Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein?

. 2017 Sep 01 ; 10 (9) : 1075-1087.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28883016

The distinctive pathological hallmarks of Parkinson's disease are the progressive death of dopaminergic neurons and the intracellular accumulation of Lewy bodies enriched in α-synuclein protein. Several lines of evidence from the study of sporadic, familial and pharmacologically induced forms of human Parkinson's disease also suggest that mitochondrial dysfunction plays an important role in disease progression. Although many functions have been proposed for α-synuclein, emerging data from human and animal models of Parkinson's disease highlight a role for α-synuclein in the control of neuronal mitochondrial dynamics. Here, we review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial dynamic processes such as fusion-fission, transport and clearance. Drawing on current evidence, we propose that α-synuclein contributes to the mitochondrial defects that are associated with the pathology of this common and progressive neurodegenerative disease.

Zobrazit více v PubMed

Abeliovich A., Schmitz Y., Fariñas I., Choi-Lundberg D., Ho W.-H., Castillo P. E., Shinsky N., Verdugo J. M. G., Armanini M., Ryan A. et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. PubMed DOI

Alvarez-Erviti L., Rodriguez-Oroz M. C., Cooper J. M., Caballero C., Ferrer I., Obeso J. A. and Schapira A. H. V. (2010). Chaperone-mediated autophagy markers in Parkinson disease brains. PubMed DOI

Alves Da Costa C., Paitel E., Vincent B. and Checler F. (2002). Alpha-synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and implication for Parkinson's disease. PubMed DOI

Amiri M. and Hollenbeck P. J. (2008). Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. PubMed DOI PMC

Appel-Cresswell S., Vilarino-Guell C., Encarnacion M., Sherman H., Yu I., Shah B., Weir D., Thompson C., Szu-Tu C., Trinh J. et al. (2013). Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. PubMed DOI

Ashrafi G. and Schwarz T. L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. PubMed DOI PMC

Becker T., Gebert M., Pfanner N. and van der Laan M. (2009). Biogenesis of mitochondrial membrane proteins. PubMed DOI

Bender A., Desplats P., Spencer B., Rockenstein E., Adame A., Elstner M., Laub C., Mueller S., Koob A. O., Mante M. et al. (2013). TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease. PubMed DOI PMC

Berthet A., Margolis E. B., Zhang J., Hsieh I., Zhang J., Zhang J., Hnasko T. S., Ahmad J., Edwards R. H., Sesaki H. et al. (2014). Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. PubMed DOI PMC

Biskup S., Moore D. J., Celsi F., Higashi S., West A. B., Andrabi S. A., Kurkinen K., Yu S.-W., Savitt J. M., Waldvogel H. J. et al. (2006). Localization of LRRK2 to membranous and vesicular structures in mammalian brain. PubMed DOI

Blackinton J., Lakshminarasimhan M., Thomas K. J., Ahmad R., Greggio E., Raza A. S., Cookson M. R. and Wilson M. A. (2009). Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. PubMed DOI PMC

Bodner C. R., Maltsev A. S., Dobson C. M. and Bax A. (2010). Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson's disease revealed by solution NMR spectroscopy. PubMed DOI PMC

Bonifati V., (2014). Genetics of Parkinson's disease--state of the art, 2013. PubMed DOI

Braak H., Ghebremedhin E., Rüb U., Bratzke H. and Del Tredici K. (2004). Stages in the development of Parkinson's disease-related pathology. PubMed DOI

Braun A. R., Sevcsik E., Chin P., Rhoades E., Tristram-Nagle S. and Sachs J. N. (2012). α-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes. PubMed DOI PMC

Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M. R. and Südhof T. C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. PubMed DOI PMC

Burté F., Carelli V., Chinnery P. F. and Yu-Wai-Man P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. PubMed DOI

Bussell R. and Eliezer D. (2004). Effects of Parkinson's disease-linked mutations on the structure of lipid-associated alpha-synuclein. PubMed DOI

