Effects of cyclic stretching exercise on long-lasting hyperalgesia, joint contracture, and muscle injury following cast immobilization in rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32901491
PubMed Central
PMC8549909
DOI
10.33549/physiolres.934437
PII: 934437
Knihovny.cz E-zdroje
- MeSH
- chronická bolest etiologie patologie rehabilitace MeSH
- hyperalgezie etiologie patologie rehabilitace MeSH
- imobilizace MeSH
- kondiční příprava zvířat metody MeSH
- kontraktura etiologie patologie rehabilitace MeSH
- kosterní svaly fyziologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- sádrové obvazy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The effects of exercise on mechanical hyperalgesia, joint contracture, and muscle injury resulting from immobilization are not completely understood. This study aimed to investigate the effects of cyclic stretching on these parameters in a rat model of chronic post-cast pain (CPCP). Seventeen 8-week-old Wistar rats were randomly assigned to (1) control group, (2) immobilization (CPCP) group, or (3) immobilization and stretching exercise (CPCP+STR) group. In the CPCP and CPCP+STR groups, both hindlimbs of each rat were immobilized in full plantar flexion with a plaster cast for a 4-week period. In the CPCP+STR group, cyclic stretching exercise was performed 6 days/week for 2 weeks, beginning immediately after cast removal prior to reloading. Although mechanical hyperalgesia in the plantar skin and calf muscle, ankle joint contracture, and gastrocnemius muscle injury were observed in both immobilized groups, these changes were significantly less severe in the CPCP+STR group than in the CPCP group. These results clearly demonstrate the beneficial effect of cyclic stretching exercises on widespread mechanical hyperalgesia, joint contracture, and muscle injury in a rat model of CPCP.
Zobrazit více v PubMed
BROOKE MH, KAISER KK. Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem. 1970;18:670–672. doi: 10.1177/18.9.670. PubMed DOI
LIND A, KERNELL D. Myofibrillar ATPase histochemistry of rat skeletal muscles: a “two-dimensional” quantitative approach. J Histochem Cytochem. 1991;39:589–597. doi: 10.1177/39.5.1826695. PubMed DOI
ALLEN G, GALER BS, SCHWARTZ L. Epidemiology of complex regional pain syndrome: a retrospective chart review of 134 patients. Pain. 1999;80:539–544. doi: 10.1016/s0304-3959(98)00246-2. PubMed DOI
COREY SM, VIZZARD MA, BOUFFARD NA, BADGER GJ, LANGEVIN HM. Stretching of the back improves gait, mechanical sensitivity and connective tissue inflammation in a rodent model. PLoS One. 2012;7:e29831. doi: 10.1371/journal.pone.0029831. PubMed DOI PMC
FOLKER E, BAYLIES M. Nuclear positioning in muscle development and disease. Front Physiol. 2013;363:4. doi: 10.3389/fphys.2013.00363. PubMed DOI PMC
FRENETTE J, ST-PIERRE M, CÔTÉ CH, MYLONA E, PIZZA FX. Muscle impairment occurs rapidly and precedes inflammatory cell accumulation after mechanical loading. Am J Physiol Regul Integr Comp Physiol. 2002;282:R351–R357. doi: 10.1152/ajpregu.00189.2001. PubMed DOI
