Excellent UV-Light Triggered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293.
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education),
PubMed
34684989
PubMed Central
PMC8541141
DOI
10.3390/nano11102548
PII: nano11102548
Knihovny.cz E-zdroje
- Klíčová slova
- Rietveld refinement, Tauc’s plot, methyl orange, photocatalytic activity, water pollutant,
- Publikační typ
- časopisecké články MeSH
The photocatalytic activity of eco-friendly zinc oxide doped silica nanocomposites, synthesized via a co-precipitation method followed by heat-treatment at 300, 600, and 900 °C is investigated. The samples have been characterized by employing X-ray diffraction method, and further analyzed using the Rietveld Refinement method. The samples show a space group P63mc with hexagonal structure. The prepared composites are tested for their photocatalytic activities for the degradation of methyl orange-based water pollutants under ultra-violet (UV) irradiation using a 125 W mercury lamp. A systematic analysis of parameters such as the irradiation time, pH value, annealing temperatures, and the concentration of sodium hydroxide impacting the degradation of the methyl orange (MO) is carried out using UV-visible spectroscopy. The ZnO.SiO2 nanocomposite annealed at 300 °C at a pH value of seven shows a maximum photo-degradation ability (~98.1%) towards methyl orange, while the photo-degradation ability of ZnO.SiO2 nanocomposites decreases with annealing temperature (i.e., for 600 and 900 °C) due to the aspect ratio. Moreover, it is seen that with increment in the concentration of the NaOH (i.e., from 1 to 3 g), the photo-degradation of the dye component is enhanced from 20.9 to 53.8%, whereas a reverse trend of degradation ability is observed for higher concentrations.
Department of Electrical Engineering Northern Illinois University Dekalb IL 60115 USA
Department of Physics Adarsh Mahila Mahavidyalaya Bhiwani 127021 India
Department of Physics Chaudhary Ranbir Singh University Jind 126102 India
Zobrazit více v PubMed
Karimi A., Kazeminezhad I., Azizi S. Ag/αFe2O3-rGO novel ternary nanocomposites: Synthesis, characterization, and pho-tocatalytic activity. Ceram. Int. 2019;45:3441–3448. doi: 10.1016/j.ceramint.2018.10.259. DOI
Robinson T., McMullan G., Marchant R., Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI
Ajmal A., Majeed I., Malik R.N., Idriss H., Nadeem M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014;4:37003–37026. doi: 10.1039/C4RA06658H. DOI
Rakhshaee R., Giahi M., Pourahmad A. Removal of methyl orange from aqueous solution by Azolla filicoloides: Synthesis of Fe3O4 nano-particles and its surface modification by the extracted pectin of Azolla. Chin. Chem. Lett. 2011;22:501–504. doi: 10.1016/j.cclet.2010.10.041. DOI
Al-Qaradawi S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A Chem. 2002;148:161–168. doi: 10.1016/S1010-6030(02)00086-2. DOI
Katsuda T., Ooshima H., Azuma M., Kato J. New detection method for hydrogen gas for screening hydrogen-producing microorganisms using water-soluble wilkinson’s catalyst derivative. J. Biosci. Bioeng. 2006;102:220–226. doi: 10.1263/jbb.102.220. PubMed DOI
Chung K.-T. Azo dyes and human health: A review. J. Environ. Sci. Heal. Part C. 2016;34:233–261. doi: 10.1080/10590501.2016.1236602. PubMed DOI
Sha Y., Mathew I., Cui Q., Clay M., Gao F., Zhang X.J., Gu Z. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere. 2016;144:1530–1535. doi: 10.1016/j.chemosphere.2015.10.040. PubMed DOI
Chamjangali M.A., Bagherian G., Javid A., Boroumand S., Farzaneh N. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;150:230–237. doi: 10.1016/j.saa.2015.05.067. PubMed DOI
Paul K.K., Ghosh R., Giri P.K. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods. Nanotechnology. 2016;27:315703. doi: 10.1088/0957-4484/27/31/315703. PubMed DOI
Theerthagiri J., Chandrasekaran S., Salla S., Elakkiya V., Senthil R.A., Nithyadharseni P., Maiyalagan T., Micheal K., Ayeshamariam A., Arasu A.M., et al. Recent developments of metal oxide based heterostructures for photocatalytic applica-tions towards environmental remediation. J. Solid State Chem. 2018;267:35–52. doi: 10.1016/j.jssc.2018.08.006. DOI
Zaleska-Medynska A. Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application. Elsevier; Amsterdam, The Netherlands: 2018.