Butler E. K., Voigt A., Lutz A. K., Toegel J. P., Gerhardt E., Karsten P., Falkenburger B., Reinartz A., Winklhofer K. F. and Schulz J. B. (2012). The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity. PubMed DOI PMC

Chan E. Y. L. and McQuibban G. A. (2012). Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). PubMed DOI PMC

Chernomordik L., Chanturiya A., Green J. and Zimmerberg J. (1995). The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. PubMed DOI PMC

Chinta S. J., Mallajosyula J. K., Rane A. and Andersen J. K. (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. PubMed DOI PMC

Choubey V., Safiulina D., Vaarmann A., Cagalinec M., Wareski P., Kuum M., Zharkovsky A. and Kaasik A. (2011). Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. PubMed DOI PMC

Clayton D. F. and George J. M. (1998). The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. PubMed DOI

Cole N. B., DiEuliis D., Leo P., Mitchell D. C. and Nussbaum R. L. (2008). Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. PubMed DOI PMC

Collier T. J., Kanaan N. M. and Kordower J. H. (2011). Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. PubMed DOI PMC

Cooper A. A., Gitler A. D., Cashikar A., Haynes C. M., Hill K. J., Bhullar B., Liu K., Xu K., Strathearn K. E., Liu F. et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. PubMed DOI PMC

Cooper O., Seo H., Andrabi S., Guardia-Laguarta C., Graziotto J., Sundberg M., McLean J. R., Carrillo-Reid L., Xie Z., Osborn T. et al. (2012). Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. PubMed DOI PMC

Corti O., Lesage S. and Brice A. (2011). What genetics tells us about the causes and mechanisms of Parkinson's disease. PubMed DOI

Cotzias G. C., Papavasiliou P. S. and Gellene R. (1969). Modification of Parkinsonism - chronic treatment with L-Dopa. PubMed DOI

Court F. A. and Coleman M. P. (2012). Mitochondria as a central sensor for axonal degenerative stimuli. PubMed DOI

Cuervo A. M., Stefanis L., Fredenburg R., Lansbury P. T. and Sulzer D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. PubMed DOI

de Lau L. M. L. and Breteler M. M. B. (2006). Epidemiology of Parkinson's disease. PubMed DOI

Desplats P., Lee H.-J., Bae E.-J., Patrick C., Rockenstein E., Crews L., Spencer B., Masliah E. and Lee S.-J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. PubMed DOI PMC

Devi L. and Anandatheerthavarada H. K. (2010). Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer's and Parkinson's diseases. PubMed DOI PMC

Devi L., Raghavendran V., Prabhu B. M., Avadhani N. G. and Anandatheerthavarada H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. PubMed DOI PMC

Di Maio R., Barrett P. J., Hoffman E. K., Barrett C. W., Zharikov A., Borah A., Hu X., McCoy J., Chu C. T., Burton E. A. et al. (2016). α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. PubMed DOI PMC

Falzone T. L., Stokin G. B., Lillo C., Rodrigues E. M., Westerman E. L., Williams D. S. and Goldstein L. S. B. (2009). Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects. PubMed DOI PMC

Flierl A., Oliveira L. M. A., Falomir-Lockhart L. J., Mak S. K., Hesley J., Soldner F., Arndt-Jovin D. J., Jaenisch R., Langston J. W., Jovin T. M. et al. (2014). Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. PubMed DOI PMC

Follett J., Bugarcic A., Yang Z., Ariotti N., Norwood S. J., Collins B. M., Parton R. G. and Teasdale R. D. (2016). Parkinson disease-linked Vps35 R524W mutation impairs the endosomal association of retromer and induces α-synuclein aggregation. PubMed DOI PMC

Franco R., Li S., Rodriguez-Rocha H., Burns M. and Panayiotidis M. I. (2010). Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson's disease. PubMed DOI PMC

Fransson A., Ruusala A. and Aspenström P. (2003). Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. PubMed DOI

Frederick R. L. and Shaw J. M. (2007). Moving mitochondria: establishing distribution of an essential organelle. PubMed DOI PMC

