Excellent UV-Light Triggered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye

. 2021 Sep 28 ; 11 (10) : . [epub] 20210928

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34684989

Grantová podpora
Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293. Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education),

The photocatalytic activity of eco-friendly zinc oxide doped silica nanocomposites, synthesized via a co-precipitation method followed by heat-treatment at 300, 600, and 900 °C is investigated. The samples have been characterized by employing X-ray diffraction method, and further analyzed using the Rietveld Refinement method. The samples show a space group P63mc with hexagonal structure. The prepared composites are tested for their photocatalytic activities for the degradation of methyl orange-based water pollutants under ultra-violet (UV) irradiation using a 125 W mercury lamp. A systematic analysis of parameters such as the irradiation time, pH value, annealing temperatures, and the concentration of sodium hydroxide impacting the degradation of the methyl orange (MO) is carried out using UV-visible spectroscopy. The ZnO.SiO2 nanocomposite annealed at 300 °C at a pH value of seven shows a maximum photo-degradation ability (~98.1%) towards methyl orange, while the photo-degradation ability of ZnO.SiO2 nanocomposites decreases with annealing temperature (i.e., for 600 and 900 °C) due to the aspect ratio. Moreover, it is seen that with increment in the concentration of the NaOH (i.e., from 1 to 3 g), the photo-degradation of the dye component is enhanced from 20.9 to 53.8%, whereas a reverse trend of degradation ability is observed for higher concentrations.

Zobrazit více v PubMed

Karimi A., Kazeminezhad I., Azizi S. Ag/αFe2O3-rGO novel ternary nanocomposites: Synthesis, characterization, and pho-tocatalytic activity. Ceram. Int. 2019;45:3441–3448. doi: 10.1016/j.ceramint.2018.10.259. DOI

Robinson T., McMullan G., Marchant R., Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI

Ajmal A., Majeed I., Malik R.N., Idriss H., Nadeem M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014;4:37003–37026. doi: 10.1039/C4RA06658H. DOI

Rakhshaee R., Giahi M., Pourahmad A. Removal of methyl orange from aqueous solution by Azolla filicoloides: Synthesis of Fe3O4 nano-particles and its surface modification by the extracted pectin of Azolla. Chin. Chem. Lett. 2011;22:501–504. doi: 10.1016/j.cclet.2010.10.041. DOI

Al-Qaradawi S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A Chem. 2002;148:161–168. doi: 10.1016/S1010-6030(02)00086-2. DOI

Katsuda T., Ooshima H., Azuma M., Kato J. New detection method for hydrogen gas for screening hydrogen-producing microorganisms using water-soluble wilkinson’s catalyst derivative. J. Biosci. Bioeng. 2006;102:220–226. doi: 10.1263/jbb.102.220. PubMed DOI

Chung K.-T. Azo dyes and human health: A review. J. Environ. Sci. Heal. Part C. 2016;34:233–261. doi: 10.1080/10590501.2016.1236602. PubMed DOI

Sha Y., Mathew I., Cui Q., Clay M., Gao F., Zhang X.J., Gu Z. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere. 2016;144:1530–1535. doi: 10.1016/j.chemosphere.2015.10.040. PubMed DOI

Chamjangali M.A., Bagherian G., Javid A., Boroumand S., Farzaneh N. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;150:230–237. doi: 10.1016/j.saa.2015.05.067. PubMed DOI

Paul K.K., Ghosh R., Giri P.K. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods. Nanotechnology. 2016;27:315703. doi: 10.1088/0957-4484/27/31/315703. PubMed DOI

Theerthagiri J., Chandrasekaran S., Salla S., Elakkiya V., Senthil R.A., Nithyadharseni P., Maiyalagan T., Micheal K., Ayeshamariam A., Arasu A.M., et al. Recent developments of metal oxide based heterostructures for photocatalytic applica-tions towards environmental remediation. J. Solid State Chem. 2018;267:35–52. doi: 10.1016/j.jssc.2018.08.006. DOI

Zaleska-Medynska A. Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application. Elsevier; Amsterdam, The Netherlands: 2018.