GOMES AR, CORNACHIONE A, SALVINI TF, MATTIELLO-SVERZUT AC. Morphological effects of two protocols of passive stretch over the immobilized rat soleus muscle. J Anat. 2007;210:328–335. doi: 10.1111/j.1469-7580.2007.00697.x. PubMed DOI PMC
HAMAUE Y, NAKANO J, SEKINO Y, CHUGANJI S, SAKAMOTO J, YOSHIMURA T, OKITA M, ORIGUCHI T. Effects of vibration therapy on immobilization-induced hypersensitivity in rats. Phys Ther. 2015;95:1015–1026. doi: 10.2522/ptj.20140137. PubMed DOI
HARVEY LA, KATALINIC OM, HERBERT RD, MOSELEY AM, LANNIN NA, SCHURR K. Stretch for the treatment and prevention of contracture: an abridged republication of a Cochrane systematic review. J Physiother. 2017;63:67–75. doi: 10.1016/j.jphys.2017.02.014. PubMed DOI
HONDA Y, SAKAMOTO J, NAKANO J, KATAOKA H, SASABE R, GOTO K, TANAKA M, ORIGUCHI T, YOSHIMURA T, OKITA M. Upregulation of interleukin-1β/transforming growth factor-β1 and hypoxia relate to molecular mechanisms underlying immobilization-induced muscle contracture. Muscle Nerve. 2015;52:419–427. doi: 10.1002/mus.24558. PubMed DOI
HONDA Y, TANAKA M, TANAKA N, SASABE R, GOTO K, KATAOKA H, SAKAMOTO J, NAKANO J, OKITA M. Relationship between extensibility and collagen expression in immobilized rat skeletal muscle. Muscle Nerve. 2018;57:672–678. doi: 10.1002/mus.26011. PubMed DOI
INOUE T, OKITA M, TAKAHASHI Y, HARADA Y, SUZUKI S. Effect of intermittent stretching on limitation of ankle joint mobility and disuse muscle atrophy in immobilized rat soleus muscle. (In Japanese) Rigaku Ryōhōgaku. 2007;34:1–9.
INOUE T, SUZUKI S, HAGIWARA R, IWATA M, BANNO Y, OKITA M. Effects of passive stretching on muscle injury and HSP expression during recovery after immobilization in rats. Pathobiology. 2009;76:253–259. doi: 10.1159/000228901. PubMed DOI
KANEGUCHI A, OZAWA J, YAMAOKA K. Intra-articular injection of mitomycin C prevents progression of immobilization-induced arthrogenic contracture in the remobilized rat knee. Physiol Res. 2020;69:145–156. doi: 10.33549/physiolres.934149. PubMed DOI PMC
KATAOKA H, NAKANO J, MORIMOTO Y, HONDA Y, SAKAMOTO J, ORIGUCHI T, OKITA M, YOSHIMURA T. Hyperglycemia inhibits recovery from disuse-induced skeletal muscle atrophy in rats. Physiol Res. 2014;63:465–474. PubMed
KOH TJ, PETERSON JM, PIZZA FX, BROOKS SV. Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury. J Gerontol A Biol Sci Med Sci. 2003;58:592–597. doi: 10.1093/gerona/58.7.b592. PubMed DOI
MAEZAWA T, TANAKA M, KANAZASHI M, MAESHIGE N, KONDO H, ISHIHARA A, FUJINO H. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress. J Physiol Sci. 2017;67:603–611. doi: 10.1007/s12576-016-0492-x. PubMed DOI PMC
MATSUMOTO Y, NAKANO J, OGA S, KATAOKA H, HONDA Y, SAKAMOTO J, OKITA M. The non-thermal effects of pulsed ultrasound irradiation on the development of disuse muscle atrophy in rat gastrocnemius muscle. Ultrasound Med Biol. 2014;40:1578–1586. doi: 10.1016/j.ultrasmedbio.2013.12.031. PubMed DOI
MORIMOTO A, WINAGA H, SAKURAI H, OHMICHI M, YOSHIMOTO T, OHMICHI Y, MATSUI T, USHIDA T, OKADA T, SATO J. Treadmill running and static stretching improve long-lasting hyperalgesia, joint limitation, and muscle atrophy induced by cast immobilization in rats. Neurosci Lett. 2013;534:295–300. doi: 10.1016/j.neulet.2012.11.009. PubMed DOI