Frederick R. L., McCaffery J. M., Cunningham K. W., Okamoto K. and Shaw J. M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. PubMed DOI PMC

Frost B. and Diamond M. I. (2010). Prion-like mechanisms in neurodegenerative diseases. PubMed DOI PMC

Fu M.-M. and Holzbaur E. L. F. (2014). Integrated regulation of motor-driven organelle transport by scaffolding proteins. PubMed DOI PMC

Fuchs J., Nilsson C., Kachergus J., Munz M., Larsson E.-M., Schüle B., Langston J. W., Middleton F. A., Ross O. A., Hulihan M. et al. (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. PubMed DOI

Galvin J. E., Uryu K., Lee V. M.-Y. and Trojanowski J. Q. (1999). Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. PubMed DOI PMC

Gao H., Yang W., Qi Z., Lu L., Duan C., Zhao C. and Yang H. (2012). DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. PubMed DOI

Giasson B. I., Murray I. V. J., Trojanowski J. Q. and Lee V. M.-Y. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. PubMed DOI

Glater E. E., Megeath L. J., Stowers R. S. and Schwarz T. L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. PubMed DOI PMC

Gomes L. C., Di Benedetto G. and Scorrano L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. PubMed DOI PMC

Guardia-Laguarta C., Area-Gomez E., Rüb C., Liu Y., Magrané J., Becker D., Voos W., Schon E. A. and Przedborski S. (2014). α-Synuclein is localized to mitochondria-associated ER membranes. PubMed DOI PMC

Gui Y.-X., Wang X.-Y., Kang W.-Y., Zhang Y.-J., Zhang Y., Zhou Y., Quinn T. J., Liu J. and Chen S.-D. (2012). Extracellular signal-regulated kinase is involved in alpha-synuclein-induced mitochondrial dynamic disorders by regulating dynamin-like protein 1. PubMed DOI

Guo X., Macleod G. T., Wellington A., Hu F., Panchumarthi S., Schoenfield M., Marin L., Charlton M. P., Atwood H. L. and Zinsmaier K. E. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. PubMed DOI

Guzman J. N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P. T. and Surmeier D. J. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. PubMed DOI PMC

Hadjigeorgiou G. M., Xiromerisiou G., Gourbali V., Aggelakis K., Scarmeas N., Papadimitriou A. and Singleton A. (2006). Association of alpha-synuclein Rep1 polymorphism and Parkinson's disease: influence of Rep1 on age at onset. PubMed DOI

Haywood A. F. and Staveley B. E. (2004). Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. PubMed DOI PMC

Hirokawa N., Niwa S. and Tanaka Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. PubMed DOI

Horvath S. E. and Daum G. (2013). Lipids of mitochondria. PubMed DOI

Hunn B. H. M., Cragg S. J., Bolam J. P., Spillantini M.-G. and Wade-Martins R. (2015). Impaired intracellular trafficking defines early Parkinson's disease. PubMed DOI PMC

Hurd D. D. and Saxton W. M. (1996). Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. PubMed PMC

Ibáñez P., Lesage S., Janin S., Lohmann E., Durif F., Destée A., Bonnet A.-M., Brefel-Courbon C., Heath S., Zelenika D. et al. (2009). Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. PubMed DOI

Imaizumi Y., Okada Y., Akamatsu W., Koike M., Kuzumaki N., Hayakawa H., Nihira T., Kobayashi T., Ohyama M., Sato S. et al. (2012). Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. PubMed DOI PMC

Itoh K., Nakamura K., Iijima M. and Sesaki H. (2013). Mitochondrial dynamics in neurodegeneration. PubMed DOI PMC

Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., Rohan de Silva H. A., Kittel A. and Saitoh T. (1995). The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. PubMed DOI

Jellinger K. A. (2012). Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. PubMed DOI

Jensen P. H., Nielsen M. S., Jakes R., Dotti C. G. and Goedert M. (1998). Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. PubMed DOI

