Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants

. 2021 Feb ; 66 (1) : 87-98. [epub] 20200925

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32975726
Odkazy

PubMed 32975726
PubMed Central PMC7854452
DOI 10.1007/s12223-020-00825-1
PII: 10.1007/s12223-020-00825-1
Knihovny.cz E-zdroje

The potential of the culturable bacterial community from an Alpine coniferous forest site for the degradation of organic polymers and pollutants at low (5 °C) and moderate (20 °C) temperatures was evaluated. The majority of the 68 strains belonged to the phylum Proteobacteria (77%). Other strains were related to Bacteroidetes (12%), Alphaproteobacteria (4%), Actinobacteria (3%), and Firmicutes (3%). The strains were grouped into 42 different OTUs. The highest bacterial diversity was found within the phylum Bacteroidetes. All strains, except one, could grow at temperatures from 5 to 25 °C. The production of enzyme activities involved in the degradation of organic polymers present in plant litter (carboxymethyl cellulose, microgranular cellulose, xylan, polygalacturonic acid) was almost comparable at 5 °C (68%) and 20 °C (63%). Utilizers of lignin compounds (lignosulfonic acid, lignin alkali) as sole carbon source were found to a higher extent at 20 °C (57%) than at 5 °C (24%), but the relative fractions among positively tested strains utilizing these compounds were almost identical at the two temperatures. Similar results were noted for utilizers of organic pollutants (n-hexadecane, diesel oil, phenol, glyphosate) as sole carbon source. More than two-thirds showed constitutively expressed catechol-1,2-dioxygenase activity both at 5 °C (74%) and 20 °C (66%). Complete phenol (2.5 mmol/L) degradation by strain Paraburkholderia aromaticivorans AR20-38 was demonstrated at 0-30 °C, amounts up to 7.5 mmol/L phenol were fully degraded at 10-30 °C. These results are useful to better understand the effect of changing temperatures on microorganisms involved in litter degradation and nutrient turnover in Alpine forest soils.

Zobrazit více v PubMed

Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1993;41:572–580. doi: 10.1002/bit.260410510. PubMed DOI

Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jemsem DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol. 2018;18:178. doi: 10.1186/s12866-018-1310-9. PubMed DOI PMC

Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI

Brandon A, Scheller HV, Loque D (2018) Mutant xylan biosynthetic enzymes capable of dominant suppression of xylan biosynthesis. US Patent Application

Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. doi: 10.1016/j.copbio.2010.10.009. PubMed DOI

Chandra R, Singh S, Reddy MMK, Patel DK, Purohit HJ, Kapley A. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste. J Gen Appl Microbiol. 2008;54:399–407. doi: 10.2323/jgam.54.399. PubMed DOI

Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol. 2019;103:2857–2871. doi: 10.1007/s00253-019-09659-C5. PubMed DOI

Czarny J, Staninska-Pieta J, Powierska-Czarny J, Nowak J, Wolko L, Piotrowska-Cyplik A. Metagenomic analysis of soil bacterial community and level of genes responsible for biodegradation of aromatic hydrocarbons. Pol J Microbiol. 2017;66:345–352. doi: 10.5604/01.3001.0010.4865. PubMed DOI

Donos R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, Gonzáles Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol. 2017;83:1. PubMed PMC

França L, Sannino C, Turchetti B, Buzzini P, Margesin R. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles. 2016;20:855–873. doi: 10.1007/s00792-016-0874-2. PubMed DOI PMC

Ganewatta MS, Lokupitiya HN, Tang C. Lignin biopolymers in the age of controlled polymerization. Poylmers. 2019;11:1176. doi: 10.3390/polym11071176. PubMed DOI PMC

Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O’Hara I, Speight R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol. 2020;20:12. doi: 10.1186/s12896-020-00609-y. PubMed DOI PMC

Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 21st century climate change in the European Alps—A review. Sci Total Environ. 2014;493:138–1151. doi: 10.1016/j.scitotenv.2013.07.050. PubMed DOI

Iivanainen EK, Martikainen PJ, Raisanen ML, Katila ML. Mycobacteria in boreal forest soils. FEMS Microbiol Ecol. 1997;23:325–332. doi: 10.1016/S0168-6496(97)00040-8. DOI

Islam F, Roy N. Isolation and characterization of cellulase-producing bacteria from sugar industry waste. Am J Biosci. 2019;7:16–24. doi: 10.11648/j.ajbio.20190701.13. DOI

Jain A, Krishnan KP. A glimpse of the diversity of complex polysaccharide-degrading culturable bacteria from Kongsfjorden, Arctic Ocean. Arch Microbiol. 2017;67:203–214.

Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0. PubMed DOI

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 1MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechnol. 2015;18:110–115. doi: 10.1016/j.ejbt.2014.12.008. DOI

Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: Wiley; 1991. pp. 115–175.

Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol. 2018;68:1251–1257. doi: 10.1099/ijsem.0.002661. PubMed DOI

Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep. 2019;9:860. doi: 10.1038/s41598-018-36165-x. PubMed DOI PMC

Li J, Wang G, Allison SD, Mayes MA, Luo Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry. 2014;119:67–84. doi: 10.1007/s10533-013-9948-8. DOI

Li D, Feng L, Liu K, Cheng Y, Hou N, Li C. Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China. Cellulose. 2016;23:1335–1347. doi: 10.1007/s10570-016-0859-4. DOI

Li JB, Zhang DY, Song MK, Jiang LF, Wang YJ, Luo CL, Zhang G. Novel bacteria capable of degrading phenanthrene in activated sludge reveled by stable-isotope probing coupled with high-throughput sequencing. Biodegradation. 2017;28:423–436. doi: 10.1007/s10532-017-9806-9. PubMed DOI

Liu ZH, Le RK, Kosa M, Yang B, Yuan J, Ragauskas AJ. Identifying and creating pathways to improve biological lignin valorisation. Renew Sust Energ Rev. 2019;105:349–362. doi: 10.1016/j.rser.2019.02.009. DOI

Männistö MK, Häggblom MM. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol. 2006;29:229–243. doi: 10.1016/j.syapm.2005.09.001. PubMed DOI

Margesin R, Schinner F. Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol. 1997;47:462–468. doi: 10.1007/s002530050957. DOI

Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI

Margesin R, Fauster V, Fonteyne PA. Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol. 2005;40:453–459. doi: 10.1111/j.1472-765X.2005.01704.x. PubMed DOI

Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009;67:208–218. doi: 10.1111/j.1574-6941.2008.00620.x. PubMed DOI

Margesin R, Moertelmaier C, Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad. 2013;84:185–191. doi: 10.1016/j.ibiod.2012.05.004. DOI

Margesin R, Minerbi S, Schinner F. Litter decomposition at two forest sites in the Italian Alps: a field study. Arct Antarct Alp Res. 2016;48:127–138. doi: 10.1657/AAAR0015-012. DOI

Nakazawa T, Nakazawa A. Pyrocatechase (Pseudomonas) Methods Enzymol. 1970;17A:518–522. doi: 10.1016/0076-6879(71)17234-5. DOI

Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.

Nozaki M. Metapyrocatechase (Pseudomonas) Methods Enzymol. 1970;17A:522–525. doi: 10.1016/0076-6879(71)17235-7. DOI

Poyntner C, Zhang D, Margesin R. Draft genome sequence of the bacterium Paraburkholderia aromaticivorans AR20-38, a Gram-negative, cold-adapted degrader of aromatic compounds. Microbiol Resour Announc. 2020;9:e00463–e00420. doi: 10.1128/MRA.00463-20. PubMed DOI PMC

Rosenblatt J, Reitzel RA, Vargas-Cruz N, Chaftari AM, Hachem R, Raad I. Caprylic and polygalacturonic acid combinations for eradication of microbial organisms embedded in biofilm. Front Microbiol. 2017;8:1999. doi: 10.3389/fmicb.2017.01999. PubMed DOI PMC

Sánchez-Hidalgo M, Pascual J, de la Cruz M, Martín J, Kath GS, Sigmung JM, Masurekar P, Vicente F, Genilloud O, Bills GF. Prescreening bacterial colonies for bioactive molecules with Janus plates, a SBS standard double-faced microbial culturing system. Antonie Van Leeuwenhoek. 2012;102:361–374. doi: 10.1007/s10482-012-9746-7. PubMed DOI PMC

Schinner F, Öhlinger R, Kandeler E, Margesin R, editors. Methods in soil biology. Berlin: Springer Lab Manual; 1996.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Siles JA, Margesin R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Nat Sci Rep. 2017;7:2204. doi: 10.1038/s41598-017-02363-2. PubMed DOI PMC

Siles JA, Cajthaml T, Minerbi S, Margesin R. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol. 2016;92:fiw008. doi: 10.1093/femsec/fiw008. PubMed DOI

Siles A, Cajthaml T, Filipová A, Minerbi S, Margesin R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol Biochem. 2017;112:1–13. doi: 10.1016/j.soilbio.2017.04.014. DOI

Silva IS, Ragagnin de Menezes C, Franciscon E, Santos EC, Durrant LR. Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under microaerobic conditions. Braz Arch Biol Technol. 2010;53:693–699. doi: 10.1590/S1516-89132010000300026. DOI

Song MK, Jiang LF, Zhang DY, Luo CL, Wang Y, Yu ZQ, Yin H, Zhang G. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. J Hazard Mater. 2016;308:50–67. doi: 10.1016/j.jhazmat.2016.01.009. PubMed DOI

Wang G, Wang Y, Yang P, Luo H, Huang H, Shi P, Meng K, Yao B. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol. 2010;87:1383–1393. doi: 10.1007/s00253-010-2564-9. PubMed DOI

Welander U. Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam. 2005;14:281–291. doi: 10.1080/15320380590928339. DOI

Yang S, Yang B, Duan C, Fuller DA, Wang X, Chowdhury SP, Stavik J, Zhang H, Ni Y. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresour Technol. 2019;281:440–448. doi: 10.1016/j.biortech.2019.02.132. PubMed DOI

Yuan XY, Zhang XY, Cen XP, Kong DW, Liu XY, Shen SY. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour Technol. 2018;264:190–197. doi: 10.1016/j.biortech.2018.05.072. PubMed DOI

Žifčáková L, Vetrovsky T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome. 2017;5:122. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC

Zumsteg A, Schmutz S, Frey B (2013) Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing. Environ Microbiol Rep 5:424–437 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...