Lee K.M., Lai C.W., Ngai K.S., Juan J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016;88:428–448. doi: 10.1016/j.watres.2015.09.045. PubMed DOI

Siddiquey I.A., Furusawa T., Sato M., Bahadur N.M., Alam M., Suzuki N. Sonochemical synthesis, photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrason. Sonochem. 2012;19:750–755. doi: 10.1016/j.ultsonch.2011.12.011. PubMed DOI

Inamuddin Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol. 2019;121:1046–1053. doi: 10.1016/j.ijbiomac.2018.10.064. PubMed DOI

Kumar A., Dalal J., Dahiya S., Chowdhury A., Khandual A., Ohlan A., Punia R., Maan A.S. Coating of multi-walled carbon nanotubes on cotton fabric via conventional dyeing for enhanced electrical and mechanical properties. AIP Conf. Proc. 2019;2142:140019. doi: 10.1063/1.5122532. DOI

Lu L., Shan R., Shi Y., Wang S., Yuan H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere. 2019;222:391–398. doi: 10.1016/j.chemosphere.2019.01.132. PubMed DOI

Molkenova A., Sarsenov S., Atabaev S., Khamkhash L., Atabaev T.S. Hierarchically-structured hollow CuO microparticles for efficient photo-degradation of a model pollutant dye under the solar light illumination. Environ. Nanotechnol. Monit. Manag. 2021;16:100507. doi: 10.1016/j.enmm.2021.100507. DOI

Qu Y., Huang R., Qi W., Shi M., Su R., He Z. Controllable synthesis of ZnO nanoflowers with structure-dependent photo-catalytic activity. Catal. Today. 2020;355:397–407. doi: 10.1016/j.cattod.2019.07.056. DOI

Wang L., Li Z., Chen J., Huang Y., Zhang H., Qiu H. Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ. Pollut. 2019;249:801–811. doi: 10.1016/j.envpol.2019.03.071. PubMed DOI

Ali W., Ullah H., Zada A., Alamgir M.K., Muhammad W., Ahmad M.J., Nadhman A. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Mater. Chem. Phys. 2018;213:259–266. doi: 10.1016/j.matchemphys.2018.04.015. DOI

Albiss B., Abu-Dalo M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability. 2021;13:4729. doi: 10.3390/su13094729. DOI

Mohamed R.M., Barakat M.A. Enhancement of photocatalytic activity of ZnO/SiO2 by nanosized Pt for photocatalytic degradation of phenol in wastewater. Int. J. Photoenergy. 2012;2012:103672. doi: 10.1155/2012/103672. DOI

Kumari S., Malik S., Kumar S., Dalal J., Dahiya S., Ohlan A., Punia R., Maan A.S. Excellent photoelectrical properties of ZnO thin film based on ZnO/epoxy-resin ink for UV-light detectors. AIP Conf. Proc. 2019;2142:120004.

Feng Q., Chen K., Ma D., Lin H., Liu Z., Qin S., Luo Y. Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf. A Physicochem. Eng. Asp. 2018;539:399–406. doi: 10.1016/j.colsurfa.2017.12.025. DOI

Galedari N.A., Rahmani M., Tasbihi M. Preparation, characterization, and application of ZnO@SiO2 core-shell structured catalyst for photocatalytic degradation of phenol. Environ. Sci. Pollut. Res. 2017;24:12655–12663. doi: 10.1007/s11356-016-7888-2. PubMed DOI

Rohilla S., Lal B., Sunder S., Aghamkar P., Kumar S., Aggarwal A. Synthesis of Fe4[Fe(CN)6]3·14H2O Nanopowder by Co-Precipitation Technique and Effect of Heat Treatment. Acta Phys. Pol. A. 2010;118:696. doi: 10.12693/APhysPolA.118.696. DOI

Rohilla S., Kumar S., Aghamkar P., Sunder S., Agarwal A. Investigations on structural and magnetic properties of cobalt ferrite/silica nanocomposites prepared by the coprecipitation method. J. Magn. Magn. Mater. 2011;323:897–902. doi: 10.1016/j.jmmm.2010.11.001. DOI

Li N., Yang B., Xu L., Xu G., Sun W., Yu S. Simple synthesis of Cu2O/Na-bentonite composites and their excellent photocatalytic properties in treating methyl orange solution. Ceram. Int. 2016;42:5979–5984. doi: 10.1016/j.ceramint.2015.12.145. DOI

Mahmood T., Saddique M.T., Naeem A., Westerhoff P., Mustafa S., Alum A. Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Ind. Eng. Chem. Res. 2011;50:10017–10023. doi: 10.1021/ie200271d. DOI

Benhebal H., Chaib M., Salmon T., Geens J., Leonard A., Lambert S.D., Crine M., Heinrichs B. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex. Eng. J. 2013;52:517–523. doi: 10.1016/j.aej.2013.04.005. DOI

Alam U., Khan A., Ali D., Bahnemann D., Muneer M. Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 2018;8:17582–17594. doi: 10.1039/C8RA01638K. PubMed DOI PMC