Jiang H., Ren Y., Yuen E. Y., Zhong P., Ghaedi M., Hu Z., Azabdaftari G., Nakaso K., Yan Z. and Feng J. (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. PubMed DOI PMC

Jo E., Fuller N., Rand R. P., St George-Hyslop P. and Fraser P. E. (2002). Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. PubMed DOI

Joshi A. S., Thompson M. N., Fei N., Hüttemann M. and Greenberg M. L. (2012). Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. PubMed DOI PMC

Kageyama Y., Zhang Z. and Sesaki H. (2011). Mitochondrial division: molecular machinery and physiological functions. PubMed DOI PMC

Kageyama Y., Zhang Z., Roda R., Fukaya M., Wakabayashi J., Wakabayashi N., Kensler T. W., Reddy P. H., Iijima M. and Sesaki H. (2012). Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. PubMed DOI PMC

Kamp F., Exner N., Lutz A. K., Wender N., Hegermann J., Brunner B., Nuscher B., Bartels T., Giese A., Beyer K. et al. (2010). Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. PubMed DOI PMC

Kiely A. P., Asi Y. T., Kara E., Limousin P., Ling H., Lewis P., Proukakis C., Quinn N., Lees A. J., Hardy J. et al. (2013). α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? PubMed DOI PMC

Koutsopoulos O. S., Laine D., Osellame L., Chudakov D. M., Parton R. G., Frazier A. E. and Ryan M. T. (2010). Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. PubMed DOI

Krebiehl G., Ruckerbauer S., Burbulla L. F., Kieper N., Maurer B., Waak J., Wolburg H., Gizatullina Z., Gellerich F. N., Woitalla D. et al. (2010). Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PubMed DOI PMC

Kringelbach M. L., Jenkinson N., Owen S. L. F. and Aziz T. Z. (2007). Translational principles of deep brain stimulation. PubMed DOI

Kruger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J. T., Schöls L. and Riess O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. PubMed DOI

Krüger R., Kuhn W., Leenders K. L., Sprengelmeyer R., Müller T., Woitalla D., Portman A. T., Maguire R. P., Veenma L., Schröder U. et al. (2001). Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. PubMed DOI

Lacovich V., Espindola S. L., Alloatti M., Pozo Devoto V., Cromberg L. E., Čarná M. E., Forte G., Gallo J.-M., Bruno L., Stokin G. B. et al. (2017). Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. PubMed DOI PMC

Lashuel H. A., Overk C. R., Oueslati A. and Masliah E. (2013). The many faces of α-synuclein: from structure and toxicity to therapeutic target. PubMed DOI PMC

Lee J.-Y., Nagano Y., Taylor J. P., Lim K. L. and Yao T.-P. (2010a). Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. PubMed DOI PMC

Lee S.-J., Desplats P., Sigurdson C., Tsigelny I. and Masliah E. (2010b). Cell-to-cell transmission of non-prion protein aggregates. PubMed DOI PMC

Lee S., Sterky F. H., Mourier A., Terzioglu M., Cullheim S., Olson L. and Larsson N.-G. (2012). Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. PubMed DOI

Leidel C., Longoria R. A., Gutierrez F. M. and Shubeita G. T. (2012). Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. PubMed DOI PMC

Lewy F. H. (1912).

Li H.-T., Lin D.-H., Luo X.-Y., Zhang F., Ji L.-N., Du H.-N., Song G.-Q., Hu J., Zhou J.-W. and Hu H.-Y. (2005). Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. PubMed DOI

Li W.-W., Yang R., Guo J.-C., Ren H.-M., Zha X.-L., Cheng J.-S. and Cai D.-F. (2007). Localization of alpha-synuclein to mitochondria within midbrain of mice. PubMed DOI

Lin X., Parisiadou L., Sgobio C., Liu G., Yu J., Sun L., Shim H., Gu X.-L., Luo J., Long C.-X. et al. (2012). Conditional expression of Parkinson's disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. PubMed DOI PMC