Lee K.M., Lai C.W., Ngai K.S., Juan J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016;88:428–448. doi: 10.1016/j.watres.2015.09.045. PubMed DOI
Siddiquey I.A., Furusawa T., Sato M., Bahadur N.M., Alam M., Suzuki N. Sonochemical synthesis, photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrason. Sonochem. 2012;19:750–755. doi: 10.1016/j.ultsonch.2011.12.011. PubMed DOI
Inamuddin Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol. 2019;121:1046–1053. doi: 10.1016/j.ijbiomac.2018.10.064. PubMed DOI
Kumar A., Dalal J., Dahiya S., Chowdhury A., Khandual A., Ohlan A., Punia R., Maan A.S. Coating of multi-walled carbon nanotubes on cotton fabric via conventional dyeing for enhanced electrical and mechanical properties. AIP Conf. Proc. 2019;2142:140019. doi: 10.1063/1.5122532. DOI
Lu L., Shan R., Shi Y., Wang S., Yuan H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere. 2019;222:391–398. doi: 10.1016/j.chemosphere.2019.01.132. PubMed DOI
Molkenova A., Sarsenov S., Atabaev S., Khamkhash L., Atabaev T.S. Hierarchically-structured hollow CuO microparticles for efficient photo-degradation of a model pollutant dye under the solar light illumination. Environ. Nanotechnol. Monit. Manag. 2021;16:100507. doi: 10.1016/j.enmm.2021.100507. DOI
Qu Y., Huang R., Qi W., Shi M., Su R., He Z. Controllable synthesis of ZnO nanoflowers with structure-dependent photo-catalytic activity. Catal. Today. 2020;355:397–407. doi: 10.1016/j.cattod.2019.07.056. DOI
Wang L., Li Z., Chen J., Huang Y., Zhang H., Qiu H. Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ. Pollut. 2019;249:801–811. doi: 10.1016/j.envpol.2019.03.071. PubMed DOI
Ali W., Ullah H., Zada A., Alamgir M.K., Muhammad W., Ahmad M.J., Nadhman A. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Mater. Chem. Phys. 2018;213:259–266. doi: 10.1016/j.matchemphys.2018.04.015. DOI
Albiss B., Abu-Dalo M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability. 2021;13:4729. doi: 10.3390/su13094729. DOI
Mohamed R.M., Barakat M.A. Enhancement of photocatalytic activity of ZnO/SiO2 by nanosized Pt for photocatalytic degradation of phenol in wastewater. Int. J. Photoenergy. 2012;2012:103672. doi: 10.1155/2012/103672. DOI
Kumari S., Malik S., Kumar S., Dalal J., Dahiya S., Ohlan A., Punia R., Maan A.S. Excellent photoelectrical properties of ZnO thin film based on ZnO/epoxy-resin ink for UV-light detectors. AIP Conf. Proc. 2019;2142:120004.
Feng Q., Chen K., Ma D., Lin H., Liu Z., Qin S., Luo Y. Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf. A Physicochem. Eng. Asp. 2018;539:399–406. doi: 10.1016/j.colsurfa.2017.12.025. DOI
Galedari N.A., Rahmani M., Tasbihi M. Preparation, characterization, and application of ZnO@SiO2 core-shell structured catalyst for photocatalytic degradation of phenol. Environ. Sci. Pollut. Res. 2017;24:12655–12663. doi: 10.1007/s11356-016-7888-2. PubMed DOI
Rohilla S., Lal B., Sunder S., Aghamkar P., Kumar S., Aggarwal A. Synthesis of Fe4[Fe(CN)6]3·14H2O Nanopowder by Co-Precipitation Technique and Effect of Heat Treatment. Acta Phys. Pol. A. 2010;118:696. doi: 10.12693/APhysPolA.118.696. DOI
Rohilla S., Kumar S., Aghamkar P., Sunder S., Agarwal A. Investigations on structural and magnetic properties of cobalt ferrite/silica nanocomposites prepared by the coprecipitation method. J. Magn. Magn. Mater. 2011;323:897–902. doi: 10.1016/j.jmmm.2010.11.001. DOI
Li N., Yang B., Xu L., Xu G., Sun W., Yu S. Simple synthesis of Cu2O/Na-bentonite composites and their excellent photocatalytic properties in treating methyl orange solution. Ceram. Int. 2016;42:5979–5984. doi: 10.1016/j.ceramint.2015.12.145. DOI
Mahmood T., Saddique M.T., Naeem A., Westerhoff P., Mustafa S., Alum A. Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Ind. Eng. Chem. Res. 2011;50:10017–10023. doi: 10.1021/ie200271d. DOI
Benhebal H., Chaib M., Salmon T., Geens J., Leonard A., Lambert S.D., Crine M., Heinrichs B. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex. Eng. J. 2013;52:517–523. doi: 10.1016/j.aej.2013.04.005. DOI
