsular contracture in implant-based reconstructive breast surgery: randomized controlled trial. Plast Reconstr Surg. 2017;139:819–826. doi: 10.1097/PRS.0000000000003170. PubMed DOI

NIGHTINGALE EJ, MOSELEY AM, HERBERT RD. Passive dorsiflexion flexibility after cast immobilization for ankle fracture. Clin Orthop Relat Res. 2007;456:65–69. doi: 10.1097/BLO.0b013e31802fc161. PubMed DOI

OKITA M, YOSHIMURA T, NAKANO J, SAEKI A, UEHARA A, MINESHITA A, EGUCHI K. Effects of short duration stretching on disuse muscle atrophy in immobilized rat soleus muscles. J Jpn Phys Ther Assoc. 2001;4:1–5. doi: 10.1298/jjpta.4.1. PubMed DOI PMC

OZAWA J, KANEGUCHI A, TANAKA R, KITO N, MORIYAMA H. Cyclooxygenase-2 inhibitor celecoxib attenuates joint contracture following immobilization in rat knees. BMC Musculoskelet Disord. 2016;17:446. doi: 10.1186/s12891-016-1303-5. PubMed DOI PMC

SASABE R, SAKAMOTO J, GOTO K, HONDA Y, KATAOKA H, NAKANO J, ORIGUCHI T, ENDO D, KOJI T, OKITA M. Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model. J Orthop Res. 2017;35:1998–2006. doi: 10.1002/jor.23498. PubMed DOI

SIDLE DM, KIM H. Keloids: prevention and management. Facial Plast Surg Clin North Am. 2011;19:505–515. doi: 10.1016/j.fsc.2011.06.005. PubMed DOI

SIMMAN R, ALANI H, WILLIAMS F. Effect of mitomycin C on keloid fibroblasts: an in vitro study. Ann Plast Surg. 2003;50:71–76. doi: 10.1097/00000637-200301000-00012. PubMed DOI

TRUDEL G, UHTHOFF HK. Contractures secondary to immobility: is the restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil. 2000;81:6–13. doi: 10.1053/apmr.2000.0810006. PubMed DOI

TRUDEL G, LANEUVILLE O, COLETTA E, GOUDREAU L, UHTHOFF HK. Quantitative and temporal differential recovery of articular and muscular limitations of knee joint contractures; results in a rat model. J Appl Physiol (1985) 2014;117:730–737. doi: 10.1152/japplphysiol.00409.2014. PubMed DOI

USHER KM, ZHU S, MAVROPALIAS G, CARRINO JA, ZHAO J, XU J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019;7:9. doi: 10.1038/s41413-019-0047-x. PubMed DOI PMC

USUBA M, AKAI M, SHIRASAKI Y, MIYAKAWA S. Experimental joint contracture correction with low torque--long duration repeated stretching. Clin Orthop Relat Res. 2007;456:70–78. doi: 10.1097/BLO.0b013e31803212bf. PubMed DOI

WANG J, YAN L, SUN Y, WANG D, DAI S, YU T, GU J, JIANG B, FENG X, HU H, WANG Q, YIN B, LV G. A comparative study of the preventive effects of mitomycin C and chitosan on intraarticular adhesion after knee surgery in rabbits. Cell Biochem Biophys. 2012;62:101–105. doi: 10.1007/s12013-011-9266-5. PubMed DOI

WANG Z, WANG Y, XIE P, LIU W, ZHANG S. Calcium channel blockers in reduction of epidural fibrosis and dural adhesions in laminectomy rats. Eur J Orthop Surg Traumatol. 2014;24(Suppl 1):S293–S298. doi: 10.1007/s00590-013-1395-7. PubMed DOI

WONG K, TRUDEL G, LANEUVILLE O. Noninflammatory joint contractures arising from immobility: animal models to future treatments. Biomed Res Int. 2015;2015:848290. doi: 10.1155/2015/848290. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...