Lionaki E., Markaki M., Palikaras K. and Tavernarakis N. (2015). Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. PubMed DOI

Liu X. and Hajnóczky G. (2009). Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. PubMed DOI PMC

Liu S., Ninan I., Antonova I., Battaglia F., Trinchese F., Narasanna A., Kolodilov N., Dauer W., Hawkins R. D. and Arancio O. (2004). alpha-Synuclein produces a long-lasting increase in neurotransmitter release. PubMed DOI PMC

Liu F.-T., Chen Y., Yang Y.-J., Yang L., Yu M., Zhao J., Wu J.-J., Huang F., Liu W., Ding Z.-T. et al. (2015). Involvement of mortalin/GRP75/mthsp70 in the mitochondrial impairments induced by A53T mutant α-synuclein. PubMed DOI

MacAskill A. F., Rinholm J. E., Twelvetrees A. E., Arancibia-Carcamo I. L., Muir J., Fransson A., Aspenstrom P., Attwell D. and Kittler J. T. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. PubMed DOI PMC

Maroteaux L., Campanelli J. T. and Scheller R. H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. PubMed PMC

Martin L. J., Pan Y., Price A. C., Sterling W., Copeland N. G., Jenkins N. A., Price D. L. and Lee M. K. (2006). Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. PubMed DOI PMC

Martin L. J., Semenkow S., Hanaford A. and Wong M. (2014). Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice. PubMed DOI PMC

Meeusen S., McCaffery J. M. and Nunnari J. (2004). Mitochondrial fusion intermediates revealed in vitro. PubMed DOI

Melki R. (2015). Role of different Alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. PubMed DOI PMC

Menges S., Minakaki G., Schaefer P. M., Meixner H., Prots I., Schlötzer-Schrehardt U., Friedland K., Winner B., Outeiro T. F., Winklhofer K. F. et al. (2017). Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. PubMed DOI PMC

Mishra P. and Chan D. C. (2016). Metabolic regulation of mitochondrial dynamics. PubMed DOI PMC

Misko A., Jiang S., Wegorzewska I., Milbrandt J. and Baloh R. H. (2010). Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. PubMed DOI PMC

Morris R. L. and Hollenbeck P. J. (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. PubMed DOI PMC

Morsci N. S., Hall D. H., Driscoll M. and Sheng Z.-H. (2016). Age-related phasic patterns of mitochondrial maintenance in adult Caenorhabditis elegans neurons. PubMed DOI PMC

Nakamura K., Nemani V. M., Wallender E. K., Kaehlcke K., Ott M. and Edwards R. H. (2008). Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. PubMed DOI PMC

Nakamura K., Nemani V. M., Azarbal F., Skibinski G., Levy J. M., Egami K., Munishkina L., Zhang J., Gardner B., Wakabayashi J. et al. (2011). Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. PubMed DOI PMC

Narendra D., Tanaka A., Suen D.-F. and Youle R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. PubMed DOI PMC

Niccoli T. and Partridge L. (2012). Ageing as a risk factor for disease. PubMed DOI

Nicklas W. J., Vyas I. and Heikkila R. E. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. PubMed DOI

O'Donnell K. C., Lulla A., Stahl M. C., Wheat N. D., Bronstein J. M. and Sagasti A. (2014). Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. PubMed DOI PMC

Oertel W. and Schulz J. B. (2016). Current and experimental treatments of Parkinson disease: a guide for neuroscientists. PubMed DOI

Okita K., Matsumura Y., Sato Y., Okada A., Morizane A., Okamoto S., Hong H., Nakagawa M., Tanabe K., Tezuka K.-I. et al. (2011). A more efficient method to generate integration-free human iPS cells. PubMed DOI

Orenstein S. J., Kuo S.-H., Tasset I., Arias E., Koga H., Fernandez-Carasa I., Cortes E., Honig L. S., Dauer W., Consiglio A. et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. PubMed DOI PMC