NAKABAYASHI K, SAKAMOTO J, KATAOKA H, KONDO Y, HAMAUE Y, HONDA Y, NAKANO J, OKITA M. Effect of continuous passive motion initiated after the onset of arthritis on inflammation and secondary hyperalgesia in rats. Physiol Res. 2016;65:683–691. doi: 10.33549/physiolres.933214. PubMed DOI
NAKAGAWA T, HIRAGA SI, MIZUMURA K, HORI K, OZAKI N, KOEDA T. Topical thermal therapy with hot packs suppresses physical inactivity-induced mechanical hyperalgesia and up-regulation of NGF. J Physiol Sci. 2018;68:629–637. doi: 10.1007/s12576-017-0574-4. PubMed DOI PMC
NAKANO J, SEKINO Y, HAMAUE Y, SAKAMOTO J, YOSHIMURA T, ORIGUCHI T, OKITA M. Changes in hind paw epidermal thickness, peripheral nerve distribution and mechanical sensitivity after immobilization in rats. Physiol Res. 2012;61:643–647. doi: 10.33549/physiolres.932362. PubMed DOI
NASU T, TAGUCHI T, MIZUMURA K. Persistent deep mechanical hyperalgesia induced by repeated cold stress in rats. Eur J Pain. 2010;14:236–244. doi: 10.1016/j.ejpain.2009.05.009. PubMed DOI
OHMICHI Y, SATO J, OHMICHI M, SAKURAI H, YOSHIMOTO T, MORIMOTO A, HASHIMOTO T, EGUCHI K, NISHIHARA M, ARAI YC, OHISHI H, ASAMOTO K, USHIDA T, NAKANO T, KUMAZAWA T. Two-week cast immobilization induced chronic widespread hyperalgesia in rats. Eur J Pain. 2012;16:338–348. doi: 10.1002/j.1532-2149.2011.00026.x. PubMed DOI
OKITA M, NAKANO J, KATAOKA H, SAKAMOTO J, ORIGUCHI T, YOSHIMURA T. Effects of therapeutic ultrasound on joint mobility and collagen fibril arrangement in the endomysium of immobilized rat soleus muscle. Ultrasound Med Biol. 2009;35:237–244. doi: 10.1016/j.ultrasmedbio.2008.09.001. PubMed DOI
PELESHOK JC, RIBEIRO-DA-SILVA A. Delayed reinnervation by nonpeptidergic nociceptive afferents of the glabrous skin of the rat hindpaw in a neuropathic pain model. J Comp Neurol. 2011;519:49–63. doi: 10.1002/cne.22500. PubMed DOI
SEKINO Y, NAKANO J, HAMAUE Y, CHUGANJI S, SAKAMOTO J, YOSHIMURA T, ORIGUCHI T, OKITA M. Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3 expression in the epidermis following cast immobilization in rats. Eur J Pain. 2014;18:639–648. doi: 10.1002/j.1532-2149.2013.00412.x. PubMed DOI
TERKELSEN AJ, BACH FW, JENSEN TS. Experimental forearm immobilization in humans induces cold and mechanical hyperalgesia. Anesthesiology. 2008;109:297–307. doi: 10.1097/aln.0b013e31817f4c9d. PubMed DOI
YOSHIMURA A, SAKAMOTO J, HONDA Y, KATAOKA H, NAKANO J, OKITA M. Cyclic muscle twitch contraction inhibits immobilization-induced muscle contracture and fibrosis in rats. Connect Tissue Res. 2017;58:487–495. doi: 10.1080/03008207.2016.1257004. PubMed DOI
WONG K, TRUDEL G, LANEUVILLE O. Noninflammatory joint contractures arising from immobility: animal models to future treatments. Biomed Res Int. 2015;2015:848290. doi: 10.1155/2015/848290. PubMed DOI PMC
ZSCHÜNTZSCH J, ZHANG Y, KLINKER F, MAKOSCH G, KLINGE L, MALZAHN D, BRINKMEIER H, LIEBETANZ D, SCHMIDT J. Treatment with human immunoglobulin G improves the early disease course in a mouse model of Duchenne muscular dystrophy. J Neurochem. 2016;136:351–362. doi: 10.1111/jnc.13269. PubMed DOI