Alam U., Khan A., Ali D., Bahnemann D., Muneer M. Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 2018;8:17582–17594. doi: 10.1039/C8RA01638K. PubMed DOI PMC
Ali A.M., Ismail A.A., Najmy R., Al-Hajry A. Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst. J. Photochem. Photobiol. A Chem. 2014;275:37–46. doi: 10.1016/j.jphotochem.2013.11.002. DOI
Muthulingam S., Bin Bae K., Khan R., Lee I.-H., Uthirakumar P. Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots. RSC Adv. 2015;5:46247–46251. doi: 10.1039/C5RA07811C. DOI
Nogueira I.C., Cavalcante L.S., Pereira P.F.S., De Jesus M.M., Rivas Mercury J.M., Batista N.C., Li M.S., Longo E. Rietveld refinement, morphology and optical properties of (Ba1−xSrx).MoO4 crystals. J. Appl. Crystallogr. 2013;46:1434–1446. doi: 10.1107/S0021889813020335. DOI
Singh K., Rawal I., Gautam P., Sharma N., Dhar R. Diluted magnetic semiconducting properties of nanocrystalline Zn0.98X0.02O (X = Fe, Ga, Ni) thin films deposited by PLD technique for spintronic applications. J. Magn. Magn. Mater. 2018;468:259–268. doi: 10.1016/j.jmmm.2018.08.024. DOI
Zeng X., Yu S., Sun R., Xu J. Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core-shell CNT@SiO2 hybrids as fillers. Compos. Part A Appl. Sci. Manuf. 2015;73:260–268. doi: 10.1016/j.compositesa.2015.03.015. DOI
Tinio J.V.G., Simfroso K.T., Peguit A.D.M.V., Candidato R.T. Influence of OH-ion concentration on the surface morphology of zno-SiO2 nanostructure. J. Nanotechnol. 2015;2015:686021. doi: 10.1155/2015/686021. DOI
Sharma D., Jha R. Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceram. Int. 2017;43:8488–8496. doi: 10.1016/j.ceramint.2017.03.201. DOI
Zhong J.B., Li J.Z., He X.Y., Zeng J., Lu Y., He J.J., Zhong F. Fabrication and Catalytic Performance of SiO2-ZnO Composite Photocatalyst. Synth. React. Inorg. Met. Nano-Met. Chem. 2014;44:1203–1207. doi: 10.1080/15533174.2013.799208. DOI
Wang W.-Y., Ku Y. Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids Surf. A Physicochem. Eng. Asp. 2007;302:261–268. doi: 10.1016/j.colsurfa.2007.02.037. DOI
Huang M., Xu C., Wu Z., Huang Y., Lin J., Wu J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dye. Pigment. 2008;77:327–334. doi: 10.1016/j.dyepig.2007.01.026. DOI
Moignard M., James R., Healy T. Adsorption of calcium at the zinc sulphide-water interface. Aust. J. Chem. 1977;30:733–740. doi: 10.1071/CH9770733. DOI
Ghaderi A., Abbasi S., Farahbod F. Synthesis, characterization and photocatalytic performance of modified ZnO nanoparticles with SnO2 nanoparticles. Mater. Res. Express. 2018;5:065908. doi: 10.1088/2053-1591/aacd40. DOI
Liu S., Zhao Z., Wang Z. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts. Photochem. Photobiol. Sci. 2007;6:695–700. doi: 10.1039/B613098D. PubMed DOI
Reedijk J. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier BV; Amsterdam, The Netherlands: 2013.
Ouyang K., Xie S. Effect of key operational factors on decolorization of methyl orange by multi-walled carbon nanotubes (MWCNTs)/TiO2/CdS composite under simulated solar light irradiation. Ceram. Int. 2013;39:8035–8042. doi: 10.1016/j.ceramint.2013.03.073. DOI
Tripathy N., Ahmad R., Song J.E., Ko H.A., Hahn Y.-B., Khang G. Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Mater. Lett. 2014;136:171–174. doi: 10.1016/j.matlet.2014.08.064. DOI
Khan R., Hassan M.S., Jang L.-W., Yun J.H., Ahn H.-K., Khil M.-S., Lee I.-H. Low-temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceram. Int. 2014;40:14827–14831. doi: 10.1016/j.ceramint.2014.06.076. DOI
Dhanalakshmi J., Padiyan D.P. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol–gel synthesized TiO2 nanoparticles. Mater. Res. Express. 2017;4:095020. doi: 10.1088/2053-1591/aa85fd. DOI
Chowdhury M.I.H., Hossain M.S., Azad M.A.S., Islam M.Z., Dewan M.A. Photocatalytic degradation of methyl orange under UV using ZnO as catalyst. Int. J. Sci. Eng. Res. 2018;9:1646–1649.