Otero M. G., Alloatti M., Cromberg L. E., Almenar-Queralt A., Encalada S. E., Pozo Devoto V. M., Bruno L., Goldstein L. S. B. and Falzone T. L. (2014). Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function. PubMed DOI

Pantcheva P., Elias M., Duncan K., Borlongan C. V., Tajiri N. and Kaneko Y. (2014). The role of DJ-1 in the oxidative stress cell death cascade after stroke. PubMed DOI PMC

Park J.-S., Koentjoro B., Veivers D., Mackay-Sim A. and Sue C.-M. (2014). Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. PubMed DOI PMC

Pasanen P., Myllykangas L., Siitonen M., Raunio A., Kaakkola S., Lyytinen J., Tienari P. J., Pöyhönen M. and Paetau A. (2014). Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology. PubMed DOI

Perfeito R., Cunha-Oliveira T. and Rego A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse. PubMed DOI

Perlmutter J. D., Braun A. R. and Sachs J. N. (2009). Curvature dynamics of alpha-synuclein familial Parkinson disease mutants: molecular simulations of the micelle- and bilayer-bound forms. PubMed DOI PMC

Perrin R. J., Woods W. S., Clayton D. F. and George J. M. (2000). Interaction of human alpha-Synuclein and Parkinson's disease variants with phospholipids. Structural analysis using site-directed mutagenesis. PubMed DOI

Petit G. H., Olsson T. T. and Brundin P. (2014). The future of cell therapies and brain repair: Parkinson's disease leads the way. PubMed DOI

Pham A. H., Meng S., Chu Q. N. and Chan D. C. (2012). Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. PubMed DOI PMC

Plowey E. D., Cherra S. J., Liu Y.-J. and Chu C. T. (2008). Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. PubMed DOI PMC

Poewe W. (2006). The natural history of Parkinson's disease. PubMed DOI

Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R. et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. PubMed DOI

Pozo Devoto V. M., Dimopoulos N., Alloatti M., Pardi M. B., Saez T. M., Otero M. G., Cromberg L. E., Marin-Burgin A., Scassa M. E., Stokin G. B. et al. (2017). αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson's Disease. PubMed DOI PMC

Pringsheim T., Jette N., Frolkis A. and Steeves T. D. L. (2014). The prevalence of Parkinson's disease: a systematic review and meta-analysis. PubMed DOI

Prots I., Veber V., Brey S., Campioni S., Buder K., Riek R., Böhm K. J. and Winner B. (2013). α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. PubMed DOI PMC

Prusiner S. B., Woerman A. L., Mordes D. A., Watts J. C., Rampersaud R., Berry D. B., Patel S., Oehler A., Lowe J. K., Kravitz S. N. et al. (2015). Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PubMed DOI PMC

Pryde K. R., Smith H. L., Chau K.-Y. and Schapira A. H. V. (2016). PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. PubMed DOI PMC

Puschmann A., Ross O. A., Vilariño-Güell C., Lincoln S. J., Kachergus J. M., Cobb S. A., Lindquist S. G., Nielsen J. E., Wszolek Z. K., Farrer M. et al. (2009). A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction. PubMed DOI PMC

Rakovic A., Shurkewitsch K., Seibler P., Grünewald A., Zanon A., Hagenah J., Krainc D. and Klein C. (2013). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. PubMed DOI PMC

Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A. and Zhang F. (2013). Genome engineering using the CRISPR-Cas9 system. PubMed DOI PMC

Reinhardt P., Schmid B., Burbulla L. F., Schöndorf D. C., Wagner L., Glatza M., Höing S., Hargus G., Heck S. A., Dhingra A. et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. PubMed DOI

Robotta M., Gerding H. R., Vogel A., Hauser K., Schildknecht S., Karreman C., Leist M., Subramaniam V. and Drescher M. (2014). Alpha-synuclein binds to the inner membrane of mitochondria in an α-helical conformation. PubMed DOI

Rodriguez M., Rodriguez-Sabate C., Morales I., Sanchez A. and Sabate M. (2015). Parkinson's disease as a result of aging. PubMed DOI PMC

