Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32975726
PubMed Central
PMC7854452
DOI
10.1007/s12223-020-00825-1
PII: 10.1007/s12223-020-00825-1
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- biodegradace MeSH
- biodiverzita MeSH
- biopolymery metabolismus MeSH
- cévnaté rostliny mikrobiologie MeSH
- fenol metabolismus MeSH
- fylogeneze MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- lesy * MeSH
- lignin metabolismus MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- biopolymery MeSH
- fenol MeSH
- látky znečišťující životní prostředí MeSH
- lignin MeSH
- RNA ribozomální 16S MeSH
The potential of the culturable bacterial community from an Alpine coniferous forest site for the degradation of organic polymers and pollutants at low (5 °C) and moderate (20 °C) temperatures was evaluated. The majority of the 68 strains belonged to the phylum Proteobacteria (77%). Other strains were related to Bacteroidetes (12%), Alphaproteobacteria (4%), Actinobacteria (3%), and Firmicutes (3%). The strains were grouped into 42 different OTUs. The highest bacterial diversity was found within the phylum Bacteroidetes. All strains, except one, could grow at temperatures from 5 to 25 °C. The production of enzyme activities involved in the degradation of organic polymers present in plant litter (carboxymethyl cellulose, microgranular cellulose, xylan, polygalacturonic acid) was almost comparable at 5 °C (68%) and 20 °C (63%). Utilizers of lignin compounds (lignosulfonic acid, lignin alkali) as sole carbon source were found to a higher extent at 20 °C (57%) than at 5 °C (24%), but the relative fractions among positively tested strains utilizing these compounds were almost identical at the two temperatures. Similar results were noted for utilizers of organic pollutants (n-hexadecane, diesel oil, phenol, glyphosate) as sole carbon source. More than two-thirds showed constitutively expressed catechol-1,2-dioxygenase activity both at 5 °C (74%) and 20 °C (66%). Complete phenol (2.5 mmol/L) degradation by strain Paraburkholderia aromaticivorans AR20-38 was demonstrated at 0-30 °C, amounts up to 7.5 mmol/L phenol were fully degraded at 10-30 °C. These results are useful to better understand the effect of changing temperatures on microorganisms involved in litter degradation and nutrient turnover in Alpine forest soils.
Zobrazit více v PubMed
Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1993;41:572–580. doi: 10.1002/bit.260410510. PubMed DOI
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jemsem DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol. 2018;18:178. doi: 10.1186/s12866-018-1310-9. PubMed DOI PMC
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI
Brandon A, Scheller HV, Loque D (2018) Mutant xylan biosynthetic enzymes capable of dominant suppression of xylan biosynthesis. US Patent Application
Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. doi: 10.1016/j.copbio.2010.10.009. PubMed DOI
Chandra R, Singh S, Reddy MMK, Patel DK, Purohit HJ, Kapley A. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste. J Gen Appl Microbiol. 2008;54:399–407. doi: 10.2323/jgam.54.399. PubMed DOI
Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol. 2019;103:2857–2871. doi: 10.1007/s00253-019-09659-C5. PubMed DOI
Czarny J, Staninska-Pieta J, Powierska-Czarny J, Nowak J, Wolko L, Piotrowska-Cyplik A. Metagenomic analysis of soil bacterial community and level of genes responsible for biodegradation of aromatic hydrocarbons. Pol J Microbiol. 2017;66:345–352. doi: 10.5604/01.3001.0010.4865. PubMed DOI
Donos R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, Gonzáles Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol. 2017;83:1. PubMed PMC
França L, Sannino C, Turchetti B, Buzzini P, Margesin R. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles. 2016;20:855–873. doi: 10.1007/s00792-016-0874-2. PubMed DOI PMC
Ganewatta MS, Lokupitiya HN, Tang C. Lignin biopolymers in the age of controlled polymerization. Poylmers. 2019;11:1176. doi: 10.3390/polym11071176. PubMed DOI PMC
Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O’Hara I, Speight R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol. 2020;20:12. doi: 10.1186/s12896-020-00609-y. PubMed DOI PMC
Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 21st century climate change in the European Alps—A review. Sci Total Environ. 2014;493:138–1151. doi: 10.1016/j.scitotenv.2013.07.050. PubMed DOI
Iivanainen EK, Martikainen PJ, Raisanen ML, Katila ML. Mycobacteria in boreal forest soils. FEMS Microbiol Ecol. 1997;23:325–332. doi: 10.1016/S0168-6496(97)00040-8. DOI
Islam F, Roy N. Isolation and characterization of cellulase-producing bacteria from sugar industry waste. Am J Biosci. 2019;7:16–24. doi: 10.11648/j.ajbio.20190701.13. DOI
Jain A, Krishnan KP. A glimpse of the diversity of complex polysaccharide-degrading culturable bacteria from Kongsfjorden, Arctic Ocean. Arch Microbiol. 2017;67:203–214.
Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0. PubMed DOI
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 1MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechnol. 2015;18:110–115. doi: 10.1016/j.ejbt.2014.12.008. DOI
Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: Wiley; 1991. pp. 115–175.
Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol. 2018;68:1251–1257. doi: 10.1099/ijsem.0.002661. PubMed DOI
Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep. 2019;9:860. doi: 10.1038/s41598-018-36165-x. PubMed DOI PMC
Li J, Wang G, Allison SD, Mayes MA, Luo Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry. 2014;119:67–84. doi: 10.1007/s10533-013-9948-8. DOI
Li D, Feng L, Liu K, Cheng Y, Hou N, Li C. Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China. Cellulose. 2016;23:1335–1347. doi: 10.1007/s10570-016-0859-4. DOI
Li JB, Zhang DY, Song MK, Jiang LF, Wang YJ, Luo CL, Zhang G. Novel bacteria capable of degrading phenanthrene in activated sludge reveled by stable-isotope probing coupled with high-throughput sequencing. Biodegradation. 2017;28:423–436. doi: 10.1007/s10532-017-9806-9. PubMed DOI
Liu ZH, Le RK, Kosa M, Yang B, Yuan J, Ragauskas AJ. Identifying and creating pathways to improve biological lignin valorisation. Renew Sust Energ Rev. 2019;105:349–362. doi: 10.1016/j.rser.2019.02.009. DOI
Männistö MK, Häggblom MM. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol. 2006;29:229–243. doi: 10.1016/j.syapm.2005.09.001. PubMed DOI
Margesin R, Schinner F. Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol. 1997;47:462–468. doi: 10.1007/s002530050957. DOI
Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI
Margesin R, Fauster V, Fonteyne PA. Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol. 2005;40:453–459. doi: 10.1111/j.1472-765X.2005.01704.x. PubMed DOI
Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009;67:208–218. doi: 10.1111/j.1574-6941.2008.00620.x. PubMed DOI
Margesin R, Moertelmaier C, Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad. 2013;84:185–191. doi: 10.1016/j.ibiod.2012.05.004. DOI
Margesin R, Minerbi S, Schinner F. Litter decomposition at two forest sites in the Italian Alps: a field study. Arct Antarct Alp Res. 2016;48:127–138. doi: 10.1657/AAAR0015-012. DOI
Nakazawa T, Nakazawa A. Pyrocatechase (Pseudomonas) Methods Enzymol. 1970;17A:518–522. doi: 10.1016/0076-6879(71)17234-5. DOI
Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
Nozaki M. Metapyrocatechase (Pseudomonas) Methods Enzymol. 1970;17A:522–525. doi: 10.1016/0076-6879(71)17235-7. DOI
Poyntner C, Zhang D, Margesin R. Draft genome sequence of the bacterium Paraburkholderia aromaticivorans AR20-38, a Gram-negative, cold-adapted degrader of aromatic compounds. Microbiol Resour Announc. 2020;9:e00463–e00420. doi: 10.1128/MRA.00463-20. PubMed DOI PMC
Rosenblatt J, Reitzel RA, Vargas-Cruz N, Chaftari AM, Hachem R, Raad I. Caprylic and polygalacturonic acid combinations for eradication of microbial organisms embedded in biofilm. Front Microbiol. 2017;8:1999. doi: 10.3389/fmicb.2017.01999. PubMed DOI PMC
Sánchez-Hidalgo M, Pascual J, de la Cruz M, Martín J, Kath GS, Sigmung JM, Masurekar P, Vicente F, Genilloud O, Bills GF. Prescreening bacterial colonies for bioactive molecules with Janus plates, a SBS standard double-faced microbial culturing system. Antonie Van Leeuwenhoek. 2012;102:361–374. doi: 10.1007/s10482-012-9746-7. PubMed DOI PMC
Schinner F, Öhlinger R, Kandeler E, Margesin R, editors. Methods in soil biology. Berlin: Springer Lab Manual; 1996.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Siles JA, Margesin R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Nat Sci Rep. 2017;7:2204. doi: 10.1038/s41598-017-02363-2. PubMed DOI PMC
Siles JA, Cajthaml T, Minerbi S, Margesin R. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol. 2016;92:fiw008. doi: 10.1093/femsec/fiw008. PubMed DOI
Siles A, Cajthaml T, Filipová A, Minerbi S, Margesin R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol Biochem. 2017;112:1–13. doi: 10.1016/j.soilbio.2017.04.014. DOI
Silva IS, Ragagnin de Menezes C, Franciscon E, Santos EC, Durrant LR. Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under microaerobic conditions. Braz Arch Biol Technol. 2010;53:693–699. doi: 10.1590/S1516-89132010000300026. DOI
Song MK, Jiang LF, Zhang DY, Luo CL, Wang Y, Yu ZQ, Yin H, Zhang G. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. J Hazard Mater. 2016;308:50–67. doi: 10.1016/j.jhazmat.2016.01.009. PubMed DOI
Wang G, Wang Y, Yang P, Luo H, Huang H, Shi P, Meng K, Yao B. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol. 2010;87:1383–1393. doi: 10.1007/s00253-010-2564-9. PubMed DOI
Welander U. Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam. 2005;14:281–291. doi: 10.1080/15320380590928339. DOI
Yang S, Yang B, Duan C, Fuller DA, Wang X, Chowdhury SP, Stavik J, Zhang H, Ni Y. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresour Technol. 2019;281:440–448. doi: 10.1016/j.biortech.2019.02.132. PubMed DOI
Yuan XY, Zhang XY, Cen XP, Kong DW, Liu XY, Shen SY. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour Technol. 2018;264:190–197. doi: 10.1016/j.biortech.2018.05.072. PubMed DOI
Žifčáková L, Vetrovsky T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome. 2017;5:122. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC
Zumsteg A, Schmutz S, Frey B (2013) Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing. Environ Microbiol Rep 5:424–437 PubMed