Ali A.M., Ismail A.A., Najmy R., Al-Hajry A. Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst. J. Photochem. Photobiol. A Chem. 2014;275:37–46. doi: 10.1016/j.jphotochem.2013.11.002. DOI

Muthulingam S., Bin Bae K., Khan R., Lee I.-H., Uthirakumar P. Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots. RSC Adv. 2015;5:46247–46251. doi: 10.1039/C5RA07811C. DOI

Nogueira I.C., Cavalcante L.S., Pereira P.F.S., De Jesus M.M., Rivas Mercury J.M., Batista N.C., Li M.S., Longo E. Rietveld refinement, morphology and optical properties of (Ba1−xSrx).MoO4 crystals. J. Appl. Crystallogr. 2013;46:1434–1446. doi: 10.1107/S0021889813020335. DOI

Singh K., Rawal I., Gautam P., Sharma N., Dhar R. Diluted magnetic semiconducting properties of nanocrystalline Zn0.98X0.02O (X = Fe, Ga, Ni) thin films deposited by PLD technique for spintronic applications. J. Magn. Magn. Mater. 2018;468:259–268. doi: 10.1016/j.jmmm.2018.08.024. DOI

Zeng X., Yu S., Sun R., Xu J. Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core-shell CNT@SiO2 hybrids as fillers. Compos. Part A Appl. Sci. Manuf. 2015;73:260–268. doi: 10.1016/j.compositesa.2015.03.015. DOI

Tinio J.V.G., Simfroso K.T., Peguit A.D.M.V., Candidato R.T. Influence of OH-ion concentration on the surface morphology of zno-SiO2 nanostructure. J. Nanotechnol. 2015;2015:686021. doi: 10.1155/2015/686021. DOI

Sharma D., Jha R. Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceram. Int. 2017;43:8488–8496. doi: 10.1016/j.ceramint.2017.03.201. DOI

Zhong J.B., Li J.Z., He X.Y., Zeng J., Lu Y., He J.J., Zhong F. Fabrication and Catalytic Performance of SiO2-ZnO Composite Photocatalyst. Synth. React. Inorg. Met. Nano-Met. Chem. 2014;44:1203–1207. doi: 10.1080/15533174.2013.799208. DOI

Wang W.-Y., Ku Y. Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids Surf. A Physicochem. Eng. Asp. 2007;302:261–268. doi: 10.1016/j.colsurfa.2007.02.037. DOI

Huang M., Xu C., Wu Z., Huang Y., Lin J., Wu J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dye. Pigment. 2008;77:327–334. doi: 10.1016/j.dyepig.2007.01.026. DOI

Moignard M., James R., Healy T. Adsorption of calcium at the zinc sulphide-water interface. Aust. J. Chem. 1977;30:733–740. doi: 10.1071/CH9770733. DOI

Ghaderi A., Abbasi S., Farahbod F. Synthesis, characterization and photocatalytic performance of modified ZnO nanoparticles with SnO2 nanoparticles. Mater. Res. Express. 2018;5:065908. doi: 10.1088/2053-1591/aacd40. DOI

Liu S., Zhao Z., Wang Z. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts. Photochem. Photobiol. Sci. 2007;6:695–700. doi: 10.1039/B613098D. PubMed DOI

Reedijk J. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier BV; Amsterdam, The Netherlands: 2013.

Ouyang K., Xie S. Effect of key operational factors on decolorization of methyl orange by multi-walled carbon nanotubes (MWCNTs)/TiO2/CdS composite under simulated solar light irradiation. Ceram. Int. 2013;39:8035–8042. doi: 10.1016/j.ceramint.2013.03.073. DOI

Tripathy N., Ahmad R., Song J.E., Ko H.A., Hahn Y.-B., Khang G. Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Mater. Lett. 2014;136:171–174. doi: 10.1016/j.matlet.2014.08.064. DOI

Khan R., Hassan M.S., Jang L.-W., Yun J.H., Ahn H.-K., Khil M.-S., Lee I.-H. Low-temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceram. Int. 2014;40:14827–14831. doi: 10.1016/j.ceramint.2014.06.076. DOI

Dhanalakshmi J., Padiyan D.P. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol–gel synthesized TiO2 nanoparticles. Mater. Res. Express. 2017;4:095020. doi: 10.1088/2053-1591/aa85fd. DOI

Chowdhury M.I.H., Hossain M.S., Azad M.A.S., Islam M.Z., Dewan M.A. Photocatalytic degradation of methyl orange under UV using ZnO as catalyst. Int. J. Sci. Eng. Res. 2018;9:1646–1649.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aerogels for Biomedical, Energy and Sensing Applications

. 2021 Dec 14 ; 7 (4) : . [epub] 20211214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...