Rostovtseva T. K., Gurnev P. A., Protchenko O., Hoogerheide D. P., Yap T. L., Philpott C. C., Lee J. C. and Bezrukov S. M. (2015). α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. PubMed DOI PMC

Roy S., Winton M. J., Black M. M., Trojanowski J. Q. and Lee V. M.-Y. (2007). Rapid and intermittent cotransport of slow component-b proteins. PubMed DOI PMC

Rubinsztein D. C., DiFiglia M., Heintz N., Nixon R. A., Qin Z.-H., Ravikumar B., Stefanis L. and Tolkovsky A. (2005). Autophagy and its possible roles in nervous system diseases, damage and repair. PubMed DOI

Russo G. J., Louie K., Wellington A., Macleod G. T., Hu F., Panchumarthi S. and Zinsmaier K. E. (2009). Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. PubMed DOI PMC

Sánchez-Danés A., Richaud-Patin Y., Carballo-Carbajal I., Jiménez-Delgado S., Caig C., Mora S., Di Guglielmo C., Ezquerra M., Patel B., Giralt A. et al. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. PubMed DOI PMC

Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., Rizzuto R. and Hajnóczky G. (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. PubMed DOI PMC

Schneeberger A., Tierney L. and Mandler M. (2016). Active immunization therapies for Parkinson's disease and multiple system atrophy. PubMed DOI

Schon E. A. and Przedborski S. (2011). Mitochondria: the next (neurode)generation. PubMed DOI PMC

Seibler P., Graziotto J., Jeong H., Simunovic F., Klein C. and Krainc D. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. PubMed DOI PMC

Shaltouki A., Sivapatham R., Pei Y., Gerencser A. A., Momčilović O., Rao M. S. and Zeng X. (2015). Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. PubMed DOI PMC

Shavali S., Brown-Borg H. M., Ebadi M. and Porter J. (2008). Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. PubMed DOI PMC

Sheng Z.-H. and Cai Q. (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. PubMed DOI PMC

Shimura H., Hattori N., Kubo S.-I., Mizuno Y., Asakawa S., Minoshima S., Shimizu N., Iwai K., Chiba T., Tanaka K. et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. PubMed DOI

Shulman J. M., De Jager P. L. and Feany M. B. (2011). Parkinson's disease: genetics and pathogenesis. PubMed DOI

Shults C. W. (2006). Lewy bodies. PubMed DOI PMC

Song Z., Ghochani M., McCaffery J. M., Frey T. G. and Chan D. C. (2009). Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. PubMed DOI PMC

Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M. and Goedert M. (1998). α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. PubMed DOI PMC

Stowers R. S., Megeath L. J., Górska-Andrzejak J., Meinertzhagen I. A. and Schwarz T. L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. PubMed DOI

Su Y.-C. and Qi X. (2013). Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. PubMed DOI

Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A. and Hirokawa N. (1998). Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. PubMed DOI

Tang F.-L., Erion J. R., Tian Y., Liu W., Yin D.-M., Ye J., Tang B., Mei L. and Xiong W.-C. (2015a). VPS35 in dopamine neurons is required for endosome-to-golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson's disease. PubMed DOI PMC

Tang F.-L., Liu W., Hu J.-X., Erion J. R., Ye J., Mei L. and Xiong W.-C. (2015b). VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. PubMed DOI PMC

Tanik S. A., Schultheiss C. E., Volpicelli-Daley L. A., Brunden K. R. and Lee V. M. Y. (2013). Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. PubMed DOI PMC

Tong Y., Yamaguchi H., Giaime E., Boyle S., Kopan R., Kelleher R. J. and Shen J. (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. PubMed DOI PMC

Twig G., Elorza A., Molina A. J. A., Mohamed H., Wikstrom J. D., Walzer G., Stiles L., Haigh S. E., Katz S., Las G. et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. PubMed DOI PMC

Ulmer T. S., Bax A., Cole N. B. and Nussbaum R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. PubMed DOI

Utton M. A., Noble W. J., Hill J. E., Anderton B. H. and Hanger D. P. (2005). Molecular motors implicated in the axonal transport of tau and alpha-synuclein. PubMed DOI

van Spronsen M., Mikhaylova M., Lipka J., Schlager M. A., van den Heuvel D. J., Kuijpers M., Wulf P. S., Keijzer N., Demmers J., Kapitein L. C. et al. (2013). TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. PubMed DOI

Vogiatzi T., Xilouri M., Vekrellis K. and Stefanis L. (2008). Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. PubMed DOI PMC

Volpicelli-Daley L. A., Gamble K. L., Schultheiss C. E., Riddle D. M., West A. B. and Lee V. M.-Y. (2014). Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. PubMed DOI PMC

Wang Y. and Hekimi S. (2015). Mitochondrial dysfunction and longevity in animals: untangling the knot. PubMed DOI

Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y. L., Selkoe D., Rice S., Steen J., LaVoie M. J. and Schwarz T. L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. PubMed DOI PMC

Wang X., Yan M. H., Fujioka H., Liu J., Wilson-Delfosse A., Chen S. G., Perry G., Casadesus G. and Zhu X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. PubMed DOI PMC

Wang W., Wang X., Fujioka H., Hoppel C., Whone A. L., Caldwell M. A., Cullen P. J., Liu J. and Zhu X. (2016). Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. PubMed DOI PMC

Winner B., Jappelli R., Maji S. K., Desplats P. A., Boyer L., Aigner S., Hetzer C., Loher T., Vilar M., Campioni S. et al. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. PubMed DOI PMC

Winslow A. R., Chen C.-W., Corrochano S., Acevedo-Arozena A., Gordon D. E., Peden A. A., Lichtenberg M., Menzies F. M., Ravikumar B., Imarisio S. et al. (2010). α-Synuclein impairs macroautophagy: implications for Parkinson's disease. PubMed DOI PMC

Wood-Kaczmar A., Gandhi S. and Wood N. W. (2006). Understanding the molecular causes of Parkinson's disease. PubMed DOI

Wood-Kaczmar A., Gandhi S., Yao Z., Abramov A. S. Y., Abramov A. S. Y., Miljan E. A., Keen G., Stanyer L., Hargreaves I., Klupsch K. et al. (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PubMed DOI PMC

Xie W. and Chung K. K. K. (2012). Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease. PubMed DOI

Xiong H., Wang D., Chen L., Choo Y. S., Ma H., Tang C., Xia K., Jiang W., Ronai Z., Zhuang X. et al. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. PubMed DOI PMC

Yang Y., Gehrke S., Imai Y., Huang Z., Ouyang Y., Wang J.-W., Yang L., Beal M. F., Vogel H. and Lu B. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. PubMed DOI PMC

Yang M.-L., Hasadsri L., Woods W. S. and George J. M. (2010). Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. PubMed DOI PMC

Zaichick S. V., McGrath K. M. and Caraveo G. (2017). The role of Ca(2+) signaling in Parkinson's disease. PubMed DOI PMC

Zarranz J. J., Alegre J., Gómez-Esteban J. C., Lezcano E., Ros R., Ampuero I., Vidal L., Hoenicka J., Rodriguez O., Atarés B. et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. PubMed DOI

Zhang L., Zhang C., Zhu Y., Cai Q., Chan P., Uéda K., Yu S. and Yang H. (2008). Semi-quantitative analysis of alpha-synuclein in subcellular pools of rat brain neurons: an immunogold electron microscopic study using a C-terminal specific monoclonal antibody. PubMed DOI

Zhang Q., Tamura Y., Roy M., Adachi Y., Iijima M. and Sesaki H. (2014). Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. PubMed DOI PMC

Zigoneanu I. G., Yang Y. J., Krois A. S., Haque M. E. and Pielak G. J. (2012). Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. PubMed DOI PMC

Ziviani E., Tao R. N. and Whitworth A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...